1
|
Takarada WH, Nazareno MH, de Freitas RA, Orth ES. Cellulose-derived biocatalysts and neutralizing gels for pesticides: How to eliminate and avoid intoxication? JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137576. [PMID: 39954422 DOI: 10.1016/j.jhazmat.2025.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The threat of intoxication by organophosphates - pesticides and chemical warfare - is a real concern worldwide. Fast, efficient and non-aggressive approaches for prevention and treatment are required. The use of functionalized biopolymers towards chemical neutralization of organophosphate is strategic since it is environmentally friendly. Herein, three carboxymethyl cellulose-derived biocatalysts were achieved via covalent functionalization with hydroxamates and imidazoles, targeted on the carboxylic acids of the cellulosic biopolymer. The aimed strategy was successful, confirmed by characterizations with Fourier-transform infrared spectroscopy, potentiometric titration, thermogravimetric analysis, zeta potential titrations, size-exclusion chromatography with multi-angle static light scattering, colorimetric test with iron (III) and rheological assays. The materials in colloidal form were highly reactive in the catalytic neutralization -evaluated by kinetic studies - with rate enhancements up to 107-fold for the real-life Paraoxon, compared to the reaction in the absence of biocatalysts. Chemical selectivity towards the phosphorus center was accomplished - the desirable pathway that leads to less toxic products - and maintained the reactivity for at least 5 reaction cycles. Furthermore, the biocatalysts were processed as neutralizing gels aiming for skin intoxication prevention against organophosphates. Indeed, in vitro permeation assays evidenced that the gels eliminated 100 % of the toxic agent after 24 hours. The gels were able to destroy the organophosphates, whilst the phenolic degradation product was detected in assay. Thus, these results emphasize the potential of biocompatible polymeric materials as interesting platforms to anchor reactive groups to design catalytic materials aiming chemical decontamination and security.
Collapse
Affiliation(s)
- Willian H Takarada
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil
| | - Mariana H Nazareno
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmaceutical Sciences, Universidade Federal do Paraná (UFPR), Curitiba, PR CEP 80210-170, Brazil
| | - Elisa S Orth
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, Curitiba, PR CEP 81531-980, Brazil.
| |
Collapse
|
2
|
Al-Shemy MT, El-Demerdash AS, Marzec A, Dawwam GE. Biocontrol of virulent Listeria monocytogenes using green carboxylated cellulose nanocrystals-silver nano-biohybrids. Int J Biol Macromol 2025; 290:139012. [PMID: 39708864 DOI: 10.1016/j.ijbiomac.2024.139012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
L. monocytogenes is a Gram-positive bacterial pathogen, known to cause food poisoning and systemic disease, specifically listeriosis. This species has shown resistance to many commonly used antibiotics, making the search for new alternative therapies is a pressing matter. A facile and eco-friendly sono-co-method was developed to produce Ag nanoparticles from palm sheath fiber agricultural waste, using carboxylated cellulose nanocrystals (CCNs). Spectroscopic analysis, including UV-visible, TEM, FTIR, and EDS, confirmed the successful synthesis of the CCN-Ag nano-biohybrids. The nano-biohybrids exhibited potent antibacterial activity against various L.monocytogenes strains, with inhibition zones ranging from 16 to 19 mm. Concentrations of the CCN-Ag suspension between 0.25 and 1 μg/mL were found to completely prevent the growth of L.monocytogenes. Conventional PCR analysis revealed the presence of several virulence genes, including actA, inlA, inlB, plcA, iap, and hlyA, in all the tested strains. Notably, CCN-Ag treatment significantly downregulated these genes, indicating a reduction in virulence and potential for biocontrol applications. The novelty of this research lies in the development of a sustainable and eco-friendly method for producing potent antimicrobial nanohybrids from agricultural waste. These nanohybrids' ability to effectively inhibit L.monocytogenes' growth and downregulate its virulence genes offers a promising avenue for combating this pathogenic bacterium.
Collapse
Affiliation(s)
- Mona T Al-Shemy
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 126220, Giza, Egypt
| | - Azza S El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt.
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
3
|
Kramar A, González-Benito J, Nikolić N, Larrañaga A, Lizundia E. Properties and environmental sustainability of fungal chitin nanofibril reinforced cellulose acetate films and nanofiber mats by solution blow spinning. Int J Biol Macromol 2024; 269:132046. [PMID: 38723813 DOI: 10.1016/j.ijbiomac.2024.132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Materials from biological origin composed by renewable carbon facilitate the transition from linear carbon-intensive economy to a sustainable circular economy. Accordingly, we use solution blow spinning to develop fully biobased cellulose acetate films and nanofiber mats reinforced with fungal chitin nanofibrils (ChNFs), an emerging bio-colloid with lower carbon footprint compared to crustacean-derived nanochitin. This study incorporates fungal ChNFs into spinning processes for the first time. ChNF addition reduces film surface roughness, modifies film water affinity, and tailors the nanofiber diameter of the mats. The covalently bonded β-D-glucans of ChNFs act as a binder to improve the interfacial properties and consequently load transference to enhance the mechanical properties. Accordingly, the Young's modulus of the films increases from 200 ± 18 MPa to 359 ± 99 MPa with 1.5 wt% ChNFs, while the elongation at break increases by ~45 %. Life cycle assessment (LCA) is applied to quantify the environmental impacts of solution blow spinning for the first time, providing global warming potential values of 69.7-347.4 kg·CO2-equiv.·kg-1. Additionally, this work highlights the suitability of ChNFs as reinforcing fillers during spinning and proves the reinforcing effect of mushroom-derived chitin in bio-based films, opening alternatives for sustainable materials development beyond nanocelluloses in the near future.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; Instituto Tecnológico de Química y Materiales "Álvaro Alonso Barba", Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Nataša Nikolić
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Biscay, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, 48940 Leioa, Biscay, Spain.
| |
Collapse
|
4
|
Verma C, Singh V, AlFantazi A. Cellulose, cellulose derivatives and cellulose composites in sustainable corrosion protection: challenges and opportunities. Phys Chem Chem Phys 2024; 26:11217-11242. [PMID: 38587831 DOI: 10.1039/d3cp06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The use of cellulose-based compounds in coating and aqueous phase corrosion prevention is becoming more popular because they provide excellent protection and satisfy the requirements of green chemistry and sustainable development. Cellulose derivatives, primarily carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC), are widely employed in corrosion prevention. They function as efficient inhibitors by adhering to the metal's surface and creating a corrosion-inhibitive barrier by binding using their -OH groups. Their inhibition efficiency (%IE) depends upon various factors, including their concentration, temperature, chemical composition, the nature of the metal/electrolyte and availability of synergists (X-, Zn2+, surfactants and polymers). Cellulose derivatives also possess potential applications in anticorrosive coatings as they prevent corrosive species from penetrating and encourage adhesion and cohesion, guaranteeing the metal substrate underneath long-term protection. The current review article outlines the developments made in the past and present to prevent corrosion in both the coating phase and solution by using cellulose derivatives. Together with examining the difficulties of the present and the prospects for the future, the corrosion inhibition mechanism of cellulose derivatives in the solution and coating phases has also been investigated.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Vidusha Singh
- Department of Chemistry, Udai Pratap (U.P.) Autonomous College, Varanasi 221002, India
| | - Akram AlFantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Liu Y, Zhao J, Yu X, Ren Y, Liu X. Bioinspired phosphorus-free and halogen-free biomass coatings for durable flame retardant modification of regenerated cellulose fibers. Int J Biol Macromol 2024; 259:129252. [PMID: 38199533 DOI: 10.1016/j.ijbiomac.2024.129252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Inspired by mussel adhesion and intrinsic flame retardant alginate fibers, a biomass flame retardant (PPCA) containing adhesive catechol and sodium carboxylate structure (-COO-Na+) based on biomass amino acids and protocatechualdehyde was designed to prepare flame retardant Lyocell fibers (Lyocell@PPCA@Na). Furthermore, through the substitution and chelation of metal ions by PPCA in the cellulose molecular chain, flame retardant Lyocell fibers chelating copper and iron ions (Lyocell@PPCA@Cu, Lyocell@PPCA@Fe) were prepared. Compared with the original sample, the peak heat release rate (PHRR) and total heat release (THR) for modified Lyocell fibers were significantly reduced. In addition, the modified sample exhibited a certain flame retardant durability. TG-FTIR analysis showed that the release of flammable gaseous substances was inhibited. The introduction of Schiff bases and aromatic structures in PPCA, as well as the decomposition of carboxylic metal salts were beneficial for the formation of char residue containing metal carbonates and metal oxides to play the condensed phase flame retardant effect. This work develops a new idea for the preparation of eco-friendly flame retardant Lyocell fibers without the traditional flame retardant elements such as P, Cl, and Br.
Collapse
Affiliation(s)
- Yansong Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jieyun Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xi Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanlin Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China.
| | - Xiaohui Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Ismail BA, Abd El-Wahab ZH, Ali OAM, Nassar DA. Synthesis, structural characterization, and antimicrobial evaluation of new mononuclear mixed ligand complexes based on furfural-type imine ligand, and 2,2'-bipyridine. Sci Rep 2023; 13:9196. [PMID: 37280267 DOI: 10.1038/s41598-023-36060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
The present investigation goal was to investigate the chemistry of four new mononuclear mixed ligand Fe(III), Co(II), Cu(II), and Cd(II) complexes constructed from furfural-type imine ligand (L), and the co ligand 2,2'-bipyridine in addition to assessing their antimicrobial activity against some bacterial, and fungi strains. The structure of the complexes was interpreted by different spectroscopic techniques such as MS, IR, 1H NMR, UV-Vis, elemental analysis, TG-DTG, conductivity, and magnetic susceptibility measurements. The correlation of all results revealed that ligand (L) acts as a neutral ONNO tetradentate whereas the co ligand acts as a neutral NN bidentate. The coordination of the ligands with the metal ions in a molar ratio of 1:1:1 leads to formation of an octahedral geometry around the metal ions. The octahedral geometry has been validated and optimized by DFT analysis. Conductivity data showed the electrolytic nature of all complexes. The thermal stability of all complexes was deduced in addition to evaluating some thermodynamic, and kinetic parameters using Coats-Redfern method. Furthermore, all complexes in comparison to their parent ligands were tested for their biological potency against some pathogenic bacterial, and fungi strains using the paper disk diffusion method. [CdL(bpy)](NO3)2 complex revealed the highest antimicrobial activity.
Collapse
Affiliation(s)
- Basma A Ismail
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Zeinab H Abd El-Wahab
- Chemistry Department, Faculty of Science (Girl's), Al-Azhar University, Youssif Abbas St., P.O. Box 11754, Nasr City, Cairo, Egypt.
| | - Omyma A M Ali
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Doaa A Nassar
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Cryo-Induced Cellulose-Based Nanogel from Elaeis guineensis for Antibiotic Delivery Platform. Int J Mol Sci 2023; 24:ijms24021230. [PMID: 36674748 PMCID: PMC9866051 DOI: 10.3390/ijms24021230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Cryo-induced hydrogel from cellulose is a new class of biomaterials for drug delivery, cell delivery, bone and skin tissue engineering for cell proliferation and regeneration applications. This research aimed to synthesize cryo-induced hydrogel from cellulose and carboxymethyl cellulose (CMC) produced from empty bunch's cell wall of Elaeis guineensis. First, the experiment was to produce cellulose-rich material using hot-compressed water extraction followed by alkaline delignification and bleaching with H2O2. The obtained bleached EFB cellulose was used as the substrate for CMC, and the optimal condition with the highest degree of carboxyl substitution (DS) of 0.75 was achieved when varying NaOH and monochloroacetic acid concentration as well as etherification temperature using fractional factorial design. For cryogelation study, hydrogels were synthesized from cellulose, CMC and beta-cyclodextrin (β-CD) by dissolving cellulose-based matrix in a NaOH/urea system, and the cellulose (CEL) solution was frozen spontaneously at -40 °C followed by high speed mixing to loosen cellulose fibrils. Epichlorohydrin (ECH) and Polyethylene glycol diglycidyl ether (PEGDE) were used as a cross-linker. First, the ratio of cellulose and CMC with different amounts of ECH was investigated, and subsequently the proper ratio was further studied by adding different crosslinkers and matrices, i.e., CMC and β-CD. From the result, the ECH crosslinked CMC-CEL (E-CMC-CEL) gel had the highest swelling properties of 5105% with the average pore size of lyophilized hydrogel of 300 µm. In addition, E-CMC-CEL gel had the highest loading and release capability of tetracycline in buffer solution at pH 7.4 and 3.2. At pH 7.4, tetracycline loading and release properties of E-CMC-CEL gel were 65.85 mg g-1 dry hydrogel and 46.48 mg g-1 dry hydrogel (70.6% cumulative release), respectively. However, at pH 3.2, the loading and release capabilities of Tetracycline were moderately lower at 16.25 mg g-1 dry hydrogel and 5.06 mg g-1 dry hydrogel, respectively. The findings presented that E-CMC-CEL hydrogel was a suitable material for antibiotic tetracycline drug carrying platform providing successful inhibitory effect on Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively.
Collapse
|
8
|
Toro RG, Adel AM, de Caro T, Brunetti B, Al-Shemy MT, Caschera D. A Facile One-Pot Approach to the Fabrication of Nanocellulose-Titanium Dioxide Nanocomposites with Promising Photocatalytic and Antimicrobial Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165789. [PMID: 36013927 PMCID: PMC9415876 DOI: 10.3390/ma15165789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/01/2023]
Abstract
The combination of cellulosic materials and metal oxide semiconductors can provide composites with superior functional properties compared to cellulose. By using nanocellulose derived from agricultural waste, we propose a one-pot and environmentally friendly approach to the synthesis of nanocellulose-TiO2 (NC-TiO2) nanocomposites with peculiar photocatalytic activity and antibacterial effects. The as-prepared NC-TiO2 composites were fully characterized by different techniques, such as X-ray diffraction (XRD), μ-Raman, Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The results showed that well crystalline anatase TiO2 nanoparticles of about 5-6 nm were obtained. The photocatalytic activity in particular was evaluated by using methyl orange (MO) solution as a target pollutant at different pH values. It was found that all the tested NC-TiO2 nanocomposites showed stable photocatalytic activity, even after consecutive photocatalytic runs. In addition, NCT nanocomposites with higher TiO2 content showed degradation efficiency of almost 99% towards MO after 180 min of UV illumination. Finally, NC-TiO2 nanocomposites also showed intriguing antimicrobial properties, demonstrating to be effective against Gram-positive (Staphylococcus aureus, Bacillus subtilis) with 20-25 mm of inhibition zone and Gram-negative bacteria (Escherichia coli, Pseudomonas aeuroginosa) with 21-24 mm of inhibition zone, and fungi (Candida albicans) with 9-10 mm of inhibition zone.
Collapse
Affiliation(s)
- Roberta G. Toro
- Institute for the Study of Nanostructured Materials, National Research Council, Via Salaria Km 29,300, Monterotondo Stazione, 00015 Rome, Italy
| | - Abeer M. Adel
- National Research Centre, Cellulose and Paper Department, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Tilde de Caro
- Institute for the Study of Nanostructured Materials, National Research Council, Via Salaria Km 29,300, Monterotondo Stazione, 00015 Rome, Italy
| | - Bruno Brunetti
- Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza” Institute for the Study of Nanostructured Materials, National Research Council c/o, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mona T. Al-Shemy
- National Research Centre, Cellulose and Paper Department, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza P.O. Box 12622, Egypt
| | - Daniela Caschera
- Institute for the Study of Nanostructured Materials, National Research Council, Via Salaria Km 29,300, Monterotondo Stazione, 00015 Rome, Italy
| |
Collapse
|
9
|
Javadian S, Heidari Keleshteri F, Gharibi H, Parviz Z, Sadrpour SM. Do eco-friendly binders affect the electrochemical performance of MOF@CNT anodes in lithium-ion batteries? NEW J CHEM 2022. [DOI: 10.1039/d2nj02560d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We substituted an organic-based binder with a natural water-soluble binder (CMC) in the anode of a lithium-ion battery.
Collapse
Affiliation(s)
- Soheila Javadian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Iran
| | | | - Hussein Gharibi
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Iran
| | - Zohre Parviz
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Iran
| | - Seyed Morteza Sadrpour
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Iran
| |
Collapse
|
10
|
Shawky A, Nam JS, Kim K, Han J, Yoon J, Seo S, Lee CS, Xiang R, Matsuo Y, Lee HM, Maruyama S, Jeon I. Controlled Removal of Surfactants from Double-Walled Carbon Nanotubes for Stronger p-Doping Effect and Its Demonstration in Perovskite Solar Cells. SMALL METHODS 2021; 5:e2100080. [PMID: 34927903 DOI: 10.1002/smtd.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Indexed: 06/14/2023]
Abstract
Double-walled carbon nanotubes (DWNTs) have shown potential as promising alternatives to conventional transparent electrodes owing to their solution processability as well as high conductivity and transparency. However, their DC to optical conductivity ratio is limited by the surrounding surfactants that prevent the p-doping of the DWNTs. To maximize the doping effectiveness, the surfactants are removed from the DWNTs, with negligible damage to the nanotubes, by calcination in an Ar atmosphere. The effective removal of the surfactants is characterized by various analyses, and the results show that the optimal calcination temperature is 400 °C. The conductivity of the DWNTs films improves when doped by triflic acid. While the conductivity increase of the surfactants-wrapped DWNT films is 31.9%, the conductivity increase of the surfactants-removed DWNT is found to be 59.7%. Using the surfactants-removed, p-doped, solution-processed transparent electrodes, inverted-type perovskite solar cells are fabricated, resulting in a power conversion efficiency of 17.7% without hysteresis. This work advances the application of DWNTs in transparent conductors, as the efficiency obtained is the highest value achieved to date for carbon nanotube electrode-based perovskite solar cells and solution-processable transparent electrode-based solar cells.
Collapse
Affiliation(s)
- Ahmed Shawky
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87 Helwan, Cairo, 11421, Egypt
| | - Jeong-Seok Nam
- Department of Chemistry Education, Graduate School of Chemical Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Institute for Plastic Information and Energy Materials, Pusan National University, 63-2 Busandaehak-ro, Busan, 46241, Republic of Korea
| | - Kyusun Kim
- Department of Chemistry Education, Graduate School of Chemical Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Institute for Plastic Information and Energy Materials, Pusan National University, 63-2 Busandaehak-ro, Busan, 46241, Republic of Korea
| | - Jiye Han
- Department of Chemistry Education, Graduate School of Chemical Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Institute for Plastic Information and Energy Materials, Pusan National University, 63-2 Busandaehak-ro, Busan, 46241, Republic of Korea
| | - Jungjin Yoon
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Seungju Seo
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Chang Soo Lee
- Hydrogen Energy Department, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea
| | - Rong Xiang
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yutaka Matsuo
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Shigeo Maruyama
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Il Jeon
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry Education, Graduate School of Chemical Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Institute for Plastic Information and Energy Materials, Pusan National University, 63-2 Busandaehak-ro, Busan, 46241, Republic of Korea
| |
Collapse
|
11
|
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS, Shiddiky MJA, Ahmed MB. Recent Developments of Carboxymethyl Cellulose. Polymers (Basel) 2021; 13:1345. [PMID: 33924089 PMCID: PMC8074295 DOI: 10.3390/polym13081345] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.
Collapse
Affiliation(s)
- Md. Saifur Rahman
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md. Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Ashis Sutradhar Nitai
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Sunghyun Nam
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA;
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Md. Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.S.H.); (A.S.N.); (A.K.K.); (M.S.A.)
| | - Muhammad J. A. Shiddiky
- School of Environment and Science (ESC) and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan 4111, Australia;
| | - Mohammad Boshir Ahmed
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
12
|
Faheim AA, Elsawy M, Salem SS, Abd El-Wahab H. Novel antimicrobial paint based on binary and ternary dioxouranium (VI) complexes for surface coating applications. PROGRESS IN ORGANIC COATINGS 2021; 151:106027. [DOI: 10.1016/j.porgcoat.2020.106027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Casas X, Niederberger M, Lizundia E. A Sodium-Ion Battery Separator with Reversible Voltage Response Based on Water-Soluble Cellulose Derivatives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29264-29274. [PMID: 32510197 DOI: 10.1021/acsami.0c05262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of efficient, safe, and environmentally friendly energy storage systems plays a pivotal role in moving toward a more sustainable society. Sodium-ion batteries (NIBs) have garnered considerable interest in grid energy storage applications because of the abundance of sodium, low cost, and suitable redox potential. However, NIB technology is still in its infancy, especially with regard to separators. Here we develop a novel separator based on renewable water-soluble cellulose derivatives. Carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) are cross-linked to afford large-specific-surface-area membranes upon nonsolvent-induced phase separation (NIPS). Long-term galvanostatic cycling in a symmetric Na/Na cell configuration shows an impressive reversible voltage response with a square wave shape of the polarization even after 250 h of cycling, indicating remarkably stable Na plating and stripping with Na dendrite growth suppression. This novel membrane is evaluated as a separator in Na3V2(PO4)3/Na half-cells. After 10 cycles at C/10, the cellulosic separator delivers a capacity of 74 mA·h·g-1 with a 100% Coulombic efficiency compared to that of 61 mA·h·g-1 and 96% obtained for Whatman GF/D as a commercially available separator. Our work provides novel cues for the development of biomass-derived porous membranes to function as battery separators, surpassing the performance of commercially available separators based on fossil resources in terms of capacity retention, Coulombic efficiency, homogeneous plating/stripping of Na, and dendrite growth suppression. These separators, which may be extended to other battery systems, are expected to play a significant role in developing sustainable energy storage systems.
Collapse
Affiliation(s)
- Xabier Casas
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
14
|
Mohan T, Dobaj Štiglic A, Beaumont M, Konnerth J, Gürer F, Makuc D, Maver U, Gradišnik L, Plavec J, Kargl R, Stana Kleinschek K. Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:1197-1209. [DOI: 10.1021/acsabm.9b01099] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tamilselvan Mohan
- Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Andreja Dobaj Štiglic
- Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Marco Beaumont
- University of Natural Resources and Life Sciences (BOKU), Institute of Chemistry of Renewable Resources, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Johannes Konnerth
- University of Natural Resources and Life Sciences (BOKU), Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Fazilet Gürer
- Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Damjan Makuc
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Rupert Kargl
- Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Institute of Paper, Pulp and Fibre Technology (IPZ), Graz University of Technology, Inffeldgasse 23, A-8010 Graz, Austria
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | - Karin Stana Kleinschek
- Institute of Chemistry and Technology of Biobased System, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
SnO2- and bacterial-cellulose nanofiber-based composites as a novel platform for nickel-ion detection. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hosseinzadeh H, Bahador N. Novel CdS quantum dots templated hydrogel nanocomposites: Synthesis, characterization, swelling and dye adsorption properties. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Ali OA, Abd El –Wahab ZH, Ismail BA. Synthesis, structural characterization and evaluation of catalytic and antimicrobial properties of new mononuclear Ag(I), Mn(II), Cu(II) and Pt(IV) complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Ahamed MI, Inamuddin, Lutfullah, Sharma G, Khan A, Asiri AM. Turmeric/polyvinyl alcohol Th(IV) phosphate electrospun fibers: Synthesis, characterization and antimicrobial studies. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Baniasad A, Ghorbani M. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles. Int J Biol Macromol 2016; 86:901-6. [PMID: 26893046 DOI: 10.1016/j.ijbiomac.2016.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 11/26/2022]
Abstract
In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%.
Collapse
Affiliation(s)
- Arezou Baniasad
- Shomal University, Department of Chemical Engineering, Amol, Iran
| | - Mohsen Ghorbani
- Polymer Research Center, Babol Noshirvani University of Technolgy, Babol, Iran.
| |
Collapse
|
20
|
Khoo JMY, Chee SY, Lee CL, Nagalingam S. Superabsorbent polymer prepared using carboxymethyl cellulose derived from Ceiba pentandra(L.) Gaertn. (kapok) cotton. J Appl Polym Sci 2014. [DOI: 10.1002/app.40808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jennifer Meei Yun Khoo
- Faculty of Science; Universiti Tunku Abdul Rahman, Jalan Universiti; Bandar Barat 31900 Kampar Perak Malaysia
| | - Swee Yong Chee
- Faculty of Science; Universiti Tunku Abdul Rahman, Jalan Universiti; Bandar Barat 31900 Kampar Perak Malaysia
| | - Chee Leong Lee
- Faculty of Science; Universiti Tunku Abdul Rahman, Jalan Universiti; Bandar Barat 31900 Kampar Perak Malaysia
| | - Saravanan Nagalingam
- Faculty of Integrative Sciences and Technology; Quest International University Perak; 30250 Ipoh Perak Malaysia
| |
Collapse
|
21
|
Samsudin A, Lai H, Isa M. Biopolymer Materials Based Carboxymethyl Cellulose as a Proton Conducting Biopolymer Electrolyte for Application in Rechargeable Proton Battery. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.074] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abdel-Rahman LH, El-Khatib RM, Nassr LAE, Abu-Dief AM, Lashin FED. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 111:266-276. [PMID: 23665616 DOI: 10.1016/j.saa.2013.03.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.
Collapse
|
23
|
Faheim AA, Abdou SN, Abd El-Wahab ZH. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:109-124. [PMID: 23295217 DOI: 10.1016/j.saa.2012.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H(2)L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, (1)H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H(2)L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.
Collapse
Affiliation(s)
- Abeer A Faheim
- Chemistry Department, College of Education and Science (Khurma), Taif University, Al-khurma, Taif, Saudi Arabia.
| | | | | |
Collapse
|
24
|
Valappil SP, Yiu HHP, Bouffier L, Hope CK, Evans G, Claridge JB, Higham SM, Rosseinsky MJ. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa. Dalton Trans 2013; 42:1778-86. [DOI: 10.1039/c2dt32235h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Investigation of transport properties of polyvinyl chloride based polyvinyl alcohol Sn(IV) tungstate composite membrane. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Electrochemical characterization and transport properties of polyvinyl chloride based carboxymethyl cellulose Ce(IV) molybdophosphate composite cation exchange membrane. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2012.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Fahem AA. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 88:10-22. [PMID: 22197356 DOI: 10.1016/j.saa.2011.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L(1)) and 2:1 (L(2)) having bifunctional coordinated groups (NH(2) and CHO groups, respectively) and their metal complexes with Ni(II) and UO(2)(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, (1)H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L(1))Cl(2)]·2.5H(2)O, [UO(2)(L(1))(NO(3))(2)]·2H(2)O, [Ni(L(2))Cl(2)]·1.5H(2)O and [UO(2)(L(2))(NO(3))(2)] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: D(q), B, β and LFSE were calculated while, UO(2)(II) complexes are eight coordinate with dodecahedral geometry and the force constant, F(U-O) and bond length, R(U-O) were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO(2)(L(2))(NO(3))(2)] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO(2)(L(2))(NO(3))(2)] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.
Collapse
Affiliation(s)
- Abeer A Fahem
- Chemistry Department, Faculty of Science (Girl's), Al-Azhar University, Nasr-City, Cairo, Egypt.
| |
Collapse
|
28
|
Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|