1
|
Liu Y, Li T, Zhu H, Cao L, Liang L, Liu D, Shen Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb Cell Fact 2024; 23:120. [PMID: 38664812 PMCID: PMC11046756 DOI: 10.1186/s12934-024-02394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lebin Liang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
2
|
Capetti CCDM, Pellegrini VOA, Espirito Santo MC, Cortez AA, Falvo M, Curvelo AADS, Campos E, Filgueiras JG, Guimaraes FEG, de Azevedo ER, Polikarpov I. Enzymatic production of xylooligosaccharides from corn cobs: Assessment of two different pretreatment strategies. Carbohydr Polym 2023; 299:120174. [PMID: 36876789 DOI: 10.1016/j.carbpol.2022.120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
Abstract
Corn cobs (CCs) are abundant xylan-rich agricultural wastes. Here, we compared CCs XOS yields obtained via two different pretreatment routs, alkali and hydrothermal, using a set of recombinant endo- and exo-acting enzymes from GH10 and GH11 families, which have different restrictions for xylan substitutions. Furthermore, impacts of the pretreatments on chemical composition and physical structure of the CCs samples were evaluated. We demonstrated that alkali pretreatment route rendered 59 mg of XOS per gram of initial biomass, while an overall XOS yield of 115 mg/g was achieved via hydrothermal pretreatment using a combination of GH10 and GH11 enzymes. These results hold a promise of ecologically sustainable enzymatic valorization of CCs via "green" and sustainable XOS production.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Melissa Cristina Espirito Santo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Anelyse Abreu Cortez
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Maurício Falvo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Antonio Aprigio da Silva Curvelo
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Eleonora Campos
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jefferson Gonçalves Filgueiras
- Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, 24020-007, Niterói, RJ, Brazil; Instituto de Física, Universidade Federal do Rio de Janeiro, CP68528, 21941-972, Rio de Janeiro, RJ, Brazil
| | | | - Eduardo Ribeiro de Azevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Gibberellic Acid Production from Corn Cob Residues via Fermentation with Aspergillus niger. J CHEM-NY 2022. [DOI: 10.1155/2022/1112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following numerous biotechnological innovations, a variety of agricultural by-products can now be employed as low-cost substrates for the production of secondary metabolites, such as antibiotics, phytohormones, biofuels, pesticides, and organic acids. As an example, gibberellin (GA) growth phytohormones can be obtained by such means, wherein gibberellic acid (GA3) is of great interest worldwide in the agricultural sector. The central aspect of this research therefore focused on the bioconversion of agricultural by-products, such as corn cob, to obtain GA3 phytohormone via solid-state fermentation (SSF) with Aspergillus niger. The chemical characterization of the obtained material showed that the corn cob possessed glucose, mannose, arabinose, and lignin contents of 34, 26, 8, and 16%, respectively. Our results also indicated an appreciable carbon content (47%), in addition to the mineral elements of nitrogen (4%), potassium (1.2%), iron (0.03%), sodium (0.01%), calcium (0.06%), and Al (0.02%). Following SSF for 11 d in the presence of A. niger at pH 5, 30°C, and 24% sample consistency, a GA3 production of >6.1 g·kg−1 was obtained. This value is higher than those previously reported for different by-products of the food industry, such as coffee husk, wheat bran, cassava, pea pods, and sorghum straw (i.e., 0.25–5.5 g·kg−1) following SSF. The production of GA3 from corn cob residues not only contributes to reducing the negative impact of agricultural by-products but also represents a new source of a key raw material for phytohormone production, thereby contributing to the development of processes to convert agricultural residues into biologically active compounds of commercial interest.
Collapse
|
4
|
Postawa K, Fałtynowicz H, Szczygieł J, Beran E, Kułażyński M. Analyzing the kinetics of waste plant biomass pyrolysis via thermogravimetry modeling and semi-statistical methods. BIORESOURCE TECHNOLOGY 2022; 344:126181. [PMID: 34755652 DOI: 10.1016/j.biortech.2021.126181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
This article presents a methodology for determining the kinetic parameters of biomass based on thermogravimetric analysis and the Coats-Redfern procedure with 27 model equations. Maize samples stored for approximately one year were used herein. The first sub-stage of pyrolysis was a first-order reaction with nuclei growth of n = 1, and the second sub-stage indicated a different kinetic order (1.5) of the reaction. The last sub-step showed good convergence with the first-order reaction and nuclei growth of n = 1.5. The activation energy reached up to 71.6 kJ/mol for tżhe selected parts of the stalk fraction, whereas it decreased to 6.5 kJ/mol for the others. A simplified method for approximating the composition of the biomass is also presented. In the composition of stalks, the fraction of hemicellulose was the highest, followed by that of cellulose, whereas in the composition of leaves and whole plant samples, an opposite trend was observed.
Collapse
Affiliation(s)
- Karol Postawa
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344, Wrocław, Poland.
| | - Hanna Fałtynowicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344, Wrocław, Poland
| | - Jerzy Szczygieł
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344, Wrocław, Poland
| | - Elżbieta Beran
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344, Wrocław, Poland
| | - Marek Kułażyński
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344, Wrocław, Poland
| |
Collapse
|
5
|
Andreadis SS, Panteli N, Mastoraki M, Rizou E, Stefanou V, Tzentilasvili S, Sarrou E, Chatzifotis S, Krigas N, Antonopoulou E. Towards Functional Insect Feeds: Agri-Food By-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants (Basel) 2021; 11:antiox11010068. [PMID: 35052572 PMCID: PMC8772721 DOI: 10.3390/antiox11010068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sustainability, circular economy and alternative production systems are urgent imperatives for humanity and animal husbandry. Unless wasted, agri-food by-products can offer a promising source of high value. We evaluated the effect of rice bran (RB), corncob (CC), potato peels (PP), solid biogas residues (BR), and olive-oil processing residuals (OR), as alternative substrates to wheat bran (WB as control), on the growth and nutritional value of Tenebrio molitor during its breeding for animal feeds and/or human consumption. Innovation-wise, we further investigated the substrate supplementation (0, 10, 20%) with post-distillation residues of Mediterranean aromatic-medicinal plants (MAPs: lavender, Greek oregano, rosemary, olive; 1:1:1:1 ratio). Tenebrio molitor larvae (TML) were reared in all the studied substrates, and TML and diets’ proximate and fatty acid compositions as well as total phenol and flavonoid content and antioxidant potential were assessed using standard procedures. After statistical analysis of correlations, we observed that CC promoted oviposition and progeny survival; larval weight and dry matter were positively affected mainly by dietary energy and fat content; number of TML and/or larval weight increased using 10% MAPs inclusion in WB, RB and OR or RB, OR, BR and PP, respectively, which did not affect protein content; TML fatty acid composition decreased the content of saturated ones and increased that of mono-unsaturated ones; MAPs residues had an apparent favorable impact on total phenolic content and antioxidant activity of each substrate, with RB displaying the highest capacity and content. These findings indicate that alternative substrates can be exploited and their enrichment with natural phenolics is able to influence T. molitor growth, offering highly beneficial and nutritional value.
Collapse
Affiliation(s)
- Stefanos S. Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, 57001 Thermi, Greece; (E.R.); (E.S.); (N.K.)
- Correspondence: (S.S.A.); (E.A.); Tel.: +30-2310-471110 (S.S.A.); +30-2310-998563 (E.A.)
| | - Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.); (V.S.); (S.T.)
| | - Maria Mastoraki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.); (V.S.); (S.T.)
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003 Heraklion, Greece;
| | - Eleftheria Rizou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, 57001 Thermi, Greece; (E.R.); (E.S.); (N.K.)
| | - Vassilia Stefanou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.); (V.S.); (S.T.)
| | - Sofia Tzentilasvili
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.); (V.S.); (S.T.)
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, 57001 Thermi, Greece; (E.R.); (E.S.); (N.K.)
| | - Stavros Chatzifotis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003 Heraklion, Greece;
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, 57001 Thermi, Greece; (E.R.); (E.S.); (N.K.)
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.); (V.S.); (S.T.)
- Correspondence: (S.S.A.); (E.A.); Tel.: +30-2310-471110 (S.S.A.); +30-2310-998563 (E.A.)
| |
Collapse
|
6
|
Zhou M, Fan G, Xia H, Zhang X, Teng C, Li X. Ultrasound-Assisted Production of Xylo-Oligosaccharides From Alkali-Solubilized Corncob Bran Using Penicillium janthinellum XAF01 Acidic Xylanase. Front Bioeng Biotechnol 2021; 9:755003. [PMID: 34568305 PMCID: PMC8460897 DOI: 10.3389/fbioe.2021.755003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
A novel treatment involving enzymatic hydrolysis using an acidic xylanase coupled with ultrasound was performed to improve the xylo-oligosaccharides (XOS) yield from corncob bran. The acidic xylanase (XynB) was purified to a most suitable pH, temperature, and operational parameters for ultrasound-assisted hydrolysis were determined. A preliminary mechanistic investigation was performed through circular dichroism (CD) spectroscopy, scanning electron microscope (SEM) and a laser particle size analyzer, and the effects of ultrasound on enzyme (XynB) and substrate (corncob bran) were assessed. The results show that the maximum XOS yield was 20.71% when the reaction pH and temperature were 4.3 and 50°C, the ultrasonic parameters were 50 kHz and 0.40 W/cm2, which was 2.55 fold higher than that obtained using a non-ultrasound-assisted enzymatic preparation. Mechanism studies indicated that ultrasonic pretreatment could reduce the β-fold content and increase the random coil content. Changes in structure and size of substrate were observed. The specific surface area of the XAC molecules is easy to carry out enzymatic reaction, which is beneficial to the production of XOS.
Collapse
Affiliation(s)
- Mingchun Zhou
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Hanshuo Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xiaohan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Mensah MB, Jumpah H, Boadi NO, Awudza JA. Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, Terrapon N, Deuss PJ, Hakulinen N, Master ER, Jurak E. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:127. [PMID: 34059129 PMCID: PMC8165983 DOI: 10.1186/s13068-021-01976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/β-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Leena Penttinen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Martina Ikonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Léa Jaillot
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Régis Fauré
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Peter J Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130, Joensuu, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Edita Jurak
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
9
|
Urtiga SCDC, Alves VMO, Melo CDO, Lima MND, Souza E, Cunha AP, Ricardo NMPS, Oliveira EE, Egito ESTD. Xylan microparticles for controlled release of mesalamine: Production and physicochemical characterization. Carbohydr Polym 2020; 250:116929. [PMID: 33049843 DOI: 10.1016/j.carbpol.2020.116929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Xylan extracted from corn cobs was used to produce mesalamine-loaded xylan microparticles (XMP5-ASA) by cross-linking polymerization using a non-hazardous cross-linking agent. The microparticles were characterized by thermal analysis (DSC/TG), X-ray diffraction (XRD), Infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). A comparative study of the in vitro drug release from XMP5-ASA and from gastro-resistant capsules filled with XMP5-ASA (XMPCAP5-ASA) or 5-ASA was also performed. NMR, FTIR-ATR, XRD and DSC/TG studies indicated molecularly dispersed drug in the microparticles with increment on drug stability. The release studies showed that XMPCAP5-ASA allowed more efficient drug retention in the simulated gastric fluid and a prolonged drug release lasting up to 24 h. XMPCAP5-ASA retained approximately 48 % of its drug content after 6 h on the drug release assay. Thus, the encapsulation of 5-ASA into xylan microparticles together with gastro-resistant capsules allowed a better release control of the drug during different simulated gastrointestinal medium.
Collapse
Affiliation(s)
- Silvana Cartaxo da Costa Urtiga
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Gen. Gustavo Cordeiro de Faria, 59010-180, Natal, Rio Grande do Norte, Brazil
| | | | - Camila de Oliveira Melo
- Federal University of Paraíba, Conjunto Presidente Castelo Branco III, 58033-455, João Pessoa, Paraíba, Brazil
| | - Marini Nascimento de Lima
- Department of Biology, State University of Paraíba, Horácio Trajano, 58070-450, João Pessoa, Paraíba, Brazil
| | - Ernane Souza
- University of Michigan, College of Pharmacy, 428 Church St., Ann Arbor, Michigan, 48109, USA
| | - Arcelina Pacheco Cunha
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60455-760, Fortaleza, Ceará, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, 60455-760, Fortaleza, Ceará, Brazil
| | - Elquio Eleamen Oliveira
- Department of Biology, State University of Paraíba, Horácio Trajano, 58070-450, João Pessoa, Paraíba, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Gen. Gustavo Cordeiro de Faria, 59010-180, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
10
|
Underlin EN, Frommhagen M, Dilokpimol A, van Erven G, de Vries RP, Kabel MA. Feruloyl Esterases for Biorefineries: Subfamily Classified Specificity for Natural Substrates. Front Bioeng Biotechnol 2020; 8:332. [PMID: 32391342 PMCID: PMC7191039 DOI: 10.3389/fbioe.2020.00332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Feruloyl esterases (FAEs) have an important role in the enzymatic conversion of lignocellulosic biomass by decoupling plant cell wall polysaccharides and lignin. Moreover, FAEs release anti-oxidative hydroxycinnamic acids (HCAs) from biomass. As a plethora of FAE candidates were found in fungal genomes, FAE classification related to substrate specificity is an indispensability for selection of most suitable candidates. Hence, linking distinct substrate specificities to a FAE classification, such as the recently classified FAE subfamilies (SF), is a promising approach to improve the application of these enzymes for a variety of industrial applications. In total, 14 FAEs that are classified members of SF1, 5, 6, 7, 9, and 13 were tested in this research. All FAEs were investigated for their activity toward a variety of substrates: synthetic model substrates, plant cell wall-derived substrates, including lignin, and natural substrates. Released HCAs were determined using reverse phase-ultra high performance liquid chromatography coupled to UV detection and mass spectrometry. Based on this study, FAEs of SF5 and SF7 showed the highest release of FA, pCA, and diFAs over the range of substrates, while FAEs of SF6 were comparable but less pronounced for diFAs release. These results suggest that SF5 and SF7 FAEs are promising enzymes for biorefinery applications, like the production of biofuels, where a complete degradation of the plant cell wall is desired. In contrast, SF6 FAEs might be of interest for industrial applications that require a high release of only FA and pCA, which are needed as precursors for the production of biochemicals. In contrast, FAEs of SF1, 9 and 13 showed an overall low release of HCAs from plant cell wall-derived and natural substrates. The obtained results substantiate the previous SF classification as a useful tool to predict the substrate specificity of FAEs, which eases the selection of FAE candidates for industrial applications.
Collapse
Affiliation(s)
- Emilie N. Underlin
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Mouthier TMB, de Rink B, van Erven G, de Gijsel P, Schols HA, Kabel MA. Low liquid ammonia treatment of wheat straw increased enzymatic cell wall polysaccharide degradability and decreased residual hydroxycinnamic acids. BIORESOURCE TECHNOLOGY 2019; 272:288-299. [PMID: 30366288 DOI: 10.1016/j.biortech.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Ammonia treatment of lignocellulose improves carbohydrate degradability, however, low ammonia dose treatment effects and mechanisms are hardly considered. This study describes low dose ammonia treatment of wheat straw in a statistical design of experiments (Taguchi design) to evaluate the effects of ammonia concentration, treatment time and the Solid:Liquid ratio on structure, composition and enzymatic degradability of the residual fractions. The results showed that low ammonia concentration (≤2 w/w % NH3) resulted in a high carbohydrate recovery (>80%) coupled enzymatic hydrolysis of 50% of xylan and 40% of glucan of the treated material using a (hemi-) cellulase enzyme cocktail. This effect coincidences with the relative decrease in ferulic acid by 10% and coumaric acid by more than 50% analysed via pyrolysis-GC-MS, measured as 4-vinyl-phenol and 4-vinyl-guaiacol, respectively. Our findings show that lowering ammonia concentration increased the effect of treatment time on the enzymatic degradability of the residual fraction.
Collapse
Affiliation(s)
- Thibaut M B Mouthier
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Bake de Rink
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peter de Gijsel
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Henk A Schols
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A Kabel
- Wageningen University and Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
12
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
13
|
Arai T, Biely P, Uhliariková I, Sato N, Makishima S, Mizuno M, Nozaki K, Kaneko S, Amano Y. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng 2018; 127:222-230. [PMID: 30143337 DOI: 10.1016/j.jbiosc.2018.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Hydrothermal reaction is known to be one of the most efficient procedures to extract hemicelluloses from lignocellulosic biomass. We investigated the molecular structure of xylooligosaccharides released from corn cob in a continuous flow type hydrothermal reactor designed in our group. The fraction precipitable from the extract with four volumes of ethanol was examined by 1H-NMR spectroscopy and MALDI-TOF MS before and after enzymatic treatment with different purified enzymes. The released water-soluble hemicellulose was found to correspond to a mixture of wide degree of polymerization range of acetylarabinoglucuronoxylan fragments (further as corn cob xylan abbreviated CX). Analysis of enzymatic hydrolyzates of CX with an acetylxylan esterase, GH3 β-xylosidase, GH10 and GH11 xylanases revealed that the main chain contains unsubstituted regions mixed with regions of xylopyranosyl residues partially acetylated and occasionally substituted by 4-O-methyl-d-glucuronic acid and arabinofuranose esterified with ferulic or coumaric acid. Single 2- and 3-O-acetylation was accompanied by 2,3-di-O-acetylation and 3-O-acetylation of Xylp residues substituted with MeGlcA. Most of the non-esterified arabinofuranose side residues were lost during the hydrodynamic process. Despite reduced branching, the acetylation and ferulic acid modification of pentose residues contribute to high yields and high solubility of the extracted CX. It is also shown that different enzyme treatments of CX may lead to various types of xylooligosaccharides of different biomedical potential.
Collapse
Affiliation(s)
- Tsutomu Arai
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Iveta Uhliariková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Nobuaki Sato
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Satoshi Makishima
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Masahiro Mizuno
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kouichi Nozaki
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Satoshi Kaneko
- Department of Subtropical Bioscience and Biotechnology, University of the Ryukyus, Nishiara, Okinawa 903-0213, Japan
| | - Yoshihiko Amano
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
14
|
dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Büchli F, de Oliveira PSL, Gozzo FC, Murakami MT. The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:223. [PMID: 30127853 PMCID: PMC6087011 DOI: 10.1186/s13068-018-1212-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/23/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs). RESULTS In this work, we identified a novel GH51 Abf (XacAbf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan. Using mass spectrometry, the kinetic parameters of the hydrolysis of 33-α-l-arabinofuranosyl-xylotetraose and 23,33-di-α-l-arabinofuranosyl-xylotetraose by XacAbf51 were determined, demonstrating the capacity of this enzyme to cleave arabinofuranosyl linkages of internal mono- and di-substituted xylopyranosyl units. Complementation studies of fungal enzyme cocktails with XacAbf51 revealed an increase of up to 20% in the release of reducing sugars from pretreated sugarcane bagasse, showing the biotechnological potential of a generalist GH51 in biomass saccharification. To elucidate the structural basis for the recognition of internal di-substitutions, the crystal structure of XacAbf51 was determined unveiling the existence of a pocket strategically arranged near to the - 1 subsite that can accommodate a second arabinofuranosyl decoration, a feature not described for any other GH51 Abf structurally characterized so far. CONCLUSIONS In summary, this study reports the first kinetic characterization of internal di-substitution release by a GH51 Abf, provides the structural basis for this activity and reveals a promising candidate for industrial processes involving plant cell wall depolymerization.
Collapse
Affiliation(s)
- Camila Ramos dos Santos
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Flávio Henrique Moreira de Souza
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Letícia Maria Zanphorlin
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Mariane Noronha Domingues
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Renan Augusto Siqueira Pirolla
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Rodrigo Vargas Honorato
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Mariana Abrahão Bueno de Morais
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Vanesa Peixoto de Matos Martins
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Lucas Miranda Fonseca
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Fernanda Büchli
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Fábio Cesar Gozzo
- Dalton Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, Sao Paulo 13083-861 Brazil
| | - Mário Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| |
Collapse
|
15
|
Zhang J, Wang YH, Wei QY, Du XJ, Qu YS. Investigating desorption during ethanol elution to improve the quality and antioxidant activity of xylo-oligosaccharides from corn stalk. BIORESOURCE TECHNOLOGY 2018; 249:342-347. [PMID: 29054065 DOI: 10.1016/j.biortech.2017.09.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
As the most representative of lignocellulosic materials, corn stalk (CS) will be a great candidate to produce xylo-oligosaccharides (XOS). Owing to the high impurity content of the XOS produced by directly enzymatic hydrolysis of xylan extracted from CS, subsequent refining steps are essential. The present study was aimed to investigate desorption during ethanol elution to improve the quality and antioxidant activity of XOS from CS. The desorption was systematically investigated after optimizing the elution conditions. The results showed that it had an elution watershed when the volume ratio was 2:1. More interestingly, XOS had a obvious priorities of desorption during ethanol gradient elution. The highest purity of XOS was 98.12% from 30% ethanol eluate. Antioxidant activity assay showed that the highest radical scavenging activity of XOS was 89.89% obtained from 70% ethanol eluate at a concentration of 3 mg/mL, which could be used in antioxidant food, feed additives.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue-Hai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan-Yuan Wei
- Beijing Municipal Research Academy of Environmental Protection, Beijing 100037, China
| | - Xiao-Jia Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong-Shui Qu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
16
|
He Y, Mouthier TMB, Kabel MA, Dijkstra J, Hendriks WH, Struik PC, Cone JW. Lignin composition is more important than content for maize stem cell wall degradation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:384-390. [PMID: 28833149 PMCID: PMC5725715 DOI: 10.1002/jsfa.8630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND The relationship between the chemical and molecular properties - in particular the (acid detergent) lignin (ADL) content and composition expressed as the ratio between syringyl and guaiacyl compounds (S:G ratio) - of maize stems and in vitro gas production was studied in order to determine which is more important in the degradability of maize stem cell walls in the rumen of ruminants. Different internodes from two contrasting maize cultivars (Ambrosini and Aastar) were harvested during the growing season. RESULTS The ADL content decreased with greater internode number within the stem, whereas the ADL content fluctuated during the season for both cultivars. The S:G ratio was lower in younger tissue (greater internode number or earlier harvest date) in both cultivars. For the gas produced between 3 and 20 h, representing the fermentation of cell walls in rumen fluid, a stronger correlation (R2 = 0.80) was found with the S:G ratio than with the ADL content (R2 = 0.68). The relationship between ADL content or S:G ratio and 72-h gas production, representing total organic matter degradation, was weaker than that with gas produced between 3 and 20 h. CONCLUSION The S:G ratio plays a more dominant role than ADL content in maize stem cell wall degradation. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan He
- Animal Nutrition GroupWageningen University & Research, 6700 AH Wageningenthe Netherlands
| | - Thibaut MB Mouthier
- Food ChemistryWageningen University & Research, 6700 AA Wageningenthe Netherlands
| | - Mirjam A Kabel
- Food ChemistryWageningen University & Research, 6700 AA Wageningenthe Netherlands
| | - Jan Dijkstra
- Animal Nutrition GroupWageningen University & Research, 6700 AH Wageningenthe Netherlands
| | - Wouter H Hendriks
- Animal Nutrition GroupWageningen University & Research, 6700 AH Wageningenthe Netherlands
| | - Paul C Struik
- Centre for Crop Systems AnalysisWageningen University & Research, 6700 AK Wageningenthe Netherlands
| | - John W Cone
- Animal Nutrition GroupWageningen University & Research, 6700 AH Wageningenthe Netherlands
| |
Collapse
|
17
|
Mouthier TMB, Kilic B, Vervoort P, Gruppen H, Kabel MA. Potential of a gypsum-free composting process of wheat straw for mushroom production. PLoS One 2017; 12:e0185901. [PMID: 28982119 PMCID: PMC5628895 DOI: 10.1371/journal.pone.0185901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process.
Collapse
Affiliation(s)
- Thibaut M. B. Mouthier
- Wageningen University and Research, Laboratory of Food Chemistry, Wageningen, The Netherlands
| | - Baris Kilic
- Wageningen University and Research, Laboratory of Food Chemistry, Wageningen, The Netherlands
| | | | - Harry Gruppen
- Wageningen University and Research, Laboratory of Food Chemistry, Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Wageningen University and Research, Laboratory of Food Chemistry, Wageningen, The Netherlands
| |
Collapse
|
18
|
Jonathan MC, DeMartini J, Van Stigt Thans S, Hommes R, Kabel MA. Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:112. [PMID: 28469707 PMCID: PMC5414315 DOI: 10.1186/s13068-017-0803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/23/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Corn stover is lignocellulosic biomass that has potential to be used as raw material for bioethanol production. In the current research, dilute ammonia pretreatment was used to improve the accessibility of corn stover carbohydrates to subsequently added hydrolytic enzymes. Some carbohydrates, however, were still present after enzymatic hydrolysis and fermentation. Hence, this research was aimed to characterise the recalcitrant carbohydrates, especially the oligosaccharides that remained after hydrolysis and fermentation of dilute ammonia-pretreated corn stover (DACS). RESULTS About 35% (w/w) of DACS carbohydrates remained after enzymatic hydrolysis and fermentation of the released monosaccharides. One-third of these recalcitrant carbohydrates were water soluble and composed of diverse oligosaccharides. By using UHPLC-MS n , more than 50 oligosaccharides were detected. Glucurono-xylooligosaccharides (UAXOS) with a degree of polymerisation (DP) less than 5 were the most abundant oligosaccharides. The (4-O-methyl) glucuronosyl substituent was mostly attached onto the terminal xylosyl residue. It was shown that the glucuronosyl substituent in some UAXOS was modified into a hexenuronosyl, a glucuronamide or a hexenuronamide residue due to the dilute ammonia pretreatment. Another group of abundant oligosaccharides comprised various xyloglucan oligosaccharides (XGOS), with a DP 5 annotated as XXG as the most pronounced. In addition, disaccharides annotated as xylosyl-glucose with different β linkages as well as larger carbohydrates were present in the fermentation slurry. CONCLUSIONS Around one-third of the 35% (w/w) recalcitrant DACS carbohydrates remained as water-soluble saccharides. In this study, more than 50 recalcitrant oligosaccharides were detected, which mostly composed of xylosyl and/or glucosyl residues. The most pronounced oligosaccharides were UAXOS and XGOS. Hence, α-glucuronidase and α-xylosidase were suggested to be added to the enzyme mixture to degrade these oligosaccharides further, and hence the fermentation yield is potentially increased.
Collapse
Affiliation(s)
- M. C. Jonathan
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - J. DeMartini
- DuPont Industrial Biosciences (Genencor Division), 925 Page Mill Road, Palo Alto, CA 94304 USA
| | - S. Van Stigt Thans
- DuPont Industrial Biosciences (Genencor International B.V.), Archimedesweg 30, 2333 CN Leiden, The Netherlands
| | - R. Hommes
- DuPont Industrial Biosciences (Genencor International B.V.), Archimedesweg 30, 2333 CN Leiden, The Netherlands
| | - M. A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
20
|
Buruiana CT, Gómez B, Vizireanu C, Garrote G. Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Murciano Martínez P, Kabel MA, Gruppen H. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch. Carbohydr Polym 2016; 153:356-363. [DOI: 10.1016/j.carbpol.2016.07.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
|
22
|
|
23
|
Liu KX, Li HQ, Zhang J, Zhang ZG, Xu J. The effect of non-structural components and lignin on hemicellulose extraction. BIORESOURCE TECHNOLOGY 2016; 214:755-760. [PMID: 27213576 DOI: 10.1016/j.biortech.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 05/24/2023]
Abstract
As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost.
Collapse
Affiliation(s)
- Kai-Xuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Qiang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Guo Zhang
- Collage of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
24
|
Pei K, Ou J, Huang J, Ou S. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2952-62. [PMID: 26692250 DOI: 10.1002/jsfa.7578] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/08/2015] [Accepted: 12/11/2015] [Indexed: 05/09/2023]
Abstract
p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kehan Pei
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Juanying Ou
- Food and Nutritional Science Program, School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Junqing Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
25
|
Li F, Wang H, Xin H, Cai J, Fu Q, Jin Y. Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes. Food Chem 2016; 212:155-61. [PMID: 27374519 DOI: 10.1016/j.foodchem.2016.05.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan.
Collapse
Affiliation(s)
- Fangbing Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huaxia Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianfeng Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
26
|
Torres AF, Slegers PM, Noordam-Boot CMM, Dolstra O, Vlaswinkel L, van Boxtel AJB, Visser RGF, Trindade LM. Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:63. [PMID: 26981155 PMCID: PMC4791978 DOI: 10.1186/s13068-016-0479-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/03/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential-estimated as total glucose productivity per hectare (TGP)-of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion. RESULTS Systematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha(-1)) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption. CONCLUSIONS Genetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if "less severe" processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.
Collapse
Affiliation(s)
- Andres F. Torres
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- />Plant Biotechnology Laboratory (COCIBA), Universidad San Francisco de Quito USFQ, Diego de Robles y Vía Interoceánica, Cumbayá, Ecuador
| | - Petronella M. Slegers
- />Biobased Chemistry and Technology, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Oene Dolstra
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | | | - Anton J. B. van Boxtel
- />Biobased Chemistry and Technology, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Richard G. F. Visser
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M. Trindade
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
27
|
Shen R, Li HQ, Zhang J, Xu J. Effects of Impurities in Alkali-Extracted Xylan on Its Enzymatic Hydrolysis to Produce Xylo-Oligosaccharides. Appl Biochem Biotechnol 2016; 179:740-52. [DOI: 10.1007/s12010-016-2028-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/19/2016] [Indexed: 11/28/2022]
|
28
|
Moniz P, Ho AL, Duarte LC, Kolida S, Rastall RA, Pereira H, Carvalheiro F. Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydr Polym 2016; 136:466-73. [DOI: 10.1016/j.carbpol.2015.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
|
29
|
Tian L, Gruppen H, Schols HA. Characterization of (Glucurono)arabinoxylans from Oats Using Enzymatic Fingerprinting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10822-10830. [PMID: 26636262 DOI: 10.1021/acs.jafc.5b04419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell wall material from whole oat grains was sequentially extracted to study the structural characteristics of individual arabinoxylan (AX) populations. Araf was singly substituted at both O-3 (mainly) and O-2 positions of Xylp, and no disubstitution of Xylp with Araf residues was found in oat AXs. Both highly substituted and sparsely substituted segments were found in AXs in Ba(OH)2 extracts, whereas AXs in 1 and 6 M NaOH extracts were rarely branched and easily aggregated. Both O-2-linked GlcA and 4-O-MeGlcA residues were present in oat AXs. A series of AX oligomers with galactose as a substituent was detected for the first time in oats. The present study suggested that the distribution of Araf was contiguous in oat AXs, different from the homogeneous distribution of Araf in wheat and barley AXs, which might result in different fermentation patterns in humans and animals.
Collapse
Affiliation(s)
- Lingmin Tian
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
30
|
Zhang C, Sanders JPM, Xiao TT, Bruins ME. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves. PLoS One 2015; 10:e0133046. [PMID: 26200774 PMCID: PMC4511586 DOI: 10.1371/journal.pone.0133046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/22/2015] [Indexed: 01/31/2023] Open
Abstract
Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.
Collapse
Affiliation(s)
- Chen Zhang
- Biobased Chemistry and Technology Group, AFSG, Bornse Weilanden 9, 6708WG Wageningen, Wageningen UR, the Netherlands
| | - Johan P. M. Sanders
- Biobased Chemistry and Technology Group, AFSG, Bornse Weilanden 9, 6708WG Wageningen, Wageningen UR, the Netherlands
- Food and Biobased Research Institute, Bornse Weilanden 9, 6708WG Wageningen, Wageningen UR, the Netherlands
| | - Ting T. Xiao
- Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708 PB, Wageningen, Wageningen UR, the Netherlands
| | - Marieke E. Bruins
- Biobased Chemistry and Technology Group, AFSG, Bornse Weilanden 9, 6708WG Wageningen, Wageningen UR, the Netherlands
- Food and Biobased Research Institute, Bornse Weilanden 9, 6708WG Wageningen, Wageningen UR, the Netherlands
| |
Collapse
|
31
|
Nafisi M, Stranne M, Fimognari L, Atwell S, Martens HJ, Pedas PR, Hansen SF, Nawrath C, Scheller HV, Kliebenstein DJ, Sakuragi Y. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. FRONTIERS IN PLANT SCIENCE 2015; 6:550. [PMID: 26257757 PMCID: PMC4510344 DOI: 10.3389/fpls.2015.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 05/25/2023]
Abstract
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Majse Nafisi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Maria Stranne
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Lorenzo Fimognari
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Susanna Atwell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Helle J. Martens
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Pai R. Pedas
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Sara F. Hansen
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Henrik V. Scheller
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Danish National Research Foundation Center DynaMOFrederiksberg, Denmark
| | - Yumiko Sakuragi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
32
|
Silva JCD, Oliveira RCD, Neto ADS, Pimentel VC, Santos ADAD. Extraction, Addition and Characterization of Hemicelluloses from Corn Cobs to Development of Paper Properties. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mspro.2015.04.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Corncob arabinoxylan for new materials. Carbohydr Polym 2014; 102:12-20. [DOI: 10.1016/j.carbpol.2013.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/20/2022]
|
34
|
Bahcegul E, Toraman HE, Erdemir D, Akinalan B, Ozkan N, Bakir U. An unconventional approach for improving the integrity and mechanical properties of xylan type hemicellulose based films. RSC Adv 2014. [DOI: 10.1039/c4ra05109b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inclusion of the salt KAcO into hemicellulose based polymeric films results in improved film formation and mechanical properties. Considering this beneficial effect of KAcO, its separation during the hemicellulose isolation process is not always a necessity for film production.
Collapse
Affiliation(s)
- Erinc Bahcegul
- Department of Biotechnology
- Middle East Technical University
- Ankara 06800, Turkey
| | - Hilal E. Toraman
- Department of Chemical Engineering
- Middle East Technical University
- Ankara 06800, Turkey
| | - Duygu Erdemir
- Department of Chemical Engineering
- Middle East Technical University
- Ankara 06800, Turkey
| | - Busra Akinalan
- Department of Chemical Engineering
- Middle East Technical University
- Ankara 06800, Turkey
| | - Necati Ozkan
- Department of Polymers Science and Technology
- Middle East Technical University
- Ankara 06800, Turkey
- METU Central Laboratory
- Middle East Technical University
| | - Ufuk Bakir
- Department of Biotechnology
- Middle East Technical University
- Ankara 06800, Turkey
- Department of Chemical Engineering
- Middle East Technical University
| |
Collapse
|
35
|
Bahcegul E, Akinalan B, Toraman HE, Erdemir D, Ozkan N, Bakir U. Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials. BIORESOURCE TECHNOLOGY 2013; 149:582-585. [PMID: 24140359 DOI: 10.1016/j.biortech.2013.09.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid.
Collapse
Affiliation(s)
- Erinc Bahcegul
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | | | | | | | | | | |
Collapse
|
36
|
Jurak E, Kabel MA, Gruppen H. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Carbohydr Polym 2013; 101:281-8. [PMID: 24299775 DOI: 10.1016/j.carbpol.2013.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility.
Collapse
Affiliation(s)
- Edita Jurak
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Appeldoorn MM, de Waard P, Kabel MA, Gruppen H, Schols HA. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation. Carbohydr Res 2013; 381:33-42. [PMID: 24056012 DOI: 10.1016/j.carres.2013.08.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
Abstract
In order to use corn fiber as a source for bioethanol production the enzymatic hydrolysis of the complex glucuronoarabinoxylans present has to be improved. Several oligosaccharides present in the supernatant of mild acid pretreated and enzymatically saccharified corn fiber that resist the current available enzymes were (semi)purified for structural analysis by NMR or ESI-MS(n). The structural features of 21 recalcitrant oligosaccharides are presented. A common feature of almost all these oligosaccharides is that they contain (part of) an α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose side chain attached to the O-3 position of the β-1-4 linked xylose backbone. Several of the identified oligosaccharides contained an ethyl group at the reducing end hypothesized to be formed during SSF. The ethyl glycosides found are far more complex than previously described structures. A new feature present in more than half of the oligosaccharides is an acetyl group attached to the O-2 position of the same xylose to which the oligomeric side chain was attached to the O-3 position. Finding enzymes attacking these large side chains and the dense substituted xylan backbone will boost the hydrolysis of corn fiber glucuronoxylan.
Collapse
Affiliation(s)
- Maaike M Appeldoorn
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Neumüller KG, Carvalho de Souza A, Van Rijn J, Appeldoorn MM, Streekstra H, Schols HA, Gruppen H. Fast and robust method to determine phenoyl and acetyl esters of polysaccharides by quantitative ¹H NMR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6282-7. [PMID: 23734915 DOI: 10.1021/jf401393c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The acetyl (AcE), feruloyl (FE), and p-coumaroyl (pCE) ester contents of different cereal and grass polysaccharides were determined by a quantitative ¹H NMR-based method. The repeatability and the robustness of the method were demonstrated by analyzing different plant polysaccharide preparations. Good sensitivity and selectivity for AcE, FE, and pCE were observed. Moreover, an optimized and easy sample preparation allowed for simultaneous quantification of AcE, FE, and pCE. The method is suitable for high-throughput analysis, and it is a good alternative for currently used analytical procedures. A comparison of the method presented to a conventional HPLC-based method showed that the results obtained are in good agreement, whereas the combination of the optimized sample preparation and analysis by the ¹H NMR-based methodology results in significantly reduced analysis time.
Collapse
Affiliation(s)
- Klaus G Neumüller
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Vismeh R, Humpula JF, Chundawat SP, Balan V, Dale BE, Jones AD. Profiling of soluble neutral oligosaccharides from treated biomass using solid phase extraction and LC–TOF MS. Carbohydr Polym 2013; 94:791-9. [DOI: 10.1016/j.carbpol.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
|
40
|
Jensen JK, Johnson N, Wilkerson CG. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. FRONTIERS IN PLANT SCIENCE 2013; 4:183. [PMID: 23761806 PMCID: PMC3675317 DOI: 10.3389/fpls.2013.00183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/20/2013] [Indexed: 05/07/2023]
Abstract
The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.
Collapse
Affiliation(s)
- Jacob K. Jensen
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
| | - Nathan Johnson
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
| | - Curtis G. Wilkerson
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Curtis G. Wilkerson, Department of Plant Biology, Michigan State University, 612 Wilson Rd., Room 122, East Lansing, MI 48824-1312 USA e-mail:
| |
Collapse
|
41
|
Tenkanen M, Vršanská M, Siika-aho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J 2012; 280:285-301. [PMID: 23167779 DOI: 10.1111/febs.12069] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/07/2012] [Accepted: 11/15/2012] [Indexed: 11/29/2022]
Abstract
A minor xylanase, named XYN IV, was purified from the cellulolytic system of the fungus Trichoderma reesei Rut C30. The enzyme was discovered on the basis of its ability to attack aldotetraohexenuronic acid (HexA-2Xyl-4Xyl-4Xyl, HexA(3)Xyl(3)), releasing the reducing-end xylose residue. XYN IV exhibited catalytic properties incompatible with previously described endo-β-1,4-xylanases of this fungus, XYN I, XYN II and XYN III, and the xylan-hydrolyzing endo-β-1,4-glucanase EG I. XYN IV was able to degrade several different β-1,4-xylans, but was inactive on β-1,4-mannans and β-1,4-glucans. It showed both exo-and endo-xylanase activity. Rhodymenan, a linear soluble β-1,3-β-1,4-xylan, was as the best substrate. Linear xylooligosaccharides were attacked exclusively at the first glycosidic linkage from the reducing end. The gene xyn4, encoding XYN IV, was also isolated. It showed clear homology with xylanases classified in glycoside hydrolase family 30, which also includes glucanases and mannanases. The xyn4 gene was expressed slightly when grown on xylose and xylitol, clearly on arabinose, arabitol, sophorose, xylobiose, xylan and cellulose, but not on glucose or sorbitol, resembling induction of other xylanolytic enzymes from T. reesei. A recombinant enzyme prepared in a Pichia pastoris expression system exhibited identical catalytic properties to the enzyme isolated from the T. reesei culture medium. The physiological role of this unique enzyme remains unknown, but it may involve liberation of xylose from the reducing end of branched oligosaccharides that are resistant toward β-xylosidase and other types of endoxylanases. In terms of its catalytic properties, XYN IV differs from bacterial GH family 30 glucuronoxylanases that recognize 4-O-methyl-D-glucuronic acid (MeGlcA) substituents as substrate specificity determinants.
Collapse
Affiliation(s)
- Maija Tenkanen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cui Z, Wan C, Shi J, Sykes RW, Li Y. Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300487z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhifang Cui
- Department of Food,
Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691-4096,
United States
| | - Caixia Wan
- Department of Food,
Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691-4096,
United States
| | - Jian Shi
- Department of Food,
Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691-4096,
United States
| | - Robert W. Sykes
- BioEnergy Science
Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3305, United States
| | - Yebo Li
- Department of Food,
Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691-4096,
United States
| |
Collapse
|
43
|
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 2012; 30:1575-88. [PMID: 22580218 DOI: 10.1016/j.biotechadv.2012.04.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
Abstract
Several plant polysaccharides are partially esterified with acetic acid. One of the roles of this modification is protection of plant cell walls against invading microorganisms. Acetylation of glycosyl residues of polysaccharides prevents hydrolysis of their glycosidic linkages by the corresponding glycoside hydrolases. In this way the acetylation also represents an obstacle of enzymatic saccharification of plant hemicelluloses to fermentable sugars which appears to be a hot topic of current research. We can eliminate this obstacle by alkaline extraction or pretreatment leading to saponification of ester linkages. However, this task has been accomplished in a different way in the nature. The acetyl groups became targets of microbial carbohydrate esterases that evolved to overcome the complexity of the plant cell walls and that cooperate with glycoside hydrolases in plant polysaccharide degradation. This article concentrates on enzymes deacetylating plant hemicelluloses excluding pectin. They are currently grouped in at least 8 families, specifically in CE families 1-7 and 16, originally assigned as acetylxylan esterases, the enzymes acting on hardwood acetyl glucuronoxylan and its fragments generated by endo-β-1,4-xylanases. There are esterases deacetylating softwood galactoglucomannan, but they have not been classified yet. The enzymes present in CE families 1-7 differ in structure and substrate and positional specificity. There are families behaving as endo-type and exo-type deacetylates, i.e. esterases deacetylating internal sugar residues of partially acetylated polysaccharides and also esterases deacetylating non-reducing end sugar residues in oligosaccharides. With one exception, the enzymes of all mentioned CE families belong to serine type esterases. CE family 4 harbors enzymes that are metal-dependent aspartic esterases. Three-dimensional structures have been solved for members of the first seven CE families, however, there is still insufficient knowledge about their substrate specificity and real physiological role. Current knowledge on catalytic properties of the selected families of CEs is summarized in this review. Some of the families are emerging also as new biocatalysts for regioselective acylation and deacylation of carbohydrates.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
44
|
Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:12. [PMID: 22639638 PMCID: PMC3355586 DOI: 10.3389/fpls.2012.00012] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/12/2012] [Indexed: 05/17/2023]
Abstract
Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides - the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production.
Collapse
Affiliation(s)
- Sascha Gille
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
| | - Markus Pauly
- Energy Biosciences Institute, University of California BerkeleyBerkeley, CA, USA
- *Correspondence: Markus Pauly, Calvin Lab, Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA. e-mail:
| |
Collapse
|