1
|
Ghosh A, Sah D, Chakraborty M, Rai JPN. Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Carbohydr Res 2024; 544:109247. [PMID: 39180879 DOI: 10.1016/j.carres.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The escalation of heavy metal pollutants in soils and effluents, driven by industrialization and human activities, poses significant environmental and health risks. Conventional remediation methods are often costly and ineffective, prompting a shift towards sustainable alternatives such as biological treatments. Natural biosorbents, including microbial cells and their byproducts, have emerged as promising solutions. One such approach involves leveraging exopolysaccharides (EPS), complex high-molecular-weight biopolymers synthesized by microbes under environmental stress conditions. EPS are intricate organic macromolecules comprising proteins, polysaccharides, uronic acids, humic compounds, and lipids, either located within microbial cells or secreted into their surroundings. Their anionic functional groups enable efficient electrostatic binding of cationic heavy metals, making EPS effective biosorbents for soil remediation. This review thoroughly explores the pivotal role of bacterial EPS in the removal of heavy metals, focusing on EPS biosynthesis mechanisms, the dynamics of interaction with heavy metals, and case studies that illustrate their effectiveness in practical remediation strategies. By highlighting these aspects, the review underscores the innovation and practical implications of EPS-based bioremediation technologies, demonstrating their potential to address critical environmental challenges effectively while paving the way for sustainable environmental management practices. Key findings reveal that EPS exhibit robust metal-binding capacities, facilitated by their anionic functional groups, thereby offering a promising solution for mitigating metal pollution in diverse environmental matrices.
Collapse
Affiliation(s)
- Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| | - J P N Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, 263145, Uttarakhand, India
| |
Collapse
|
2
|
Zou P, Ma S, Yuan Y, Ma J, Yang X, Hu X, Meng Q, Jing C, Li Y. A glucomannan produced by Bacillus velezensis HY23 and its growth promoting effect on soybeans under salt stress. Int J Biol Macromol 2024; 275:133474. [PMID: 38945338 DOI: 10.1016/j.ijbiomac.2024.133474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The Bacillus genus is widely distributed in nature, has bacteriostatic and growth-promoting activities, and has broad application potential in agriculture. An exopolysaccharide (EPS) was extracted and purified from Bacillus velezensis HY23. Structural characterisation of the EPS was performed by chemical and spectroscopic analyses. Methylation analysis showed that the EPS of HY23 was composed of mannose and glucose at a ratio of 82:18 and was identified as glucomannan. Combined with the nuclear magnetic resonance (NMR) analysis, EPS from HY23 had a backbone of →2)-α-D-Manp-(1 → and →2,6)-α-D-Manp-(1 → branched at C-6 with terminal α-(3-O-Me)-D-Manp-(1 → and →6)-α-D-Manp-(1 → residues as the side chain. A certain amount of β-D-Glcp residues were also present in backbone. Moreover, EPS significantly improved the nitrogen-fixing activity and salt resistance of soybean seedlings by regulating the antioxidant pool and expression of ion transporters. These findings indicate that EPS from B. velezensis HY23 is a potential biostimulant for enhancing plant resistance to salt stress.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Junqing Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xia Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Xihao Hu
- Shandong Qingdao Tobacco Co., Ltd., Qingdao 266000, China
| | - Qi Meng
- Qingdao Agricultural University, Qingdao 266000, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
3
|
Wang Y, Zhang X, Tian X, Wang Y, Xing X, Song S. Research progress on the functions, preparation and detection methods of l-fucose. Food Chem 2024; 433:137393. [PMID: 37672945 DOI: 10.1016/j.foodchem.2023.137393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
l-fucose is a six-carbon sugar that has potential applications in many fields. It exerts antitumor effects and could relieve intestinal disease. It exhibits potential as an emulsifier in the food industry. It is also used as a functional food and in anti-aging skincare products. However, at present, it is not possible to prepare high-purity l-fucose on a large scale, and its preparation needs further development. This review summarizes the preparation methods of l-fucose including chemical synthesis, enzymatic synthesis, microbial fermentation, and separation and purification from algae. The detection methods of l-fucose are also introduced in detail, such as l-fucose-specific lectin, detection l-fucose dehydrogenase, cysteine-sulfuric acid method, high-performance liquid chromatography, gas chromatography, and biosensors. In this review, the properties and pharmacological effects of l-fucose; preparation methods, and the commonly used detection methods of l-fucose are reviewed to serve as a reference material.
Collapse
Affiliation(s)
- Yan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Tian
- Marine College, Shandong University, Weihai 264209, China
| | - Yuan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiang Xing
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
4
|
Wang Y, Li P, Tian Y, Xiong Z, Zheng Z, Yi Z, Ao H, Wang Q, Li J. Bacterial seed endophyte and abiotic factors influence cadmium accumulation in rice (Oryza sativa) along the Yangtze River area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115352. [PMID: 37579590 DOI: 10.1016/j.ecoenv.2023.115352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa) is particularly problematic due to its high risk to human health. Investigating the hidden roles of seed endophytes of rice in influencing Cd accumulation is essential to comprehensively understand the effects of biotic and abiotic factors to food security. Here, the content of Cd in soils and rice (Huanghuazhan) seeds from 19 sites along the Yangtze River exhibited considerable differences. From a biotic perspective, we observed the dominant endophytic bacteria, Stenotrophomonas (7.25 %), contribute to Cd control of rice (below 0.2 mg kg-1). Partial Least Squares (PLS) analysis further suggested that Enterobacteriaceae (15.48 %), altitude and pH were found to be the strong variables that might reduce the Cd uptake of rice. In contrast, Cytophagaceae (0.58 %), latitude and mean annual air pressure had the opposite effect. In pot experiments, after respectively inoculating the isolated endophytic bacteria Stenotrophomonas T4 and Enterobacter R1, N1 (f_Enterobacteriaceae), the Cd contents in shoot decreased by 47.6 %, 21.9 % and 33.0 % compared to controls. The distribution of Cd resistant genes (e.g., czcABC, nccAB, cznA) of Stenotrophomonas, Enterobacteriaceaea and Cytophagaceae further suggested their distinct manners in influencing the Cd uptake of rice. Overall, this study provides new insights into the food security threatened by globally widespread Cd pollution.
Collapse
Affiliation(s)
- Yujie Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Li F, Hu X, Qin L, Li H, Yang Y, Zhang X, Lu J, Li Y, Bao M. Characterization and protective effect against ultraviolet radiation of a novel exopolysaccharide from Bacillus marcorestinctum QDR3-1. Int J Biol Macromol 2022; 221:1373-1383. [PMID: 36151616 DOI: 10.1016/j.ijbiomac.2022.09.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Although exopolysaccharide (EPS) has been applied to various fields, EPS for UVR-mediated oxidative stress repair still needs further exploration. In this study, a novel EPS was isolated from the fermentation medium of Bacillus sp. QDR3-1 and its yield was 4.8 g/L (pH 8.0, 12 % glucose, 30 °C and 6 % NaCl). The pure fraction (named EPS-M1) was purified by DEAE-cellulose and Sephadex G-100 column. EPS-M1 was a heteropolysaccharide composed of Man, Glc, Gal, and Fuc with a molecular weight of 33.8 kDa. Scanning electron microscopy (SEM) observed a rough surface and reticular structure of EPS-M1, and EPS-M1 formed spherical aggregates in aqueous solution observed in atomic force microscopy (AFM). Thermal analysis revealed that the degradation temperature of EPS-M1 was 306 °C. Moreover, methylation and NMR analysis determined that EPS-M1 was consisted of →3)-Manp-(1→, →2,6)-Manp-(1→, →4,6)-Glcp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →4)-Fucp-(1→, and T-Manp-(1→. Furthermore, the cytotoxicity and the repair ability of UVR-mediated cell damage of EPS-M1 were studied with L929 cells. The results showed that EPS-M1 had good biocompatibility and it could mitigate UVR-mediated cell damage by regulating the levels of cellular reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP) and Caspase-3/7 activity. Overall, the structure analysis and the protective effects of EPS against L929 cells exposed to UVR provided an experimental basis for EPS in practical applications.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liying Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xiuli Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
QIN CJ, DING MR, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical approaches towards installation of rare functional groups in bacterial surface glycans. Chin J Nat Med 2022; 20:401-420. [DOI: 10.1016/s1875-5364(22)60177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 11/24/2022]
|
7
|
Structural Elucidation and genetic identification of the O-antigen from a novel serogroup of Escherichia coli strain 2017LL031. Carbohydr Res 2022; 517:108577. [DOI: 10.1016/j.carres.2022.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
8
|
Xiao M, Ren X, Yu Y, Gao W, Zhu C, Sun H, Kong Q, Fu X, Mou H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem X 2022; 13:100233. [PMID: 35498987 PMCID: PMC9039932 DOI: 10.1016/j.fochx.2022.100233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial exopolysaccharides are high molecular weight polysaccharides that are secreted by a wide range of bacteria, with diverse structures and easy preparation. Fucose, fucose-containing oligosaccharides (FCOs), and fucose-containing polysaccharides (FCPs) have important applications in the food and medicine fields, including applications in products for removing Helicobacter pylori and infant formula powder. Fucose-containing bacterial exopolysaccharide (FcEPS) is a prospective source of fucose, FCOs, and FCPs. This review systematically summarizes the common sources and applications of FCPs and FCOs and the bacterial strains capable of producing FcEPS reported in recent years. The repeated-unit structures, synthesis pathways, and factors affecting the production of FcEPS are reviewed, as well as the degradation methods of FcEPS for preparing FCOs. Finally, the bioactivities of FcEPS, including anti-oxidant, prebiotic, anti-cancer, anti-inflammatory, anti-viral, and anti-microbial activities, are discussed and may serve as a reference strategy for further applications of FcEPS in the functional food and medicine industries.
Collapse
Key Words
- 2′-FL, 2′-fucosyllactose
- 3-FL, 3-fucosyllactose
- ABTS, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonate
- Bacterial exopolysaccharides
- Bioactivity
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EPS, exopolysaccharides
- FCOs, fucose-containing oligosaccharides
- FCPs, fucose-containing polysaccharides
- FcEPS, fucose-containing EPS
- Food application
- Fucose
- HMOs, human milk oligosaccharides
- MAPK, mitogen-activated protein kinase
- PBMCs, peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SCFAs, short-chain fatty acids
- Structure
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi Province, People's Republic of China
- Corresponding authors.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
- Corresponding authors.
| |
Collapse
|
9
|
Yuan L, Zhong ZC, Liu Y, Quan H, Lu YZ, Zhang EH, Cai H, Li LQ, Lan XZ. Structures and immunomodulatory activity of one galactose- and arabinose-rich polysaccharide from Sambucus adnata. Int J Biol Macromol 2022; 207:730-740. [PMID: 35346678 DOI: 10.1016/j.ijbiomac.2022.03.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
One galactose- and arabinose-rich polysaccharide isolated from Sambucus adnata was named SPS-1, which had an average molecular weight 138.52 kDa, and was composed of L-rhamnose, D-glucuronic acid, D-galacturonic acid, D-galactose, and L-arabinose in a molar ratio of 0.6:0.4:0.1:4.9:4.0. The primary structure of SPS-1 was further analyzed through methylation and NMR spectroscopy. The results showed that SPS-1 had the structural characteristics of AG-II pectin. The immunoactivity test showed that SPS-1 activated the phosphorylation of MAPKs-related proteins and further elevated the expression levels of related nuclear transcription factors (IκBα and NF-κB p65) in the cells through the TLR2 and MyD88/TRAF6-dependent pathway, thereby significantly enhancing the phagocytosis of macrophages and stimulating the secretion of NO, IL-1β, IL-6, and TNF-α, which activated the RAW264.7 cells. Therefore, SPS-1, acting as an immunomodulator, is a potential drug for immunological diseases.
Collapse
Affiliation(s)
- Lei Yuan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; Biotechnology Center, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China.
| | - Zheng-Chang Zhong
- The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Yu Liu
- The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Hong Quan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; Research Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Ya-Zhou Lu
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Er-Hao Zhang
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Hao Cai
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Lian-Qiang Li
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China
| | - Xiao-Zhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China; The Center for Xizang Chinese (Tibetan) Medicine Resource, Tibet Agriculture and Animal Husbandry University, Nyingchi of Tibet 860000, China.
| |
Collapse
|
10
|
Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Arch Microbiol 2021; 203:2699-2709. [PMID: 33715030 DOI: 10.1007/s00203-021-02271-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
In this study, a higher metal ions-resistant bacterium, Stenotrophomonas rhizophila JC1 was isolated from contaminated soil in Jinchang city, Gansu Province, China. The Pb2+ (120 mg/L) and Cu2+ (80 mg/L) removal rate of the strain reached at 76.9% and 83.4%, respectively. The genome comprises 4268161 bp in a circular chromosome with 67.52% G + C content and encodes 3719 proteins. The genome function analysis showed czc operon, mer operon, cop operon, arsenic detoxification system in strain JC1 were contributed to the removal of heavy metals. Three efflux systems (i.e., RND, CDF, and P-ATPase) on strain JC1 genome could trigger the removal of divalent cations from cells. cAMP pathway and ABC transporter pathway might be involved in the transport and metabolism of heavy metals. The homology analysis exhibited multi-gene families such as ABC transporters, heavy metal-associated domain, copper resistance protein, carbohydrate-binding domain were distributed across 410 orthologous groups. In addition, heavy metal-responsive transcription regulator, thioredoxin, heavy metal transport/detoxification protein, divalent-cation resistance protein CutA, arsenate reductase also played important roles in the heavy metals adsorption and detoxification process. The complete genome data provides insight into the exploration of the interaction mechanism between microorganisms and heavy metals.
Collapse
|
11
|
Xiao M, Fu X, Wei X, Chi Y, Gao W, Yu Y, Liu Z, Zhu C, Mou H. Structural characterization of fucose-containing disaccharides prepared from exopolysaccharides of Enterobacter sakazakii. Carbohydr Polym 2021; 252:117139. [PMID: 33183598 DOI: 10.1016/j.carbpol.2020.117139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
Abstract
Fucose-containing oligosaccharides (FCOs) have important applications in the food, medicine, and cosmetics industries owing to their unique biological activities. The degradation of microbial fucose-containing exopolysaccharide (FcEPS) is a promising strategy for obtaining FCOs, and bacteriophage-borne glycanase is a useful tool for degrading FcEPS. Here, we aimed to obtain FCOs using bacteriophage-borne glycanase to depolymerize FcEPS from Enterobacter sakazakii. The FcEPS was mainly composed of l-fucose (42.72 %), d-galactose (20.59 %), and d-glucose (21.81 %). Based on the results of nuclear magnetic resonance and mass spectrometry, the obtained FCOs were disaccharide fragments with backbones of β-d-Glcp-(1→4)-β-l-Fucp and α-d-Galp-(1→3)-β-l-Fucp, respectively. So far, few studies of disaccharides prepared from FcEPS have been reported. This study demonstrated that the FcEPS of E. sakazakii was a reliable fucose-containing disaccharide source and that bacteriophage-borne glycanase was an effective degradation tool for obtaining FCOs fragments from FcEPS.
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Yongzhou Chi
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, PR China.
| |
Collapse
|
12
|
Wang Q, Li Q, Lin Y, Hou Y, Deng Z, Liu W, Wang H, Xia Z. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114637. [PMID: 32380392 DOI: 10.1016/j.envpol.2020.114637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, a cadmium-tolerant bacterium, Enterobacter ludwigii LY6, was isolated from cadmium-contaminated soil in Shifang, Sichuan province, China. The cadmium chloride removal rate of the strain LY6 with a treatment of 100 mg/L cadmium chloride reached 56.0%. Scanning electron microscopy showed that exopolysaccharides (EPS) might be the main means of cadmium adsorption by the strain. X-ray powder diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses indicated that cadmium sulfide nanoparticles formed on the surface of bacteria cultured in a medium containing 100 mg/L cadmium chloride. In addition, the expression of several genes increased with the increase of the cadmium concentration in the medium, including the multiple antibiotic resistance proteins marA and marR, and the cold shock protein CspA. GO functions, such as the redox activity, respiratory chain and transport functions, and KEGG pathways involved in "bacterial chemotaxis" and "terpenoid backbone biosynthesis" were found to be closely related to bacterial cadmium tolerance and biosorption. This is the first report that E. ludwigii can reduce sulfate to form cadmium sulfide nanoparticles under high concentration cadmium exposure. The genes related to cadmium tolerance identified in this study lay a foundation for the genetic breeding of cadmium-tolerant strains.
Collapse
Affiliation(s)
- QiangFeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yang Lin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Yong Hou
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Ziyuan Deng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Wu Liu
- Sichuan Lanyue Science and Technology Co., Ltd., Chengdu, 610207, Sichuan, China
| | - Haitao Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - ZhongMei Xia
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
13
|
K KR, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr Polym 2018; 199:353-364. [PMID: 30143139 DOI: 10.1016/j.carbpol.2018.07.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 02/04/2023]
Abstract
Extracellular polysaccharides or Exopolysaccharides (EPS) are extensively studied bacterial byproducts with high molecular weight attributed to several applications. In spite of their application in the field of food, pharmaceutical, nutraceutical, herbicidal and cosmeceutical industries they were well known for their efficiency in the bioremediation of water and soil tainted with heavy metals. These heavy metals are comparatively high in density than water and are involved in several biological processes. But slight increase in levels can create toxicological bias. The techniques like electrodialysis, chemical precipitation, ion exchange and membrane separation have a lot of disadvantages akin to high energy consumption, high cost, partial exclusion, and creation of poisonous mire. In this context, EPS has a top role to play in the bioremediation of heavy metals. This review gives the critical assessment of the extensive work done to deal this issue by different groups in the last five years. It also explains how different natural circumstances have attributed to the advancement of EPS production, thereby increasing the capacity of bioremediation to deal the issue of heavy metal contamination in both soil and water. A detailed discussion of the EPS formation by bacteria and fungi with their applicability was reported.
Collapse
Affiliation(s)
- Kranthi Raj K
- Department of H & S, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
| | - Usha R Sardar
- Department of H & S, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
| | - Erravelli Bhargavi
- CaroCure Discovery Solutions Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shameerpet, Hyderabad, Telangana, India.
| | - Indrama Devi
- DBT-Institute of Bioresources and Sustainable Development, Imphal, Manipur, India.
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi, 110012, India.
| |
Collapse
|
14
|
Zha Z, Wang SY, Chu W, Lv Y, Kan H, Chen Q, Zhong L, Yue L, Xiao J, Wang Y, Yin H. Isolation, purification, structural characterization and immunostimulatory activity of water-soluble polysaccharides from Lepidium meyenii. PHYTOCHEMISTRY 2018; 147:184-193. [PMID: 29353155 DOI: 10.1016/j.phytochem.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
A water-soluble polysaccharide LMP-1 was isolated and purified by ion-exchange chromatography from maca (Lepidium meyenii Walp.). LMP-1 has a molecular weight of 1.01 × 104 Da, and is composed of glucose and arabinose with a molar ratio of 7.03:1.08. Methylation and the 1D and 2D NMR spectroscopy of LMP-1 revealed that it is mainly composed of →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →3)-α-D-Glcp-(1→, and β-D-Araf-(1→, with branching at O-6 of →4,6)-α-D-Glcp-(1 → . LMP-1 showed up-regulation of Toll-like receptor 4 (TLR4) and Toll-like receptor 2 (TLR2). The upstream proteins of Toll-like receptors (TLRs) (CD14 and MD2) and mRNA level of IL-1β also increased. Increased transcription factor nuclear factor-kappa B (NF-κB) p65 was found in the nuclei and cytoplasm in LMP-1-treated RAW264.7 macrophages. These results indicated that LMP-1 activated RAW264.7 macrophages and elicited immunostimulatory activities via the TLRs/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Zhengqi Zha
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Su-Yan Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yang Lv
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hongjin Kan
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qiuli Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Lili Zhong
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Long Yue
- School of Engineering, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jinna Xiao
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hongping Yin
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
15
|
Lancaster WA, Menon AL, Scott I, Poole FL, Vaccaro BJ, Thorgersen MP, Geller J, Hazen TC, Hurt RA, Brown SD, Elias DA, Adams MWW. Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization. Metallomics 2014; 6:1004-13. [PMID: 24706256 DOI: 10.1039/c4mt00050a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strain Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.
Collapse
Affiliation(s)
- W Andrew Lancaster
- Department of Biochemistry & Molecular Biology, University of Georgia, Life Sciences Bldg., Athens, GA 30602-7229, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu S, Ying GG, Liu YS, Peng FQ, He LY. Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10266-10276. [PMID: 23952780 DOI: 10.1021/es304688g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Natural and synthetic progestagens in the environment have become a concern due to their adverse effects on aquatic organisms. Laboratory studies were performed to investigate aerobic biodegradation of norgestrel by bacteria from activated sludge in comparison with progesterone, and to identify their degradation products and biotransformation pathways. The degradation of norgestrel followed first order reaction kinetics (T1/2 = 12.5 d), while progesterone followed zero order reaction kinetics (T1/2 = 4.3 h). Four and eight degradation products were identified for norgestrel and progesterone, respectively. Six norgestrel-degrading bacterial strains (Enterobacter ludwigii, Aeromonas hydrophila subsp. dhakensis, Pseudomonas monteilii, Comamonas testosteroni, Exiguobacterium acetylicum, and Chryseobacterium indologenes) and one progesterone-degrading bacterial strain (Comamonas testosteroni) were successfully isolated from the enrichment culture inoculated with aerobic activated sludge. To our best knowledge, this is the first report on the biodegradation products and degrading bacteria for norgestrel under aerobic conditions.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | | | | | | | | |
Collapse
|