1
|
Zamudio Cañas R, Jaramillo Flores ME, Vallejo Ruiz V, Delgado Macuil RJ, López Gayou V. Detection of Sialic Acid to Differentiate Cervical Cancer Cell Lines Using a Sambucus nigra Lectin Biosensor. BIOSENSORS 2024; 14:34. [PMID: 38248411 PMCID: PMC10812977 DOI: 10.3390/bios14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Pap smear screening is a widespread technique used to detect premalignant lesions of cervical cancer (CC); however, it lacks sensitivity, leading to identifying biomarkers that improve early diagnosis sensitivity. A characteristic of cancer is the aberrant sialylation that involves the abnormal expression of α2,6 sialic acid, a specific carbohydrate linked to glycoproteins and glycolipids on the cell surface, which has been reported in premalignant CC lesions. This work aimed to develop a method to differentiate CC cell lines and primary fibroblasts using a novel lectin-based biosensor to detect α2,6 sialic acid based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometric. The biosensor was developed by conjugating gold nanoparticles (AuNPs) with 5 µg of Sambucus nigra (SNA) lectin as the biorecognition element. Sialic acid detection was associated with the signal amplification in the 1500-1350 cm-1 region observed by the surface-enhanced infrared absorption spectroscopy (SEIRA) effect from ATR-FTIR results. This region was further analyzed for the clustering of samples by applying principal component analysis (PCA) and confidence ellipses at a 95% interval. This work demonstrates the feasibility of employing SNA biosensors to discriminate between tumoral and non-tumoral cells, that have the potential for the early detection of premalignant lesions of CC.
Collapse
Affiliation(s)
- Ricardo Zamudio Cañas
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| | - María Eugenia Jaramillo Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN-ENCB), Ciudad de México 07738, Mexico;
| | - Verónica Vallejo Ruiz
- Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec 74360, Mexico;
| | - Raúl Jacobo Delgado Macuil
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| | - Valentín López Gayou
- Laboratorio de Bionanotecnología, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Tepetitla 90700, Mexico; (R.Z.C.); (R.J.D.M.)
| |
Collapse
|
2
|
Saroj S, Paul D, Ali A, Andreou C, Pal S, Rakshit T. Probing Aberrantly Glycosylated Mucin 1 in Breast Cancer Extracellular Vesicles. ACS APPLIED BIO MATERIALS 2023; 6:4944-4951. [PMID: 37824707 DOI: 10.1021/acsabm.3c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Aberrantly glycosylated mucin 1 is a critical prognostic biomarker in breast epithelial cancers. Hypoglycosylated mucin 1 coats the surface of the cancer cells, where O-glycans are predominantly linked via an N-acetylgalactosamine moiety (GalNAc). Cancer cell-derived extracellular vesicles (EVs) carry biomarkers from parent cancer cells to the recipient cells and, therefore, could potentially be leveraged for diagnostics and noninvasive disease monitoring. We devised a label-free approach for identifying glycoprotein mucin 1 overexpression on breast cancer EVs. While exploring a plethora of biochemical (enzyme-linked immunosorbent assay, flow cytometry, and SDS-PAGE) and label-free biophysical techniques (circular dichroism and infrared spectroscopy (IR)) along with multivariate analysis, we discovered that mucin 1 is significantly overexpressed in breast cancer EVs and aberrant glycosylation in mucin 1 could be critically addressed using IR and multivariate analysis targeting the GalNAc sugar. This approach emerges as a convenient and comprehensive method of distinguishing cancer EVs from normal samples and holds potential for nonintrusive breast cancer liquid biopsy screening.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 20537, Cyprus
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology, IIT Bhilai, Durg, Chhattisgarh 491001, India
- Department of Bioscience and Biomedical Engineering, IIT Bhilai, Bhilai, Chhattisgarh 491001, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Curnutt A, Smith K, Darrow E, Walters KB. Chemical and Microstructural Characterization of pH and [Ca 2+] Dependent Sol-Gel Transitions in Mucin Biopolymer. Sci Rep 2020; 10:8760. [PMID: 32472040 PMCID: PMC7260187 DOI: 10.1038/s41598-020-65392-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Mucus is responsible for controlling transport and barrier function in biological systems, and its properties can be significantly affected by compositional and environmental changes. In this study, the impacts of pH and CaCl2 were examined on the solution-to-gel transition of mucin, the primary structural component of mucus. Microscale structural changes were correlated with macroscale viscoelastic behavior as a function of pH and calcium addition using rheology, dynamic light scattering, zeta potential, surface tension, and FTIR spectroscopic characterization. Mucin solutions transitioned from solution to gel behavior between pH 4–5 and correspondingly displayed a more than ten-fold increase in viscoelastic moduli. Addition of CaCl2 increased the sol-gel transition pH value to ca. 6, with a twofold increase in loss moduli at low frequencies and ten-fold increase in storage modulus. Changing the ionic conditions—specifically [H+] and [Ca2+] —modulated the sol-gel transition pH, isoelectric point, and viscoelastic properties due to reversible conformational changes with mucin forming a network structure via non-covalent cross-links between mucin chains.
Collapse
Affiliation(s)
- Austin Curnutt
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Kaylee Smith
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Emily Darrow
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Keisha B Walters
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
4
|
Nallala J, Jeynes C, Saunders S, Smart N, Lloyd G, Riley L, Salmon D, Stone N. Characterization of colorectal mucus using infrared spectroscopy: a potential target for bowel cancer screening and diagnosis. J Transl Med 2020; 100:1102-1110. [PMID: 32203151 PMCID: PMC7374084 DOI: 10.1038/s41374-020-0418-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Biological materials presenting early signs of cancer would be beneficial for cancer screening/diagnosis. In this respect, the suitability of potentially exploiting mucus in colorectal cancer was tested using infrared spectroscopy in combination with statistical modeling. Twenty-six paraffinized colon tissue biopsy sections containing mucus regions from 20 individuals (10 normal and 16 cancerous) were measured using mid-infrared spectroscopic imaging. A digital de-paraffinization, followed by cluster analysis driven digital color-coded multi-staining segmented the infrared images into various histopathological features such as epithelium, connective tissue, stroma, and mucus regions within the tissue sections. Principal component analysis followed by supervised linear discriminant analysis was carried out on pure mucus and epithelial spectra from normal and cancerous regions of the tissue. For the mucus-based classification, a sensitivity of 96%, a specificity of 83%, and an area under the curve performance of 95% was obtained. For the epithelial tissue-based classification, a sensitivity of 72%, a specificity of 88%, and an area under the curve performance of 89% was obtained. The mucus spectral profiles further showed contributions indicative of glycans including that of sialic acid changes between these pathology groups. The study demonstrates that infrared spectroscopic analysis of mucus discriminates colorectal cancers with high sensitivity. This concept could be exploited to develop screening/diagnostic approaches complementary to histopathology.
Collapse
Affiliation(s)
- Jayakrupakar Nallala
- Biomedical Physics, School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| | - Charles Jeynes
- 0000 0004 1936 8024grid.8391.3Living Systems Institute, University of Exeter, Exeter, EX4 4QD UK
| | - Sarah Saunders
- grid.416118.bCellular Pathology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5AD UK
| | - Neil Smart
- grid.416118.bDepartment of Surgery, Royal Devon and Exeter Hospital, Exeter, EX2 5DW UK
| | - Gavin Lloyd
- 0000 0004 1936 7486grid.6572.6Phenome Centre Birmingham, University of Birmingham, Birmingham, B15 2TT UK
| | - Leah Riley
- grid.416118.bCellular Pathology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5AD UK
| | - Debbie Salmon
- 0000 0004 1936 8024grid.8391.3Biocatalysis Centre, Biosciences, University of Exeter, Exeter, EX4 4QD UK
| | - Nick Stone
- 0000 0004 1936 8024grid.8391.3Biomedical Physics, School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL UK
| |
Collapse
|
5
|
Birarda G, Delneri A, Lagatolla C, Parisse P, Cescutti P, Vaccari L, Rizzo R. Multi-technique microscopy investigation on bacterial biofilm matrices: a study on Klebsiella pneumoniae clinical strains. Anal Bioanal Chem 2019; 411:7315-7325. [PMID: 31637462 DOI: 10.1007/s00216-019-02111-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023]
Abstract
Biofilms are communities of bacteria living embedded in a highly hydrated matrix composed of polysaccharides, proteins, and extracellular DNA. This life style confers numerous advantages to bacteria including protection against external threats. However, they also contribute to increase bacterial resistance against antimicrobials, an issue particularly relevant in dangerous infections. Due to the complexity of the matrix, few information is present in the literature on details of its architecture including the spatial distribution of the macromolecular components which might give hints on the way the biofilm scaffold is built up by bacteria. In this study, we investigated the possibility to combine well-established microbiological procedures with advanced microscopies to get information on composition and distribution of the macromolecular components of biofilm matrices. To this, confocal microscopy, diffraction-limited infrared (IR) spectral imaging, and atomic force microscopy (AFM) were used to explore biofilm produced by a clinical strain of Klebsiella pneumoniae. IR imaging permitted to have clues on how the biofilm grows and spreads on surfaces, and the local distribution of the components within it. Through the analysis of the pure component spectra, it was possible to assess the chemical and structural composition of the saccaridic matrix, confirming the data obtained by NMR. It was also possible to follow the time course of biofilm from 6 up to 48 h when the biofilm grew into a 3-dimensional multi-layered structure, characteristic of colonies of bacteria linked together by a complex matrix. In addition, nanoFTIR and AFM investigations allowed the estimation of biofilm growth in the vertical direction and the morphological analysis of bacterial colonies at different time points and the evaluation of the chemical composition at the nanoscale.
Collapse
Affiliation(s)
- Giovanni Birarda
- Elettra - Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149, Basovizza, Trieste, Italy
| | - Ambra Delneri
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Pietro Parisse
- Elettra - Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149, Basovizza, Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Lisa Vaccari
- Elettra - Sincrotrone Trieste S.C.p.A., S.S.14 Km 163.5, 34149, Basovizza, Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
6
|
Li Q, Becker T, Zhang R, Xiao T, Sand W. Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes. Colloids Surf B Biointerfaces 2019; 173:639-646. [DOI: 10.1016/j.colsurfb.2018.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022]
|
7
|
Böni LJ, Sanchez-Ferrer A, Widmer M, Biviano MD, Mezzenga R, Windhab EJ, Dagastine RR, Fischer P. Structure and Nanomechanics of Dry and Hydrated Intermediate Filament Films and Fibers Produced from Hagfish Slime Fibers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40460-40473. [PMID: 30371056 DOI: 10.1021/acsami.8b17166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments (IFs) are known for their extensibility, flexibility, toughness, and their ability to hydrate. Using keratin-like IFs obtained from slime fibers from the invertebrate Atlantic hagfish ( Myxine glutinosa), films were produced by drop-casting and coagulation on the surface of a MgCl2 buffer. Drop-casting produced self-supporting, smooth, and dense films rich in β-sheets (61%), whereas coagulation formed thin, porous films with a nanorough surface and a lower β-sheet content (51%). The films hydrated and swelled immediately when immersed in water and did not dissolve. X-ray diffraction showed that the β-crystallites remained stable upon hydration, that swelling presumably happens in the amorphous C-terminal tail-domains of the IFs, and that high salt conditions caused a denser network mesh size, suggesting polyelectrolyte behavior. Hydration resulted in a roughly 1000-fold decrease in apparent Young's modulus from 109 to 106 Pa as revealed by atomic force microscopy nanoindentation. Nanoindentation-based power-law rheology and stress-relaxation measurements indicated viscoelasticity and a soft-solid hydrogel character for hydrated films, where roughly 80% of energy is elastically stored and 20% is dissipated. By pulling coagulation films from the buffer interface, macroscopic fibers with highly aligned IF β-crystals similar to natural hagfish fibers were produced. We propose that viscoelasticity and strong hydrogen bonding interactions with the buffer interface are crucial for the production of such long biomimetic fibers with aligned β-sheets. This study demonstrates that hagfish fiber IFs can be reconstituted into functional biomimetic materials that are stiff when dry and retain the ability to hydrate to become soft and viscoelastic when in water.
Collapse
Affiliation(s)
| | | | | | - M D Biviano
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | | | | - R R Dagastine
- Department of Chemical and Biomolecular Engineering , University of Melbourne , Melbourne 3010 , Australia
| | | |
Collapse
|
8
|
Inci F, Ozen MO, Saylan Y, Miansari M, Cimen D, Dhara R, Chinnasamy T, Yuksekkaya M, Filippini C, Kumar DK, Calamak S, Yesil Y, Durmus NG, Duncan G, Klevan L, Demirci U. A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800121. [PMID: 30250782 PMCID: PMC6145299 DOI: 10.1002/advs.201800121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/13/2018] [Indexed: 05/20/2023]
Abstract
One out of every six American women has been the victim of a sexual assault in their lifetime. However, the DNA casework backlog continues to increase outpacing the nation's capacity since DNA evidence processing in sexual assault casework remains a bottleneck due to laborious and time-consuming differential extraction of victim's and perpetrator's cells. Additionally, a significant amount (60-90%) of male DNA evidence may be lost with existing procedures. Here, a microfluidic method is developed that selectively captures sperm using a unique oligosaccharide sequence (Sialyl-LewisX), a major carbohydrate ligand for sperm-egg binding. This method is validated with forensic mock samples dating back to 2003, resulting in 70-92% sperm capture efficiency and a 60-92% reduction in epithelial fraction. Captured sperm are then lysed on-chip and sperm DNA is isolated. This method reduces assay-time from 8 h to 80 min, providing an inexpensive alternative to current differential extraction techniques, accelerating identification of suspects and advancing public safety.
Collapse
Affiliation(s)
- Fatih Inci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Mehmet O. Ozen
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Yeseren Saylan
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Morteza Miansari
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Duygu Cimen
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Raghu Dhara
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Thiruppathiraja Chinnasamy
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Mehmet Yuksekkaya
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Chiara Filippini
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Deepan Kishore Kumar
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Semih Calamak
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Yusuf Yesil
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Naside Gozde Durmus
- Department of BiochemistryStanford UniversityStanford Genome Technology CenterPalo AltoCA94304USA
| | - George Duncan
- Crime LaboratoryBroward County Sheriff's OfficeFort LauderdaleFL33301USA
| | | | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
- Department of Electrical Engineering (by courtesy)Stanford UniversityStanfordCA94305USA
| |
Collapse
|
9
|
Herrington WF, Singh GP, Wu D, Barone PW, Hancock W, Ram RJ. Optical Detection of Degraded Therapeutic Proteins. Sci Rep 2018; 8:5089. [PMID: 29572496 PMCID: PMC5865131 DOI: 10.1038/s41598-018-23409-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.
Collapse
Affiliation(s)
- William F Herrington
- Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States.
| | - Gajendra P Singh
- Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Di Wu
- Northeastern University, Boston, Massachusetts, 02115, United States
| | - Paul W Barone
- Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - William Hancock
- Northeastern University, Boston, Massachusetts, 02115, United States
| | - Rajeev J Ram
- Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
10
|
Kanold JM, Immel F, Broussard C, Guichard N, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. The test skeletal matrix of the black sea urchin Arbacia lixula. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:24-34. [DOI: 10.1016/j.cbd.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|
11
|
Menzies GE, Fox HR, Marnane C, Pope L, Prabhu V, Winter S, Derrick AV, Lewis PD. Fourier transform infrared for noninvasive optical diagnosis of oral, oropharyngeal, and laryngeal cancer. Transl Res 2014; 163:19-26. [PMID: 24095955 DOI: 10.1016/j.trsl.2013.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/24/2022]
Abstract
The 5-year survival rate for advanced head and neck cancers is 50%. There is currently no noninvasive method or effective screening procedure available to diagnose head and neck cancer at the earliest stages when it is still highly curable. This study aims to show how Fourier transform infrared (FTIR) spectroscopy could be used as a sensitive, noninvasive, low cost technique to diagnose head and neck cancer at an earlier stage and, thus, increase the likelihood of survival. Sputum samples were collected from 16 cases with oral or oropharyngeal cancer, 8 cases with laryngeal cancer patients and 15 normal controls. Cell pellets were produced from each of these samples and used to generate FTIR spectra within the 'biochemical fingerprint' wavenumber region of 1800 to 950 cm(-1). Discrimination between cancer and normal sputum was achieved using infrared wavenumbers 1650 cm(-1), 1550 cm(-1), and 1042 cm(-1) determined by robust feature selection. These 3 wavenumbers were used to develop potential models to discriminate both oropharyngeal and laryngeal cancer from normal control. In cancer cases, the absorbance levels for 1550 cm(-1) were increased relative to controls, whereas 1042 cm(-1) absorbance was decreased suggesting changes to protein and glycoprotein structure within sputa cells. This preliminary study shows potential for how FTIR could be developed into a simplistic diagnostic tool that could easily be implemented by a nonspecialist to diagnose and monitor head and neck cancer. The method could especially provide a means for detecting laryngeal cancer hidden from noninvasive observation.
Collapse
Affiliation(s)
| | - Hannah R Fox
- Department of Otolaryngology, Singleton Hospital, Swansea, United Kingdom
| | - Conor Marnane
- Department of Otolaryngology, Singleton Hospital, Swansea, United Kingdom
| | - Laysan Pope
- Department of Otolaryngology, Singleton Hospital, Swansea, United Kingdom
| | - Vinod Prabhu
- Department of Otolaryngology, Singleton Hospital, Swansea, United Kingdom
| | - Stuart Winter
- West Wing, John Radcliffe, Oxford Cancer Center, Churchill Hospital, Oxford, United Kingdom
| | - Anna V Derrick
- College of Medicine, Swansea University, Singleton Park, United Kingdom
| | - Paul D Lewis
- College of Medicine, Swansea University, Singleton Park, United Kingdom.
| |
Collapse
|