1
|
Janthanasakulwong P, Yoksan R. Effect of gamma ray dose on granular and molecular structures of gamma ray-irradiated cassava starch and its application in bioplastics. Int J Biol Macromol 2024; 279:135330. [PMID: 39244137 DOI: 10.1016/j.ijbiomac.2024.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In this study, the effect of gamma ray irradiation on the granular and molecular structures of cassava starch was examined. Cassava starch was irradiated with various gamma ray doses of 25, 50, 75, and 100 kGy. After irradiation, the starch turned yellow, but its granular morphological characteristics remained intact. However, the inner part and the 'Maltese cross' of the starch granules irradiated with 100 kGy were broken, and its crystallinity decreased considerably. The pH reduction (from 5.6 to 3.7) and carboxyl content increase (up to 0.38 %) confirmed the formation of carboxyl groups on the irradiated starch chains. Gamma ray irradiation caused glycosidic bond cleavages, resulting in shortened amylose chains and debranched amylopectin chains containing terminal carboxyl groups. The irradiated starches with different molecular weights have high potential for use in food and non-food applications, for example, in bioplastics. Thermoplastic-irradiated starch (TPIS) materials, and their blends with poly(lactic acid) (PLA) were prepared via extrusion. Both TPIS and PLA/TPIS blends exhibited considerably increased melt flow index values compared with those from the unirradiated starch at approximate increases of 420-2260% and 2-55%, respectively. The improved melt flow ability and reduced viscosity are advantages for some plastic conversion processes such as injection molding.
Collapse
Affiliation(s)
- Pattra Janthanasakulwong
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Liu W, McClements DJ, Peng X, Jin Z, Chen L. Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Crit Rev Food Sci Nutr 2023; 65:612-626. [PMID: 37933826 DOI: 10.1080/10408398.2023.2278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Rostamabadi H, Demirkesen I, Hakgüder Taze B, Can Karaca A, Habib M, Jan K, Bashir K, Nemțanu MR, Colussi R, Reza Falsafi S. Ionizing and nonionizing radiations can change physicochemical, technofunctional, and nutritional attributes of starch. Food Chem X 2023; 19:100771. [PMID: 37780299 PMCID: PMC10534100 DOI: 10.1016/j.fochx.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023] Open
Abstract
Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746–73461, Iran
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Bengi Hakgüder Taze
- Usak University, Faculty of Engineering, Department of Food Engineering 1 Eylul Campus, 64000 Usak, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mehvish Habib
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi 110062, India
| | - Monica R. Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Campus Universitário, s/n, 96010-900, Pelotas, RS, Brazil
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Yan H, Cui L, Wang X, Zhang D, Feng W, Chen Y. Encapsulation of ascorbyl palmitate in maize granular starch through an irradiation–hydrothermal method. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. Using the dominant mutation gene Ae1-5180 ( amylose extender) to develop high-amylose maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:57. [PMID: 37313014 PMCID: PMC10248602 DOI: 10.1007/s11032-022-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Maize amylose is a type of high value-added starch used for medical, food, and chemical applications. Mutations in the starch branching enzyme (SBEIIb), with recessive ae (amylose extender) and dominant Ae1-5180 alleles, are the primary way to improve maize endosperm amylose content (AC). However, studies on Ae1-5180 mutation are scarce, and its roles in starch synthesis and breeding potential are unclear. We found that the AC of the Ae1-5180 mutant was 47.23%, and its kernels were tarnished and glassy and are easily distinguished from those of the wild type (WT), indicating that the dominant mutant has the classical characteristics of the ae mutant. Starch granules of Ae1-5180 became smaller, and higher in amount with irregular shape. The degree of amylopectin polymerisation changed to induce an increase in starch thermal stability. Compared with WT, the activity of granule-bound starch synthase and starch synthase was higher in early stages and lower in later stages, and other starch synthesis enzymes decreased during kernel development in the Ae1-5180 mutant. We successfully developed a marker (mu406) for the assisted selection of 17 Ae1-5180 near isogenic lines (NILs) according to the position of insertion of the Mu1 transposon in the SBEIIb promoter of Ae1-5180. JH214/Ae1-5180, CANS-1/Ae1-5180, CA240/Ae1-5180, and Z1698/Ae1-5180 have high breeding application potential with their higher AC (> 40%) and their 100-kernel weight decreased to < 25% compared to respective recurrent parents. Therefore, using the dominant Ae1-5180 mutant as a donor can detect the kernel phenotype and AC of Ae1-5180-NILs in advance, thereby accelerating the high-amylose breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01323-7.
Collapse
Affiliation(s)
- Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zenghui Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Meijuan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Shiyuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
7
|
Physicochemical, Morphological, and Functional Properties of Starches Isolated from Avocado Seeds, a Potential Source for Resistant Starch. Biomolecules 2022; 12:biom12081121. [PMID: 36009015 PMCID: PMC9406050 DOI: 10.3390/biom12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
This study compared the physicochemical and functional properties of starches from eight cultivars of avocado seeds. Amylose content, morphology, crystalline structure, swelling power, solubility, thermal and pasting properties, and in vitro digestibility were investigated. The results revealed that the apparent amylose content of starches from avocado seeds varied with different varieties. Light microscopic and scanning electron microscopic examination demonstrated that the eight starches differed slightly in terms of morphology and granule size. The X-ray diffraction and Fourier transform infrared spectroscopy analyses showed that the crystal structure and chemical linkage of the avocado seed starches were similar. However, the pasting, water solubility, and thermal properties of the eight avocado seed starches differed. Importantly, all the starches had high resistant starch content (>60%), with the highest found in Hass seeds (77.83%). To conclude, starch from avocado seeds has a high potential for use in the production of resistant starch.
Collapse
|
8
|
Impacts of electron-beam-irradiation on microstructure and physical properties of yam (Dioscorea opposita Thunb.) flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Nontamas P, Phatthanakun R, Chio-Srichan S, Soontaranon S, Sorndech W, Tongta S. Physico-chemical properties and digestibility of native and citrate starches change in different ways by synchrotron radiation. Int J Biol Macromol 2022; 207:475-483. [PMID: 35278512 DOI: 10.1016/j.ijbiomac.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/05/2022]
Abstract
The physico-chemical properties and digestibility of native and citrate cassava starches changed as a result of synchrotron radiation treatment. In this study, the native and citrate starch samples were exposed to radiation doses of 0.1, 0.4, 0.8 and 3.9 kGy. The granular morphology revealed that all samples were rupture and damage after radiation. As increasing radiation doses, the relative crystallinity as determined by WAXS and the ratio of 1047/1015 cm-1 from FTIR result decreased while the degree of degradation and solubility increased for all samples. The swelling power of radiated native starches decreased with higher radiation doses indicating that the cross-linking of starch was induced by synchrotron radiation which was related to an increase in the resistant starch content. On the contrary, for radiated citrate samples, the FTIR peak at 1724 cm-1 was observed. The ratio of 1724/2900 cm-1 and total esterified citric acid did not change. The swelling and degree of di-esterification were reduced while the degree of mono-esterification increased with higher doses. It implied that the cross-linking by ester bonds was broken into mono-ester bonds. This work demonstrated that synchrotron radiation changed the physical and chemical properties of native and citrate starches in different ways.
Collapse
Affiliation(s)
- Pongpanee Nontamas
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | - Waraporn Sorndech
- Expert Center of Innovative Health Food, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Sunanta Tongta
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
10
|
Lam ND, Quynh TM, Diep TB, Binh PT, Lam TD. Effect of gamma irradiation and pyrolysis on indigestible fraction, physicochemical properties, and molecular structure of rice starch. J FOOD PROCESS PRES 2021; 45. [DOI: 10.1111/jfpp.15880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Nguyen Duy Lam
- Vietnam Institute of Agricultural Engineering and Postharvest Technology Hanoi Vietnam
| | | | | | - Pham Thi Binh
- Department of Food Technology Bac Giang Agriculture and Forestry University Bac Giang Vietnam
| | - Tran Dai Lam
- Institute for Tropical Technology Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and TechnologyVietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
11
|
Yu Y, Feng M, Wang Q, Liu M, Gao F, Lin S. Effect of electron beam irradiation on physicochemical properties of corn starch and improvement of enzymatic saccharification of corn starch at high concentration (45%). J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yali Yu
- Department of Food Science and Engineering Jilin University Changchun P.R. China
| | - Mengmeng Feng
- Department of Food Science and Engineering Jilin University Changchun P.R. China
| | - Qi Wang
- Department of Food Science and Engineering Jilin University Changchun P.R. China
| | - Mingyuan Liu
- Department of Food Science and Engineering Jilin University Changchun P.R. China
| | - Feng Gao
- Department of Food Science and Engineering Jilin University Changchun P.R. China
| | - Songyi Lin
- Department of Food Science and Engineering Jilin University Changchun P.R. China
- School of Food Science and Technology Dalian Polytechnic University, Engineering Research Center of Seafood of Ministry of Education Dalian P.R. China
| |
Collapse
|
12
|
Extrusion pregelatinization improves texture, viscoelasticity and in vitro starch digestibility of mango and amaranth flours. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Li J, Jiao G, Sun Y, Chen J, Zhong Y, Yan L, Jiang D, Ma Y, Xia L. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:937-951. [PMID: 33236499 PMCID: PMC8131058 DOI: 10.1111/pbi.13519] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 05/19/2023]
Abstract
Foods high in amylose content and resistant starch (RS) offer great potential to improve human health and lower the risk of serious noninfectious diseases. Common wheat (Triticum aestivum L.) is a major staple food crop globally. However, the RS contents in the grains of modern wheat varieties are low. Here, we report the generation of high-amylose wheat through targeted mutagenesis of TaSBEIIa in a modern winter wheat cv Zhengmai 7698 (ZM) and a spring wheat cv Bobwhite by CRISPR/Cas9, respectively. We generated a series of transgene-free mutant lines either with partial or triple-null TasbeIIa alleles in ZM and Bobwhite, respectively. Analyses of starch composition, structure and properties revealed that the effects of partial or triple-null alleles were dosage dependent with triple-null lines demonstrated more profound impacts on starch composition, fine structures of amylopectin and physiochemical and nutritional properties. The flours of triple-null lines possessed significantly increased amylose, RS, protein and soluble pentosan contents which benefit human health. Baking quality analyses indicated that the high-amylose flours may be used as additives or for making cookies. Collectively, we successfully modified the starch composition, structure and properties through targeted mutagenesis of TaSBEIIa by CRISPR/Cas9 in both winter and spring wheat varieties and generated transgene-free high-amylose wheat. Our finding provides deep insights on the role of TaSBEIIa in determining starch composition, structure, properties and end-use quality in different genetic backgrounds and improving RS content with multiple breeding and end-use applications in cereal crop species through genome editing for health benefits.
Collapse
Affiliation(s)
- Jingying Li
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Guiai Jiao
- China National Rice Research InstituteHangzhouChina
| | - Yongwei Sun
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jun Chen
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yingxin Zhong
- National Technology Innovation Center for Regional Wheat ProductionMinistry of Chinese Agriculture and Rural AffairsNanjing Agricultural UniversityNanjingChina
| | - Lei Yan
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat ProductionMinistry of Chinese Agriculture and Rural AffairsNanjing Agricultural UniversityNanjingChina
| | - Youzhi Ma
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lanqin Xia
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
14
|
Understanding the Properties of Starch in Potatoes ( Solanum tuberosum var. Agria) after Being Treated with Pulsed Electric Field Processing. Foods 2019; 8:foods8050159. [PMID: 31083345 PMCID: PMC6560427 DOI: 10.3390/foods8050159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the properties of starch in potatoes (Solanum tuberosum cv. Agria) after being treated with pulsed electric fields (PEF). Potatoes were treated at 50 and 150 kJ/kg specific energies with various electric field strengths of 0, 0.5, 0.7, 0.9 and 1.1 kV/cm. Distilled water was used as the processing medium. Starches were isolated from potato tissue and from the PEF processing medium. To assess the starch properties, various methods were used, i.e., the birefringence capability using a polarised light microscopy, gelatinisation behaviour using hot-stage light microscopy and differential scanning calorimetry (DSC), thermal stability using thermogravimetry (TGA), enzyme susceptibility towards α-amylase and the extent of starch hydrolysis under in vitro simulated human digestion conditions. The findings showed that PEF did not change the properties of starch inside the potatoes, but it narrowed the temperature range of gelatinisation and reduced the digestibility of starch collected in the processing medium. Therefore, this study confirms that, when used as a processing aid for potato, PEF does not result in detrimental effects on the properties of potato starch.
Collapse
|
15
|
Bashir K, Aggarwal M. Physicochemical, structural and functional properties of native and irradiated starch: a review. Journal of Food Science and Technology 2019; 56:513-523. [PMID: 30906009 DOI: 10.1007/s13197-018-3530-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
Abstract
The world population has crossed seven billion and such a huge population has increased the pressure and considerably affects our ability to feed ourselves. It has now emerged as a new challenge for policy makers, food scientists and other associated people to make food available to everyone. To achieve this, underutilized crops/plants that act as good sources of starch need to be explored. Starch in its native form have certain limitations in its functional properties to be used for different applications. Therefore, it becomes important to explore certain technologies which could be used for modification of properties of starch. During the last decades gamma irradiation has emerged as an efficient processing technique for the modification of starch when compared to the other available processes. This review, aims to summarize the effects of gamma irradiation on various properties of starch such as physicochemical and rheological properties, functional characteristics, thermal behaviour etc. so as to make the starch suitable for various applications in different industries including the food industry.
Collapse
Affiliation(s)
- Khalid Bashir
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - Manjeet Aggarwal
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| |
Collapse
|
16
|
Verma R, Jan S, Rani S, Jan K, Swer TL, Prakash KS, Dar M, Bashir K. Physicochemical and functional properties of gamma irradiated buckwheat and potato starch. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Dar MZ, Deepika K, Jan K, Swer TL, Kumar P, Verma R, Verma K, Prakash KS, Jan S, Bashir K. Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation. Int J Biol Macromol 2018; 108:1348-1356. [DOI: 10.1016/j.ijbiomac.2017.11.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
18
|
Zhou YJ, Yang Q, Zhong XJ, Tang HP, Deng M, Ma J, Qi PF, Wang JR, Chen GY, Liu YX, Lu ZX, Li W, Lan XJ, Wei YM, Zheng YL, Jiang QT. Alternative splicing results in a lack of starch synthase IIa-D in Chinese wheat landrace. Genome 2018; 61:201-208. [PMID: 29401409 DOI: 10.1139/gen-2017-0246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the SGP-1 protein composition of 368 Chinese wheat landraces using SDS-PAGE. The SGP-D1 null type was identified in three accessions (Xiaoqingmang, Pushanbamai, and P119). An 18-bp deletion and 9-bp variation were found at the junction region of the 7th intron and 8th exon, leading to deletion of the intron-exon junction recognition site AG when aligned the 8261-bp DNA sequence of TaSSIIa-D in Pushanbamai with that of Chinese Spring. Four cDNA types with mis-spliced isoforms were subsequently detected through amplification of TaSSIIa-D cDNAs. Among these, nine type II cDNAs with a 16-bp deletion in the 8th exon were detected, indicating that the major transcriptional pattern of TaSSIIa in Pushanbamai is type II. In the type IV cDNA, a 97-bp sequence remains undeleted in the end of the 5th exon. The amylose content in Pushanbamai was significantly higher than that in all control lines under field conditions, which suggested that deletion of SGP-D1 has an efficient impact on amylose content. As the TaSSIIa gene plays an important role in regulating the content of amylose, it is anticipated that these natural variants of TaSSIIa-D will provide useful resources for quality improvement in wheat.
Collapse
Affiliation(s)
- Yan-Jie Zhou
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiang Yang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiao-Juan Zhong
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua-Ping Tang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Ma
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Peng-Fei Qi
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ji-Rui Wang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guo-Yue Chen
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ya-Xi Liu
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Xiang Lu
- b Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Wei Li
- c College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiu-Jin Lan
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu-Ming Wei
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - You-Liang Zheng
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qian-Tao Jiang
- a Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
19
|
Suriya M, Rethina C, Bashir M, Koteswara Reddy C, Harsha N, Haripriya S. Impact of γ-irradiation on physicochemical properties of freeze dried Amorphophallus paeoniifolius flour. Food Chem 2017; 234:276-284. [DOI: 10.1016/j.foodchem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
|
20
|
Kumar P, Prakash KS, Jan K, Swer TL, Jan S, Verma R, Deepika K, Dar MZ, Verma K, Bashir K. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Effects of electron beam irradiation on physicochemical properties of corn flour and improvement of the gelatinization inhibition. Food Chem 2017; 233:467-475. [PMID: 28530600 DOI: 10.1016/j.foodchem.2017.04.152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022]
Abstract
The properties and viscosity-reduction mechanism of corn flour irradiated by electron beam have not been understood properly. Here, we investigate the effects of electron beam irradiation (EBI) on the gelatinization and physicochemical properties of corn flour irradiated by 0-5.40kGy of electron beam. The total starch and crude fiber contents of corn flour decreased significantly (P<0.05) after EBI treatment, while the moisture and reducing sugar contents increased significantly (P<0.05). EBI caused perforations on the corn flour particle surfaces, and the irradiated parts of the particles would gradually peel off and afford smooth surfaces, spherical structures, and smaller sizes. Molecular chains of corn flour broke owing to EBI. After irradiation, the pasting peak viscosity decreased dramatically (P<0.01) from 1251.74 to 7.16Pa·s, showing that the gelatinization of corn flour was completely inhibited. Thus, EBI can be used to inhibit the gelatinization of corn flour, which may be beneficial for industrial and food formulations.
Collapse
|
22
|
Bashir K, Jan K, Aggarwal M. Thermo-rheological and functional properties of gamma-irradiated wholewheat flour. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khalid Bashir
- National Institute of Food Technology Entrepreneurship and Management; Kundli 131028 India
| | - Kulsum Jan
- Sant Longowol Institute of Engineering and Technology; Longowol 148106 India
| | - Manjeet Aggarwal
- National Institute of Food Technology Entrepreneurship and Management; Kundli 131028 India
| |
Collapse
|
23
|
Bashir K, Swer TL, Prakash KS, Aggarwal M. Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
|
25
|
Regina A, Berbezy P, Kosar-Hashemi B, Li S, Cmiel M, Larroque O, Bird AR, Swain SM, Cavanagh C, Jobling SA, Li Z, Morell M. A genetic strategy generating wheat with very high amylose content. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1276-86. [PMID: 25644858 DOI: 10.1111/pbi.12345] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 05/20/2023]
Abstract
Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down-regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.
Collapse
Affiliation(s)
- Ahmed Regina
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | - Pierre Berbezy
- Limagrain Cereales Ingredients, ZAC Les Portes de Riom, Riom Cedex, France
| | | | - Suzhi Li
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | - Mark Cmiel
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | | | - Anthony R Bird
- CSIRO Food and Nutrition Flagship, Adelaide, SA, Australia
| | - Steve M Swain
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | | | | | - Zhongyi Li
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | - Matthew Morell
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
- International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
26
|
Gamma irradiation of corn starches with different amylose-to-amylopectin ratio. Journal of Food Science and Technology 2015; 52:6218-29. [PMID: 26396368 DOI: 10.1007/s13197-014-1700-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physicochemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physicochemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation.
Collapse
|
27
|
Dupuis JH, Liu Q, Yada RY. Methodologies for Increasing the Resistant Starch Content of Food Starches: A Review. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12104] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- John H. Dupuis
- Guelph Food Research Centre; Agriculture and Agri-Food Canada; 93 Stone Rd. West Ontario Canada N1G 5C9
- Dept. of Food Science; Univ. of Guelph; 50 Stone Rd. East Guelph Ontario Canada N1G 2W1
| | - Qiang Liu
- Guelph Food Research Centre; Agriculture and Agri-Food Canada; 93 Stone Rd. West Ontario Canada N1G 5C9
| | - Rickey Y. Yada
- Dept. of Food Science; Univ. of Guelph; 50 Stone Rd. East Guelph Ontario Canada N1G 2W1
| |
Collapse
|