1
|
Hernández-Cifre JG, Collado-González M, Díaz Baños FG, García de la Torre J. Size-Exclusion Chromatography of Macromolecules: A Brief Tutorial Overview on Fundamentals with Computational Tools for Data Analysis and Determination of Structural Information. Polymers (Basel) 2025; 17:582. [PMID: 40076077 PMCID: PMC11902525 DOI: 10.3390/polym17050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Size-exclusion chromatography (SEC) is presently a widely used and very informative technique for the characterization of macromolecules in solution. Beyond the first implementations of SEC-which required cumbersome column calibrations and were mainly intended for the determination of molecular weights-the modern SEC approach involving multiple detectors (md-SEC) is based on solution properties such as intrinsic viscosity and light scattering. Thus, md-SEC enables the direct and more efficient determination of molecular weights, as well as the determination of relationships between property and molecular weight, which can be quite useful in structural studies. Here, we first present a review of the fundamental aspects of the dilute-solution properties of macromolecules-particularly the differential refractive index, intrinsic viscosity, and scattering-related properties-on which the various detectors involved in md-SEC are based. Then, we developed SECtools, a suite of public-domain, open-source computer programs, which allow for the full analysis of md-SEC chromatograms. These analyses range from just the recorded raw signals (mV) of the detectors to a full determination of molecular weight averages and distributions. The use of these programs is illustrated through experimental studies using various samples.
Collapse
Affiliation(s)
| | - Mar Collado-González
- Department of Cellular Biology and Histology, University of Murcia, 30100 Murcia, Spain;
| | | | - José García de la Torre
- Department of Physical Chemistry, University of Murcia, 30100 Murcia, Spain; (F.G.D.B.); (J.G.d.l.T.)
| |
Collapse
|
2
|
Della Rosa G, Gostynska NE, Ephraim JW, Sganga S, Panuccio G, Palazzolo G, Tirelli N. Magnesium alginate as a low-viscosity (intramolecularly cross-linked) system for the sustained and neuroprotective release of magnesium. Carbohydr Polym 2024; 331:121871. [PMID: 38388038 DOI: 10.1016/j.carbpol.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The administration of Mg ions is advantageous in pathological scenarios such as pre-enclampsia and forms of neuroinflammation (e.g. stroke or injury); yet, few systems exist for their sustained delivery. Here, we present the (static light scattering and diffusing-wave spectroscopy) characterization of magnesium alginate (MgAlg) as a potentially injectable vehicle ifor the delivery of Mg. Differently from other divalent cations, Mg does not readily induce gelation: it acts within MgAlg coils, making them more rigid and less prone to entangle. As a result, below a threshold concentration (notionally below 0.5 % wt.) MgAlg are inherently less viscous than those of sodium alginate (NaAlg), which is a major advantage for injectables; at higher concentrations, however, (stable, Mg-based) aggregation starts occurring. Importantly, Mg can then be released e.g. in artificial cerebrospinal fluid, via a slow (hours) process of ion exchange. Finally, we here show that MgAlg protects rat neural stem cells from the consequence of an oxidative insult (100 μM H2O2), an effect that we can only ascribe to the sustained liberation of Mg ions, since it was not shown by NaAlg, MgSO4 or the NaAlg/MgSO4 combination. Our results therefore indicate that MgAlg is a promising vehicle for Mg delivery under pathological (inflammatory) conditions.
Collapse
Affiliation(s)
- Giulia Della Rosa
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Natalia Ewa Gostynska
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - John Wesley Ephraim
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefania Sganga
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| |
Collapse
|
3
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
4
|
Yuan D, Xiao W, Gao Z, Hu B, Wenxin J, Li Y, Wu Y, Ni X. Modulating in vitro fecal fermentation behavior of sodium alginate by Ca 2+ cross-linking. Food Res Int 2023; 174:113552. [PMID: 37986431 DOI: 10.1016/j.foodres.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Slow fermentable dietary fibers can be utilized by human gut microbiota in the distal region of the colon and thus exert a sufficient short-chain fatty acids (SCFAs) supplement in the distal region of the human colon. Alginate (Alg) based microgels are widely fabricated and used to control their digestion by digestive enzymes releasing active substances site-specifically. Herein, sodium alginate microgels with gradient calcium-ion (Ca2+) cross-linking densities were developed, restricting their degradation by gut microbiota. Alg microgels were prepared using high-speed shearing after Alg was cross-linked with 10, 40, and 60 mmol/L Ca2+, respectively (named 10-Alg, 40-Alg, and 60-Alg). The fluorescence and atomic force microscopic results showed that the 40-Alg particle has the densest structure among the three cross-linked Alg. In vitro human fecal fermentation results revealed that the Ca2+ cross-linking exerted more restricting effects than delaying effects on the fermentation of Alg, and the 40-Alg exhibited the slowest fermentation rate and the least fermentation extent, by characterizing the residual total carbohydrate content, residual monosaccharide content, pH, and total short-chain fatty acids. The 16S rRNA gene sequencing results indicated that cross-linking structures shaped a high specifical Bacteroides-type microbial community and that OTU205 (Bacteroides_xylanisolvens) highly correlated to the cross-linking density (R = 0.65, p = 0.047). In sum, Ca2+ cross-linking generated a dense and compact structure of sodium alginate that facilitated a more restricted fermentation property and specificity-targeting microbial community structure in comparison to the original sodium alginate.
Collapse
Affiliation(s)
- Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Wenqian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Jiang Wenxin
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Xuewen Ni
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| |
Collapse
|
5
|
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Stevanović ZD. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023; 9:620. [PMID: 37623075 PMCID: PMC10454207 DOI: 10.3390/gels9080620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
Collapse
Affiliation(s)
- Milan Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Popović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Pajić-Lijaković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivan Šoštarić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Stefan Kolašinac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | | |
Collapse
|
6
|
Poolwong J, Aomchad V, Del Gobbo S, Kleij AW, D'Elia V. Simple Halogen-Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO 2 Pressure. CHEMSUSCHEM 2022; 15:e202200765. [PMID: 35726476 DOI: 10.1002/cssc.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Vatcharaporn Aomchad
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| |
Collapse
|
7
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
8
|
Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr Polym 2021; 270:118399. [PMID: 34364633 DOI: 10.1016/j.carbpol.2021.118399] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Alginic acid and its sodium salt are well-accepted pharmaceutical excipients fulfilling several roles in the development of solid oral dosage forms. Although they have attractive advantages as safety, abundance, relatively low cost and biodegradability, these natural polysaccharides possess a high variability that may limit their use as excipients for tablet formulation. Thus, to obtain robust formulations and high-quality drug products with consistent performance a complete understanding of the structure-property relationship becomes necessary as the structure of alginates affects both, technological and biopharmaceutical properties. This review compiles the compaction studies carried out that relate the structure of alginates to their mechanical and dissolution performances. The different analytical methods used to determine the chemical composition, primary structure and molecular weight distribution, major factors affecting the behavior of alginates in direct compression, are also exposed. Finally, different strategies reported to improve the properties of alginic acid as direct compression excipient are discussed.
Collapse
Affiliation(s)
| | - Bernard Bataille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
9
|
Qian C, Asoh T, Uyama H. Dimensionally Stable and Mechanically Adaptive Polyelectrolyte Hydrogel. Macromol Rapid Commun 2020; 41:e2000406. [DOI: 10.1002/marc.202000406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Chen Qian
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Taka‐Aki Asoh
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan
| |
Collapse
|
10
|
Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics (Basel) 2020; 5:biomimetics5030036. [PMID: 32731584 PMCID: PMC7559021 DOI: 10.3390/biomimetics5030036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Mucins are glycoproteins present in all mucosal surfaces and in secretions such as saliva. Mucins are involved in the mucoadhesion of nanodevices carrying bioactive molecules to their target sites in vivo. Oil-in-water nanocapsules (NCs) have been synthesised for carrying N,N'-(di-m-methylphenyl)urea (DMTU), a quorum-sensing inhibitor, to the oral cavity. DMTU-loaded NCs constitute an alternative for the treatment of plaque (bacterial biofilm). In this work, the stability of the NCs after their interaction with mucin is analysed. Mucin type III from Sigma-Aldrich has been used as the mucin model. Mucin and NCs were characterised by the multi-detection asymmetrical flow field-flow fractionation technique (AF4). Dynamic light scattering (DLS) and ζ-potential analyses were carried out to characterise the interaction between mucin and NCs. According to the results, loading DMTU changes the conformation of the NC. It was also found that the synergistic interaction between mucin and NCs was favoured within a specific range of the mucin:NC ratio within the first 24 h. Studies on the release of DMTU in vitro and the microbial activity of such NCs are ongoing in our lab.
Collapse
|
11
|
Polyelectrolyte-surfactant-complex nanoparticles as a delivery platform for poorly soluble drugs: A case study of ibuprofen loaded cetylpyridinium-alginate system. Int J Pharm 2020; 580:119199. [PMID: 32147494 DOI: 10.1016/j.ijpharm.2020.119199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Previously, we reported on the surfactant cetylpyridinium chloride (CPC) as a crosslinker of alginate for the formation of stable polyelectrolyte-surfactant-complex nanoparticles. Here, we evaluate this system for increased solubility of a poorly soluble drug. The aim was to use CPC for solubilisation of ibuprofen and to use the micellar associates formed for alginate complexation and nanoparticle formation. We acquired deeper insights into the entropy led interactions between alginate, CPC and ibuprofen. Stable nanoparticles were formed across limited surfactant-to-polyelectrolyte molar ratios, with ~150 nm hydrodynamic diameter, monodispersed distribution, and negative zeta potential (-40 mV), with 34% ibuprofen loading. Their structure was obtained using small-angle X-ray scattering, which indicated disordered micellar associates when ibuprofen was incorporated. This resulted in nanoparticles with a complex nanostructured composition, as shown by transmission electron microscopy. Drug release from ibuprofen-cetylpyridinium-alginate nanoparticles was not hindered by alginate, and was similar to the release kinetics from ibuprofen-CPC solubilisates. These innovative carriers developed as polyelectrolyte-surfactant complexes can be used for solubilisation of poorly soluble drugs, where the surfactant simultaneously increases the solubility of the drug at concentrations below its critical micellar concentration and crosslinks the polyelectrolyte to form nanoparticles.
Collapse
|
12
|
Polyionic complexes of chitosan-N-arginine with alginate as pH responsive and mucoadhesive particles for oral drug delivery applications. Int J Biol Macromol 2020; 148:550-564. [DOI: 10.1016/j.ijbiomac.2020.01.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
13
|
Maciel B, Oelschlaeger C, Willenbacher N. Chain flexibility and dynamics of alginate solutions in different solvents. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04612-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractMechanical rheometry, specifically rotational rheometry, squeeze flow, and capillary rheometry, and two microrheology methods, namely multiple-particle tracking (MPT) and diffusing wave spectroscopy (DWS) have been used to get new insight into structural and dynamical properties of alginate dissolved in solvents widely used for bioprinting, namely deionized water, phosphate-buffered saline (PBS), and Dulbecco Modified Eagle Medium (DMEM) cell media. Results demonstrate that alginate rheological properties depend on the solvent quality at concentrations higher than 1 wt.%. In this high concentration regime, in aqueous salt-free and PBS solutions, experimental scaling exponents for the concentration dependence of the specific viscosity ηsp and the plateau modulus G0 agree well with theoretical predictions for neutral polymers in good solvent whereas for the terminal relaxation time TR, the exponent is slightly higher than theoretically predicted, presumably due to the formation of aggregates. For alginate dissolved in DMEM, all exponents for ηsp, G0, and TR agree with predictions for polymers in theta solvents, which might be related to the formation of polyelectrolyte complex as a result of interactions between alginate and amino acids. Chain persistence length lp values, as determined directly from high frequency rheometry for the first time, are independent of alginate concentration and temperature. Lower absolute lp values were found for DMEM solutions compared with the other solvents. Moreover, scaling exponents for ηsp, G0, and TR do not change with temperature, within 20 and 60 °C. These findings suggest no change in the conformation of alginate chains with temperature.
Collapse
|
14
|
Collado-González M, Ferreri MC, Freitas AR, Santos AC, Ferreira NR, Carissimi G, Sequeira JAD, Díaz Baños FG, Villora G, Veiga F, Ribeiro A. Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Mar Drugs 2020; 18:md18010055. [PMID: 31952203 PMCID: PMC7024366 DOI: 10.3390/md18010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Polyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs. Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of alginate, dextran sulfate, poly-(ethylene glycol) 4000, poloxamer 188, chitosan, and bovine serum albumin. The nanocomposites were obtained by Ca2+-induced gelation of alginate followed by an electrostatic-interaction process among the polyelectrolytes. Chitosan seemed to be essential for the final size of the nanocomposites and there was an optimal content that led to the synthesis of nanocomposites of 400–600 nm hydrodynamic size. The enhanced stability of the synthesized nanocomposites was assessed with LUMiSizer after synthesis. Nanocomposite stability over time and under variations of ionic strength and pH were assessed with dynamic light scattering. The rounded shapes of nanocomposites were confirmed by scanning electron microscopy. After loading with insulin, analysis by HPLC revealed complete drug release under physiologically simulated conditions.
Collapse
Affiliation(s)
- Mar Collado-González
- Department of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence: (M.C.-G.); (A.R.)
| | - Maria Cristina Ferreri
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | - Alessandra R. Freitas
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | - Ana Cláudia Santos
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno R. Ferreira
- Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Guzmán Carissimi
- Department of Chemical Engineering, University of Murcia, 30100 Murcia, Spain; (G.C.); (G.V.)
| | - Joana A. D. Sequeira
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | | | - Gloria Villora
- Department of Chemical Engineering, University of Murcia, 30100 Murcia, Spain; (G.C.); (G.V.)
| | - Francisco Veiga
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Antonio Ribeiro
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- Correspondence: (M.C.-G.); (A.R.)
| |
Collapse
|
15
|
Comparison of chain conformation properties of bio-active fucosylated chondroitin sulfates from two different sea cucumbers. Int J Biol Macromol 2019; 133:44-50. [DOI: 10.1016/j.ijbiomac.2019.04.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/17/2023]
|
16
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
17
|
Mathews PD, Fernandes Patta ACM, Gonçalves JV, Gama GDS, Garcia ITS, Mertins O. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure. Biomacromolecules 2018; 19:499-510. [PMID: 29283560 DOI: 10.1021/acs.biomac.7b01630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial with prominent characteristics that is promising for the development of targeted oral drug delivery.
Collapse
Affiliation(s)
- Patrick D Mathews
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Ana C M Fernandes Patta
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Joao V Gonçalves
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Gabriella Dos Santos Gama
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Irene Teresinha Santos Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul , Porto Alegre 91501-970, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| |
Collapse
|
18
|
Chain conformation, rheological and charge properties of fucoidan extracted from sea cucumber Thelenota ananas: A semi-flexible coil negative polyelectrolyte. Food Chem 2017; 237:511-515. [DOI: 10.1016/j.foodchem.2017.05.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022]
|
19
|
Agüero L, Zaldivar-Silva D, Peña L, Dias ML. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr Polym 2017; 168:32-43. [DOI: 10.1016/j.carbpol.2017.03.033] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/18/2017] [Accepted: 03/09/2017] [Indexed: 01/13/2023]
|
20
|
Sequence-dependent association of alginate with sodium and calcium counterions. Carbohydr Polym 2017; 157:1144-1152. [DOI: 10.1016/j.carbpol.2016.10.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/09/2016] [Accepted: 10/15/2016] [Indexed: 11/18/2022]
|
21
|
Mirtič J, Kogej K, Baumgartner S, Smistad G, Kristl J, Hiorth M. Development of Cetylpyridinium-Alginate Nanoparticles: A Binding and Formulation Study. Int J Pharm 2016; 511:774-84. [DOI: 10.1016/j.ijpharm.2016.07.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
|
22
|
Hecht H, Srebnik S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016; 17:2160-7. [PMID: 27177209 DOI: 10.1021/acs.biomac.6b00378] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alginate readily aggregates and forms a physical gel in the presence of cations. The association of the chains, and ultimately gel structure and mechanics, depends not only on ion type, but also on the sequence and composition of the alginate chain that ultimately determines its stiffness. Chain flexibility is generally believed to decrease with guluronic residue content, but it is also known that both polymannuronate and polyguluronate blocks are stiffer than heteropolymeric blocks. In this work, we use atomistic molecular dynamics simulation to primarily explore the association and aggregate structure of different alginate chains under various Ca(2+) concentrations and for different alginate chain composition. We show that Ca(2+) ions in general facilitate chain aggregation and gelation. However, aggregation is predominantly affected by alginate monomer composition, which is found to correlate with chain stiffness under certain solution conditions. In general, greater fractions of mannuronic monomers are found to increase chain flexibility of heteropolymer chains. Furthermore, differences in chain guluronic acid content are shown to lead to different interchain association mechanisms, such as lateral association, zipper mechanism, and entanglement, where the mannuronic residues are shown to operate as an elasticity moderator and therefore promote chain association.
Collapse
Affiliation(s)
- Hadas Hecht
- The Interdisciplinary Program in Polymer Engineering and ‡Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa, Israel 32000
| | - Simcha Srebnik
- The Interdisciplinary Program in Polymer Engineering and ‡Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa, Israel 32000
| |
Collapse
|
23
|
Pajic-Lijakovic I, Levic S, Nedovic V, Bugarski B. Biointerface dynamics – Multi scale modeling considerations. Colloids Surf B Biointerfaces 2015; 132:236-45. [DOI: 10.1016/j.colsurfb.2015.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022]
|
24
|
A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 2015; 1400:98-106. [DOI: 10.1016/j.chroma.2015.04.054] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/23/2022]
|
25
|
Schefer L, Usov I, Mezzenga R. Anomalous Stiffening and Ion-Induced Coil–Helix Transition of Carrageenans under Monovalent Salt Conditions. Biomacromolecules 2015; 16:985-91. [DOI: 10.1021/bm501874k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Larissa Schefer
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Ivan Usov
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences
and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|