1
|
Yan J, He S, Chen L, Chen H, Wang W. Characterization, antioxidant and antibacterial activities of gelatin-chitosan edible coated films added with Cyclocarya paliurus flavonoids. Int J Biol Macromol 2023; 253:127664. [PMID: 37884237 DOI: 10.1016/j.ijbiomac.2023.127664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In this study, gelatin-chitosan (GEL-CS) composite films added with 0.1 %, 0.2 %, and 0.3 % Cyclocarya paliurus flavonoids (CPF) were prepared. Then their appearance properties, mechanical properties, barrier properties, microstructure, thermal stability properties, antioxidant activity, and antibacterial properties were investigated. As compared with GEL-CS film, the GEL-CS films with CPF were darker in color, had higher water vapor barrier, higher elongation at break, and higher thermal stability. Additionally, microstructure analysis with Fourier infrared spectroscopy, scanning electron microscopy, and X-ray diffraction demonstrated that hydrogen bonding was the main force for cross-linking CPF with other membrane substrates. Moreover, the addition of CPF strengthened the antioxidant and antimicrobial properties of the membranes. These results indicated that the CPF addition could endow membranes with more excellent functional properties and bioactivity, accompanied by environmentally friendly and edible features. The GEL-CS-CPF composite film would be a potential and prospective packing material for food preservation applications.
Collapse
Affiliation(s)
- Jin Yan
- Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Sichen He
- Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lingli Chen
- Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hui Chen
- Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenjun Wang
- Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Calumby RFDAT, de Lima FO, Valasques Junior GL, Santos JDG, Chaves PFP, Cordeiro LMC, Villarreal CF, Soares MBP, Boffo EF, de Assis SA. Antinociceptive and anti-inflammatory properties of α-D-mannan from the yeast Kluyveromyces marxianus: evidence for a role in interleukin-6 inhibition. Arch Microbiol 2023; 205:379. [PMID: 37950820 DOI: 10.1007/s00203-023-03718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
The management of inflammatory states typically involves non-steroidal anti-inflammatory drugs (NSAIDs) and opiates. Understanding the mechanisms underlying the processing of nociceptive information from potential alternatives such as some polysaccharides may enable new and meaningful therapeutic approaches. In this study, α-D-mannan isolated from the Kluyveromyces marxianus cell wall produced antinociceptive effects in models of inflammatory pain (formalin and complete Freund's adjuvant tests). Furthermore, α-D-mannan reduced paw edema and interleukin-6 (IL-6) production after carrageenan-induced inflammation. The polysaccharide α-D-mannan was characterized by gas chromatography-mass spectrometry, methylation analysis, and spectroscopic techniques. Moreover, the Doehlert experimental design was applied to find the optimal conditions for biomass production, with the best conditions being 10.8 g/L and 117 h for the glucose concentration and the fermentation time, respectively. These results indicate that α-D-mannan from K. marxianus exerts anti-inflammatory and antinociceptive effects in mice, possibly via a mechanism dependent on the inhibition of IL-6 production.
Collapse
Affiliation(s)
- Renata Freitas de A T Calumby
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | - Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | - Gildomar Lima Valasques Junior
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | | | - Pedro Felipe Pereira Chaves
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR, CEP 81531-980, Brazil
| | - Lucimara Mach Côrtes Cordeiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR, CEP 81531-980, Brazil
| | - Cristiane Flora Villarreal
- Gonçalo Moniz Research Center (CPqGM), Fundação Oswaldo Cruz, Rua Waldemar Falcão 121, Salvador, BA, 40296-710, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Research Center (CPqGM), Fundação Oswaldo Cruz, Rua Waldemar Falcão 121, Salvador, BA, 40296-710, Brazil
| | - Elisangela Fabiana Boffo
- Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo s/n, Salvador, Bahia, 40170-290, Brazil
| | - Sandra Aparecida de Assis
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil.
| |
Collapse
|
3
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
4
|
Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J Biol Sci 2021; 28:6765-6773. [PMID: 34866975 PMCID: PMC8626220 DOI: 10.1016/j.sjbs.2021.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia.,Center for Environment and Sustainability Science, UniversitasPadjadjaran, Bandung 40132, Indonesia
| | - Casey Dio
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joko Sulistiyo
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Elazmanawati Lembong
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yana Cahyana
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana384 002, Gujarat State, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
5
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
6
|
Valasques Junior GL, dos Santos JDG, Chaves PFP, Cordeiro LMC, de Jesus CL, de Lima FO, Boffo EF, de Assis SA. Antinociceptive and anti-inflammatory activity of α-d-mannan from Pseudozyma sp. 3 Biotech 2021; 11:73. [PMID: 33489690 PMCID: PMC7806684 DOI: 10.1007/s13205-020-02635-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
Pseudozyma sp. are yeasts that are commercially important due to their production of glycolipid biosurfactants, squalene, itaconic acid, and exopolysaccharide. The search for other analgesia inducing drugs, such as opiates and non-steroidal anti-inflammatory drugs (NSAIDs), as alternatives is beneficial. In this study, the antinociceptive and anti-inflammatory actions of α-d-mannan were studied using acetic acid-induced writhing, open field test, formalin test, and carrageenan-induced paw oedema tests in mice. The α-d-mannan obtained from Pseudozyma sp. was confirmed by methylation analysis, 1D and 2D NMR spectroscopic analysis, and GC-MS. The results show that α-d-mannan from Pseudozyma sp. has analgesic and anti-inflammatory activities. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02635-1.
Collapse
Affiliation(s)
- Gildomar Lima Valasques Junior
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Av Transnordestina, km 0, BR 116, Feira de Santana, BA CEP 44036-900 Brazil
| | | | - Pedro Felipe Pereira Chaves
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR CEP 81531-980 Brazil
| | - Lucimara Mach Côrtes Cordeiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR CEP 81531-980 Brazil
| | - Cleisiane Lima de Jesus
- Health Department, State University of Feira de Santana, Feira de Santana, CEP 44036-900 Bahia Brazil
| | - Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Feira de Santana, CEP 44036-900 Bahia Brazil
| | - Elisangela Fabiana Boffo
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, BA 40170-115 Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Av Transnordestina, km 0, BR 116, Feira de Santana, BA CEP 44036-900 Brazil
| |
Collapse
|
7
|
Song HH, Raynor S. A Cyclic Periodic Wave Function Approach for the Study of Infinitely Periodic Solid-State Systems: II. Application to Helical Polysaccharides. ACS OMEGA 2020; 5:27556-27565. [PMID: 33134719 PMCID: PMC7594323 DOI: 10.1021/acsomega.0c04096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The cyclic periodic wave function (CPWF) approach is applied at the AM1 and PM3 semiempirical levels of approximation to two infinitely periodic polymer systems in the solid state. The two polysaccharides of interest here are (1→3)-β-d-glucan and (1→3)-β-d-xylan. Our calculated results show excellent agreement with the available data for the two polysaccharides and demonstrate that the use of the CPWF approach at the AM1 and PM3 levels of approximation provides a convenient and reliable method for the study of infinitely periodic bonds of two different types: moderately strong O-H···O hydrogen bonding and strong C-O-C covalent bonding.
Collapse
Affiliation(s)
| | - Susanne Raynor
- Department of Chemistry, Rutgers
University—Newark, The State University
of New Jersey. 73 Warren
Street, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Dai M, Liu J, Zhang L, Tan Y, Yan J, Wang J, Nian H. Transcriptome analysis of Cryptococcus humicola under aluminum stress revealed the potential role of the cell wall in aluminum tolerance. Metallomics 2020; 12:1370-1379. [PMID: 32608423 DOI: 10.1039/d0mt00042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum (Al) toxicity is one of the most important limiting factors for crop yield in acidic soils. Bound Al gets converted into a toxic ionic state (Al3+) in acidic soil. Recent studies have shown that Al can act on the cell walls, cell membranes, organelles, and nuclei of microorganisms and affect substance and energy metabolism. To explore the gene expression at the transcriptional level under Al stress, we sequenced the transcriptome of Cryptococcus humicola, which is a highly Al-resistant yeast strain isolated from acidic soil and tolerates up to 200 mM Al3+. The screening conditions for genes from the control and experimental group were a false discovery rate (FDR) <0.05 and log 2|FC| > 1. A total of 4760 genes were differentially expressed, among which 3066 were upregulated and 1694 were downregulated. These genes control glycometabolism, protein synthesis, lipid metabolism and signalling pathways. Eleven selected differentially expressed genes were further validated using qRT-PCR. The results suggested that Al stress leads to complex responses in C. humicola. The effects of Al on the β-d-glucan and mannose contents and Al accumulation in the cell wall were determined. With an increase in the Al treatment time and concentration, the contents of β-d-glucan and mannose showed a trend of first increasing and then decreasing. Under Al treatment, the Al content of the cell wall also showed a trend of first increasing and then decreasing. These results suggested that Al accumulates in the cell wall and the cell wall plays a vital role in the Al resistance of C. humicola. The differentially expressed genes provide a foundation for the further study of Al tolerance in C. humicola.
Collapse
Affiliation(s)
- Mengyao Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yong Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Juyuan Wang
- Liaocheng University, Liaocheng, 252000, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms 2020; 8:microorganisms8071034. [PMID: 32668638 PMCID: PMC7409317 DOI: 10.3390/microorganisms8071034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Beta (β)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, β-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of β-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and β-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and β-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and β-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of β-glucans. Increased C/N ratio led to increased biomass, lipid and β-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the β-glucan production was positively affected.
Collapse
|
10
|
Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1893-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Chang J, Li W, Liu Q, Zhou Y, Chen X, Lyu Q, Liu G. Preparation, properties, and structural characterization of β-glucan/pullulan blend films. Int J Biol Macromol 2019; 140:1269-1276. [PMID: 31470054 DOI: 10.1016/j.ijbiomac.2019.08.208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
This study investigates the physico-mechanical and structural properties of β-glucan (BG)/pullulan (PUL) composite edible films successfully prepared with 0-0.3 g of BG. Results demonstrated that BG addition significantly increases the elongation at break (p < 0.05), tensile strength, and water dissolution time of the resulting films. The transparency of the 0.2PUL:0.1BG film and the oxygen barrier property of the 0.15PUL:0.15BG film decreased remarkably compared with those of the plain films (0.3PUL:0BG and 0PUL:0.3BG) and other composite films (p < 0.05). FTIR indicated hydrogen bonding interactions between PUL and BG molecules, and microstructural observations showed that aggregated BG is homogeneously dispersed in the PUL continuous matrix. Among the films tested, the thermal stability of the 0.15PUL:0.15BG film was the best. A PUL:BG mixing ratio of 0.15:0.15 is thus suggested to provide the best film properties. This research offers an alternative method to improve PUL-based edible films.
Collapse
Affiliation(s)
- Jinyu Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanrong Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qin Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - You Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuan Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Qingyun Lyu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Gang Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| |
Collapse
|
12
|
Babrnáková J, Pavliňáková V, Brtníková J, Sedláček P, Prosecká E, Rampichová M, Filová E, Hearnden V, Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:236-246. [PMID: 30948058 DOI: 10.1016/j.msec.2019.02.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/07/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
Crosslinked 3D porous collagen-polysaccharide scaffolds, prepared by freeze-drying, were modified with bovine platelet lysate (BPL) and evaluated in terms of chemical, physical and biological properties. Natural antibacterial polysaccharides like chitosan, chitin/chitosan-glucan complex and calcium salt of oxidized cellulose (CaOC) incorporated in collagen scaffolds affected not only chemo-physical properties of the composite scaffolds but also improved their biological properties, especially when BPL was presented. Lipophilic BPL formed microspheres in porous scaffolds while reduced by half their swelling ratio. The resistance of collagen sponges to hydrolytic degradation in water depended strongly on chemical crosslinking varying from 60 min to more than one year. According to in-vitro tests, chemically crosslinked scaffolds exhibited a good cellular response, cell-matrix interactions, and biocompatibility of the material. The combination of collagen with natural polysaccharides confirmed a significant positive synergistic effect on cultivation of cells as determined by MTS assay and PicoGreen method, as well as on angiogenesis evaluated by ex ovo Chick Chorioallantoic Membrane (CAM) assay. Contrary, modification only by BLP of pure collagen scaffolds exhibited decreased biocompatibility in comparison to unmodified pure collagen scaffold. We propose that the newly developed crosslinked collagen sponges involving bioactive additives could be used as scaffold for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
Collapse
Affiliation(s)
- Johana Babrnáková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkynova 656/123, 612 00 Brno, Czech Republic.
| | - Veronika Pavliňáková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Jana Brtníková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Petr Sedláček
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Eva Prosecká
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Michala Rampichová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Lucy Vojtová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
13
|
Ma W, Chen X, Wang B, Lou W, Chen X, Hua J, Sun YJ, Zhao Y, Peng T. Characterization, antioxidativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginosa CICC 33013. Carbohydr Polym 2018; 181:768-777. [DOI: 10.1016/j.carbpol.2017.11.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/27/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022]
|
14
|
Abdel-Mohsen A, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, Hebeish A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm 2016; 510:86-99. [DOI: 10.1016/j.ijpharm.2016.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
15
|
Natural Polysaccharides from Mushrooms: Antinociceptive and Anti-inflammatory Properties. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Wang H, Li X, Chai L, Zhang L. Nano-functionalized filamentous fungus hyphae with fast reversible macroscopic assembly & disassembly features. Chem Commun (Camb) 2015; 51:8524-7. [DOI: 10.1039/c5cc00871a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyphae help polyaniline nanoparticles to assemble & disassemble macroscopically.
Collapse
Affiliation(s)
- Haiying Wang
- School of Metallurgy and Environment
- Central South University
- Changsha 410017
- China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution
| | - Xiaorui Li
- School of Metallurgy and Environment
- Central South University
- Changsha 410017
- China
| | - Liyuan Chai
- School of Metallurgy and Environment
- Central South University
- Changsha 410017
- China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution
| | - Liyuan Zhang
- School of Metallurgy and Environment
- Central South University
- Changsha 410017
- China
| |
Collapse
|
17
|
Bzducha-Wróbel A, Błażejak S, Kawarska A, Stasiak-Różańska L, Gientka I, Majewska E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 2014; 19:20941-61. [PMID: 25517337 PMCID: PMC6271764 DOI: 10.3390/molecules191220941] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving), thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0) and Tris-HCl buffer (pH 8.0). The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter). This was confirmed by the highest ratio of solubilised material (approx. 64%–67%). The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3)/(1,6)-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Anna Kawarska
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Lidia Stasiak-Różańska
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| | - Ewa Majewska
- Department of Chemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| |
Collapse
|
18
|
Kagimura FY, da Cunha MAA, Barbosa AM, Dekker RFH, Malfatti CRM. Biological activities of derivatized D-glucans: a review. Int J Biol Macromol 2014; 72:588-98. [PMID: 25239192 DOI: 10.1016/j.ijbiomac.2014.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/23/2014] [Accepted: 09/07/2014] [Indexed: 12/01/2022]
Abstract
D-Glucans have triggered increasing interest in commercial applications in the chemical and pharmaceutical sectors because of their technological properties and biological activities. The glucans are foremost among the polysaccharide groups produced by microorganisms with demonstrated activity in stimulating the immune system, and have potential in treating human disease conditions. Chemical alterations in the structure of D-glucans through derivatization (sulfonylation, carboxymethylation, phosphorylation, acetylation) contributes to their increased solubility that, in turn, can alter their biological activities such as antioxidation and anticoagulation. This review surveys and cites the latest advances on the biological and technological potential of D-glucans following chemical modifications through sulfonylation, carboxymethylation, phosphorylation or acetylation, and discusses the findings of their activities. Several studies suggest that chemically modified d-glucans have potentiated biological activity as anticoagulants, antitumors, antioxidants, and antivirals. This review shows that in-depth future studies on chemically modified glucans with amplified biological effects will be relevant in the biotechnological field because of their potential to prevent and treat numerous human disease conditions and their clinical complications.
Collapse
Affiliation(s)
- Francini Yumi Kagimura
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, km 01, Bairro Fraron, CEP: 85503-390 Pato Branco, PR, Brazil
| | - Mário Antônio A da Cunha
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, km 01, Bairro Fraron, CEP: 85503-390 Pato Branco, PR, Brazil.
| | - Aneli M Barbosa
- Departamento de Química - CCE, Universidade Estadual de Londrina, CEP: 86051-990 Londrina, PR, Brazil
| | - Robert F H Dekker
- Biorefining and Biotechnology Consultancy, Rua João Huss 200, Gleba Palanho, CEP: 86050-490 Londrina, PR, Brazil
| | - Carlos Ricardo Maneck Malfatti
- Universidade Estadual do Centro-Oeste (Programa de Pós-Graduação em Ciências Farmacêuticas), Campus CEDETEG, CEP: 85040-080 Guarapuava, PR, Brazil
| |
Collapse
|
19
|
Natural Polysaccharides from Mushrooms: Antinociceptive and Anti-inflammatory Properties. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_77-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|