1
|
Cohen Z, Williams RM. Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo. ACS NANO 2024; 18:35164-35181. [PMID: 39696968 PMCID: PMC11697343 DOI: 10.1021/acsnano.4c13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) may serve as signal transducers for nanobiosensors. Recent studies have developed innovative methods of engineering molecularly specific sensors, while others have devised methods of deploying such sensors within live animals and plants. These advances may potentiate the use of implantable, noninvasive biosensors for continuous drug, disease, and contaminant monitoring based on the optical properties of single-walled carbon nanotubes (SWCNTs). Such tools have substantial potential to improve disease diagnostics, prognosis, drug safety, therapeutic response, and patient compliance. Outside of clinical applications, such sensors also have substantial potential in environmental monitoring or as research tools in the lab. However, substantial work remains to be done to realize these goals through further advances in materials science and engineering. Here, we review the current landscape of quantitative SWCNT-based optical biosensors that have been deployed in living plants and animals. Specifically, we focused this review on methods that have been developed to deploy SWCNT-based sensors in vivo as well as analytes that have been detected by SWCNTs in vivo. Finally, we evaluated potential future directions to take advantage of the promise outlined here toward field-deployable or implantable use in patients.
Collapse
Affiliation(s)
- Zachary Cohen
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
| | - Ryan M. Williams
- Department
of Biomedical Engineering, The City College
of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center
of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Mohammadi S, Khavarpour M, Ghadi A. Design of multiple-function matrix encapsulated with Marjoram extract to support cellular functions, stimulate collagen synthesis and decrease infection in wound. Sci Rep 2024; 14:21109. [PMID: 39256491 PMCID: PMC11387659 DOI: 10.1038/s41598-024-71525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to assess the role of the combination of design techniques of the engineered substrates, and the effect of encapsulating Marjoram (Origanum Majorana L.) into the matrix network was studied. To this end, PVA-PEG matrices were designed through 3 techniques of freeze-thaw (FT), the combination of both methods of freeze-drying and freeze-thawing(FT-FD), and ternary technique(freeze-drying,freeze-thawing,cross-linking(FT-FD/CL)), by combining equal volume ratios of both polymers. The results indicated the ternary technique can provide better physicochemical properties(porosity: 96%, lower degradation rate, higher modulus) compared to FT and FT-FD methods. Afterward, encapsulation of Marjoram-extracted bio-actives in the matrix network designed with the ternary technique demonstrated that the increase in the extract concentration up to 3% can increase encapsulation efficiency. The encapsulation also caused a more cohesive network by better bonding between functional groups in herbal biomolecules and polymer chains of the matrix. Mass transport mechanisms and release kinetics of matrix-encapsulated bio-actives indicated a deviation from Fickian diffusion and the release by diffusion and swelling process. Biologically, matrix-loaded herbal carbohydrate(Epi-alpha-Cadinol) improved fibroblast adhesion and distribution on the substrate surface, and led to the better synthesis of collagen fibers, especially in 3% herbal extract, and antibacterial activities owing to the controlled release of sesquiterpenoids and N-Acetyl-L-proline.
Collapse
Affiliation(s)
- Shahab Mohammadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Maryam Khavarpour
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
3
|
Wancura M, Nkansah A, Robinson A, Toubbeh S, Talanker M, Jones S, Cosgriff-Hernandez E. PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications. Ann Biomed Eng 2024; 52:1804-1815. [PMID: 36774427 DOI: 10.1007/s10439-023-03154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices-enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors. Herein, we report a systematic investigation of two coating methods: (1) traditional photoinitiated hydrogel coatings; (2) diffusion-mediated, redox-initiated hydrogel coatings. The effects of method, substrate, and compositional variables on the resulting hydrogel coating thickness are presented. To expand the redox-based method to include high molecular weight macromers, a mechanistic investigation of the role of cure rate and macromer viscosity was necessary to balance solution infiltration and gelation. Overall, these structure-property relationships provide users with a toolbox for hydrogel coating design for a broad range of medical devices.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shireen Toubbeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Talanker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Cohen Z, Alpert DJ, Weisel AC, Ryan A, Roach A, Rahman S, Gaikwad PV, Nicoll SB, Williams RM. Noninvasive Injectable Optical Nanosensor-Hydrogel Hybrids Detect Doxorubicin in Living Mice. ADVANCED OPTICAL MATERIALS 2024; 12:2303324. [PMID: 39450264 PMCID: PMC11498898 DOI: 10.1002/adom.202303324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 10/26/2024]
Abstract
While the tissue-transparent fluorescence of single-walled carbon nanotubes (SWCNTs) imparts substantial potential for use in non-invasive biosensors, development of non-invasive systems is yet to be realized. Here, we investigated the functionality of a SWCNT-based nanosensor in several injectable SWCNT-hydrogel systems, ultimately finding SWCNT encapsulation in a sulfonated methylcellulose hydrogel optimal for detection of ions, small molecules, and proteins. We found that the hydrogel system and nanosensor signal were stable for several weeks in live mice. We then found that this system successfully detects local injections of the chemotherapeutic agent doxorubicin in mice. We anticipate future studies to adapt this device for detection of other analytes in animals and, ultimately, patients.
Collapse
Affiliation(s)
- Zachary Cohen
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Dave J Alpert
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Adam C Weisel
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Amelia Ryan
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Arantxa Roach
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Syeda Rahman
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Pooja V Gaikwad
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| | - Steven B Nicoll
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
| | - Ryan M Williams
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031
- PhD Program in Chemistry, Graduate Center, The City University of New York, New York, NY, 10016
| |
Collapse
|
5
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
6
|
Salar Amoli M, Yang H, Anand R, EzEldeen M, Aktan MK, Braem A, Jacobs R, Bloemen V. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Int J Biol Macromol 2024; 262:129684. [PMID: 38307741 DOI: 10.1016/j.ijbiomac.2024.129684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Incorporation of growth factors, signaling molecules and drugs can be vital for the success of tissue engineering in complex structures such as the dentoalveolar region. This has led to the development of a variety of drug release systems. This study aimed to develop pNIPAM-methylcellulose microgels with different synthesis parameters based on a 23 full factorial design of experiments for this application. Microgel properties, including volume phase transition temperature (VPTT), hydrodynamic size, drug loading and release, and cytocompatibility were systematically evaluated. The results demonstrated successful copolymerization and development of the microgels, a hydrodynamic size ranging from ∼200 to ∼500 nm, and VPTT in the range of 34-39 °C. Furthermore, loading of genipin, capable of inducing odontoblastic differentiation, and its sustained release over a week was shown in all formulations. Together, this can serve as a solid basis for the development of tunable drug-delivering pNIPAM-methylcellulose microgels for specific tissue engineering applications.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Huimin Yang
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Resmi Anand
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 - box 2450, B-3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Bonetti L, De Nardo L, Farè S. Crosslinking strategies in modulating methylcellulose hydrogel properties. SOFT MATTER 2023; 19:7869-7884. [PMID: 37817578 DOI: 10.1039/d3sm00721a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Methylcellulose (MC) hydrogels are ideal materials for the design of thermo-responsive platforms capable of exploiting the environment temperature as a driving force to activate their smart transition. However, MC hydrogels usually show reduced stability in an aqueous environment and low mechanical properties, limiting their applications' breadth. A possible approach intended to overcome these limitations is chemical crosslinking, which represents a simple yet effective strategy to modify the MC hydrogels' properties (e.g., physicochemical, mechanical, and biological). In this regard, understanding the selected crosslinking method's role in modulating the MC hydrogels' properties is a key factor in their design. This review offers a perspective on the main MC chemical crosslinking approaches reported in the literature. Three main categories can be distinguished: (i) small molecule crosslinkers, (ii) crosslinking by high-energy radiation, and (iii) crosslinking via MC chemical modification. The advantages and limitations of each approach are elucidated, and special consideration is paid to the thermo-responsive properties after crosslinking towards the development of MC hydrogels with enhanced physical stability and mechanical performance, preserving the thermo-responsive behavior.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
8
|
Sorouri F, Hosseini P, Sharifzadeh M, Kiani S, Khoobi M. In Situ Cross-Linkable Hyaluronic-Ferulic Acid Conjugate Containing Bucladesine Nanoparticles Promotes Neural Regeneration after Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42251-42270. [PMID: 37647536 DOI: 10.1021/acsami.3c08366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Dysfunctional clinical outcomes following spinal cord injury (SCI) result from glial scar formation, leading to the inhibition of new axon growth and impaired regeneration. Nevertheless, nerve regeneration after SCI is possible, provided that the state of neuron development in the injured environment is improved. Hence, biomaterial-based therapy would be a promising strategy to endow a desirable environment for tissue repair. Herein, we designed a novel multifunctional injectable hydrogel with antioxidant, neuroprotective, and neuroregenerative effects. Bucladesine-encapsulated chitosan nanoparticles (BCS NPs) were first prepared and embedded in a matrix of thiol-functionalized hyaluronic acid modified with ferulic acid (HASH-FA). The target hydrogel (HSP-F/BCS) was then created through Michael-type addition between HASH-FA containing BCS NPs and four-arm polyethylene glycol-maleimide (4-Arm-PEG-Mal). The obtained hydrogel with shear thinning behavior showed viscoelastic and mechanical properties similar to the normal nerve tissue. FA conjugation significantly improved the antioxidant activity of HA, and suppressed intracellular ROS formation. In situ injection of the HSP-F/BCS hydrogel in a rat contusion model of SCI inhibited glial scar progression, reduced microglia/macrophage infiltration, promoted angiogenesis, and induced myelinated axon regeneration. As a result, a significant improvement in motor performance was observed compared to other experimental groups. Taken together, the HSP-F/BCS hydrogel developed in this study could be a promising system for SCI repair.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Parastoo Hosseini
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16656-59911, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran 14176-14411, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| |
Collapse
|
9
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Bonetti L, Fiorati A, D’Agostino A, Pelacani CM, Chiesa R, Farè S, De Nardo L. Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles. Gels 2022; 8:298. [PMID: 35621596 PMCID: PMC9140787 DOI: 10.3390/gels8050298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Infection is a severe complication in chronic wounds, often leading to morbidity or mortality. Current treatments rely on dressings, which frequently contain silver as a broad-spectrum antibacterial agent, although improper dosing can result in severe side effects. This work proposes a novel methylcellulose (MC)-based hydrogel designed for the topical release of silver nanoparticles (AgNPs) via an intelligent mechanism activated by the pH variations in infected wounds. A preliminary optimization of the physicochemical and rheological properties of MC hydrogels allowed defining the optimal processing conditions in terms of crosslinker (citric acid) concentration, crosslinking time, and temperature. MC/AgNPs nanocomposite hydrogels were obtained via an in situ synthesis process, exploiting MC both as a capping and reducing agent. AgNPs with a 12.2 ± 2.8 nm diameter were obtained. MC hydrogels showed a dependence of the swelling and degradation behavior on both pH and temperature and a noteworthy pH-triggered release of AgNPs (release ~10 times higher at pH 12 than pH 4). 1H-NMR analysis revealed the role of alkaline hydrolysis of the ester bonds (i.e., crosslinks) in governing the pH-responsive behavior. Overall, MC/AgNPs hydrogels represent an innovative platform for the pH-triggered release of AgNPs in an alkaline milieu.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Agnese D’Agostino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Carlo Maria Pelacani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (A.F.); (A.D.); (C.M.P.); (R.C.); (S.F.); (L.D.N.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| |
Collapse
|
11
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
12
|
Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. BIOMATERIALS ADVANCES 2022; 133:112606. [PMID: 35525750 PMCID: PMC9933951 DOI: 10.1016/j.msec.2021.112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
A major challenge in tissue engineering is the development of alternatives to traditional bone autografts and allografts that can regenerate critical-sized bone defects. Here we present the design of injectable pH-responsive double-crosslinked adhesive hydrogels inspired by the molecular mechanism and environmental post-processing of marine mussel adhesive. Nine adhesive hydrogel formulations were developed through the conjugation of crosslinkable catechol functional groups (DOPA) and the synthetic oligomer oligo[poly(ethylene glycol) fumarate] (OPF), varying the DOPA content (w/w%) and molecular weight (MW) of the OPF backbone to produce formulations with a range of swelling ratios, porosities, and crosslink densities. DOPA incorporation altered the surface chemistry, mechanical properties, and surface topography of hydrogels, resulting in an increase in material stiffness, slower degradation, and enhanced pre-osteoblast cell attachment and proliferation. When injected within simulated bone defects, DOPA-mediated interfacial adhesive interactions also prevented the displacement of scaffolds, an effect that was maintained even after swelling within physiological conditions. Taken together, OPF-DOPA hydrogels represent a promising new material to enhanced tissue integration and the prevention of the post-implantation migration of scaffolds that can occur due to biomechanical loading in vivo.
Collapse
|
13
|
Bonetti L, De Nardo L, Farè S. Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering. Gels 2021; 7:141. [PMID: 34563027 PMCID: PMC8482237 DOI: 10.3390/gels7030141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methylcellulose (MC) hydrogels have been successfully proposed in the field of cell sheet engineering (CSE), allowing cell detachment from their surface by lowering the temperature below their transition temperature (Tt). Among the main limitations of pristine MC hydrogels, low physical stability and mechanical performances limit the breadth of their potential applications. In this study, a crosslinking strategy based on citric acid (CA) was used to prepare thermoresponsive MC hydrogels, with different degrees of crosslinking, to exploit their possible use as substrates in CSE. The investigated amounts of CA did not cause any cytotoxic effect while improving the mechanical performance of the hydrogels (+11-fold increase in E, compared to control MC). The possibility to obtain cell sheets (CSs) was then demonstrated using murine fibroblast cell line (L929 cells). Cells adhered on crosslinked MC hydrogels' surface in standard culture conditions and then were harvested at selected time points as single CSs. CS detachment was achieved simply by lowering the external temperature below the Tt of MC. The detached CSs displayed adhesive and proliferative activity when transferred to new plastic culture surfaces, indicating a high potential for regenerative purposes.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (L.D.N.); (S.F.)
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (L.D.N.); (S.F.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy; (L.D.N.); (S.F.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| |
Collapse
|
14
|
Ostróżka-Cieślik A, Maciążek-Jurczyk M, Pożycka J, Dolińska B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. Pharmaceutics 2021; 13:pharmaceutics13081215. [PMID: 34452176 PMCID: PMC8398322 DOI: 10.3390/pharmaceutics13081215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Insulin loaded to the polymer network of hydrogels may affect the speed and the quality of wound healing in diabetic patients. The aim of our research was to develop a formulation of insulin that could be applied to the skin. We chose hydrogels commonly used for pharmaceutical compounding, which can provide a form of therapy available to every patient. We prepared different gel formulations using Carbopol® UltrezTM 10, Carbopol® UltrezTM 30, methyl cellulose, and glycerin ointment. The hormone concentration was 1 mg/g of the hydrogel. We assessed the influence of model hydrogels on the pharmaceutical availability of insulin in vitro, and we examined the rheological and the texture parameters of the prepared formulations. Based on spectroscopic methods, we evaluated the influence of model hydrogels on secondary and tertiary structures of insulin. The analysis of rheograms showed that hydrogels are typical of shear-thinning non-Newtonian thixotropic fluids. Insulin release from the formulations occurs in a prolonged manner, providing a longer duration of action of the hormone. The stability of insulin in hydrogels was confirmed. The presence of model hydrogel carriers affects the secondary and the tertiary structures of insulin. The obtained results indicate that hydrogels are promising carriers in the treatment of diabetic foot ulcers. The most effective treatment can be achieved with a methyl cellulose-based insulin preparation.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- Correspondence:
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.M.-J.); (J.P.)
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.M.-J.); (J.P.)
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
15
|
Kilicarslan M, Buke AN. An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200616125009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major developments of the last decade is the preparation of in situ implant formulations.
Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified
differently due to implant formation based on in vivo solid depot or formation mechanisms inducing
liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant
systems were compiled and their formation mechanisms, materials and methods used, routes of
administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution
tests were compared in Tables and were evaluated. There are several advantages and disadvantages of
these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in
formulations and all of these parameters have been discussed separately. In addition, new generation
systems developed to overcome the difficulties encountered in in situ implants have been evaluated.
There are some approved products of in situ implant preparations that can be used for different indications
available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained
by the analysis of the application of new technologies in many studies evaluated in this review showed
that the number of approved drugs to be used for various indications would increase in the future.
Collapse
Affiliation(s)
- Muge Kilicarslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| | - Ayse Nur Buke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| |
Collapse
|
16
|
|
17
|
Bonetti L, De Nardo L, Variola F, Fare' S. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels. SOFT MATTER 2020; 16:5577-5587. [PMID: 32406462 DOI: 10.1039/d0sm00269k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methylcellulose (MC) hydrogels, undergoing sol-gel reversible transition upon temperature changes, lend themselves to smart system applications. However, their reduced stability in aqueous environment and unsatisfactory mechanical properties limit the breadth of their possible applications. Here, a crosslinking strategy based on citric acid (CA) was developed: exploiting three crosslinking parameters (CA concentration, crosslinking time, and crosslinking temperature) by a design of experiment approach, optimized crosslinked MC hydrogels (MC-L, MC-M, MC-H) were obtained and characterized. Swelling tests in water revealed the effectiveness of CA crosslinking in modulating the water uptake of MC hydrogels. Both theoretical and experimental analyses showed an increase in the crosslinking density by the rationale selection of process parameters. The extent of sol-gel transition was assessed by swelling tests, Raman spectroscopy and rheological analyses. MC-M samples demonstrated to preserve their thermo-responsive behavior around their lower critical solution temperature (LCST), while showing increased stability and enhanced mechanical properties when compared to pristine MC hydrogels.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy. and National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Silvia Fare'
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy. and National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
18
|
Raj R, Sobhan PK, Pratheesh KV, Anilkumar TV. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. J Biomed Mater Res A 2020; 108:1922-1933. [PMID: 32319161 DOI: 10.1002/jbm.a.36955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| |
Collapse
|
19
|
Delplace V, Pickering AJ, Hettiaratchi MH, Zhao S, Kivijärvi T, Shoichet MS. Inverse Electron-Demand Diels–Alder Methylcellulose Hydrogels Enable the Co-delivery of Chondroitinase ABC and Neural Progenitor Cells. Biomacromolecules 2020; 21:2421-2431. [DOI: 10.1021/acs.biomac.0c00357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Andrew J. Pickering
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Marian H. Hettiaratchi
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Spencer Zhao
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Tove Kivijärvi
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
20
|
Westin CB, Nagahara MH, Decarli MC, Kelly DJ, Moraes ÂM. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Silk Sericin Semi-interpenetrating Network Hydrogels Based on PEG-Diacrylate for Wound Healing Treatment. INT J POLYM SCI 2019. [DOI: 10.1155/2019/4740765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Silk sericin (SS) from the Bombyx mori silk cocoons has received much attention from biomedical scientists due to its outstanding properties, such as antioxidant, antibacterial, UV-resistant, and ability to release moisturizing factors. Unmodified SS does not self-assemble strongly enough to be used as a hydrogel wound dressing. Therefore, there is a need for suitable stabilization techniques to interlink the SS peptide chains or strengthen their structural cohesion. Here, we reported a method to form a silk semi-interpenetrating network (semi-IPN) structure through reacting with the short-chain poly(ethylene glycol) diacrylate (PEGDA) in the presence of a redox pair. Various hydrogels were prepared in aqueous media at the final SS/PEGDA weight percentages of 8/92, 15/85, and 20/80. Results indicated that all semi-IPN samples underwent a sol-gel transition within 70 min. The equilibrium water content (EWC) for all samples was found to be in the range of 70-80%, depending on the PEGDA content. Both the gelation time and the sol fraction decreased with the increased PEGDA content. This was due to the tightened network structure formed within the hydrogel matrices. Among all hydrogel samples, the 15/85 (SS/PEGDA) hydrogel displayed the maximum compressive strength (0.66 MPa) and strain (7.15%), higher than those of pure PEGDA. This implied a well-balanced molecular interaction within the SS/PEGDA/water systems. Based on the direct and indirect MTS assay, the 15/85 hydrogel showed excellent in vitro biocompatibility towards human dermal fibroblasts, representing a promising material for biomedical wound dressing in the future. A formation of a semi-IPN structure has thus proved to be one of the best strategies to extend a practical limit of using SS hydrogels for wound healing treatment or other biomedical hydrogel matrices in the future.
Collapse
|
22
|
Niemczyk-Soczynska B, Gradys A, Kolbuk D, Krzton-Maziopa A, Sajkiewicz P. Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering. Polymers (Basel) 2019; 11:E1772. [PMID: 31661795 PMCID: PMC6918217 DOI: 10.3390/polym11111772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
Thermosensitive, physically crosslinked injectable hydrogels are in the area of interests of various scientific fields. One of the representatives of this materials group is an aqueous solution of methylcellulose. At ambient conditions, methylcellulose (MC) is a sol while on heating up to 37 °C, MC undergoes physical crosslinking and transforms into a gel. Injectability at room temperature, and crosslinkability during subsequent heating to physiological temperature raises hopes, especially for tissue engineering applications. This research work aimed at studying crosslinking kinetics, thermal, viscoelastic, and biological properties of MC aqueous solution in a broad range of MC concentrations. It was evidenced by Differential Scanning Calorimetry (DSC) that crosslinking of MC is a reversible two-stage process, manifested by the appearance of two endothermic effects, related to the destruction of water cages around methoxy groups, followed by crosslinking via the formation of hydrophobic interactions between methoxy groups in the polymeric chains. The DSC results also allowed the determination of MC crosslinking kinetics. Complementary measurements of MC crosslinking kinetics performed by dynamic mechanical analysis (DMA) provided information on the final storage modulus, which was important from the perspective of tissue engineering applications. Cytotoxicity tests were performed using mouse fibroblasts and showed that MC at low concentration did not cause cytotoxicity. All these efforts allowed to assess MC hydrogel relevance for tissue engineering applications.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Anna Krzton-Maziopa
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 St., 00-664 Warsaw, Poland.
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| |
Collapse
|
23
|
Morozova S, Coughlin ML, Early JT, Ertem SP, Reineke TM, Bates FS, Lodge TP. Properties of Chemically Cross-Linked Methylcellulose Gels. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Kuan CY, Lin YY, Chen CY, Yang CC, Chi CY, Li CH, Dong GC, Lin FH. The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. J Mater Chem B 2019. [DOI: 10.1039/c9tb00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxi-MC-ADH-VC can open up a new avenue for clinical TBI treatment and rehabilitation.
Collapse
Affiliation(s)
- Che-Yung Kuan
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Yu-Ying Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Ching-Yun Chen
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Taiwan
| | - Chun-Chen Yang
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Chih-Ying Chi
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Chi-Han Li
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Guo-Chung Dong
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Feng-Huei Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| |
Collapse
|
25
|
Yang X, Sha D, Xu J, Niu N, Shi K, Pan Y, Yu C, Wei H, Wang B, Ji X. Preparation of cationic polyelectrolyte grafted polyvinyl alcohol-formaldehyde macroporous hydrogels and their antibacterial properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj03263k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel antibacterial porous cationic PVF-g-PDMC hydrogels, synthesized by radical polymerization using ceric ammonium nitrate as an initiator, show excellent antibacterial properties, and can be used as biomedical materials.
Collapse
|
26
|
Varma DM, Lin HA, Long RG, Gold GT, Hecht AC, Iatridis JC, Nicoll SB. Thermoresponsive, redox-polymerized cellulosic hydrogels undergo in situ gelation and restore intervertebral disc biomechanics post discectomy. Eur Cell Mater 2018; 35:300-317. [PMID: 29845998 PMCID: PMC6016390 DOI: 10.22203/ecm.v035a21] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely gelation of CMC in situ within whole IVDs. The CMC-MC hydrogel was tuned to match compressive and swelling NP tissue properties. When injected into whole IVDs after discectomy injury, CMC-MC restored IVD height and compressive biomechanical behaviors, including range of motion and neutral zone stiffness, to intact levels. Subcutaneous implantation of the hydrogels in rats further demonstrated good biocompatibility of CMC-MC with a relatively thin fibrous capsule, similar to comparable biomaterials. In conclusion, CMC-MC is an injectable, tunable and biocompatible hydrogel with strong potential to be used as an NP replacement biomaterial since it can gel in situ, match NP properties, and restore IVD height and biomechanical function. Future investigations will evaluate herniation risk under severe loading conditions and assess long-term in vivo performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - S B Nicoll
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 401, 160 Convent Avenue, New York, NY 10031,
| |
Collapse
|
27
|
Giarra S, Ierano C, Biondi M, Napolitano M, Campani V, Pacelli R, Scala S, De Rosa G, Mayol L. Engineering of thermoresponsive gels as a fake metastatic niche. Carbohydr Polym 2018; 191:112-118. [PMID: 29661298 DOI: 10.1016/j.carbpol.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/27/2022]
Abstract
Chemoattraction through the CXCR4-CXCL12 axis has been shown to be an important mechanism to direct circulating tumor cells toward distant sites. The objective of this work was to prepare a fake metastatic niche made up of a gel loaded with CXCL12. The gel is designed to create a steep concentration gradient of the chemokine in the proximity of the site of administration/injection, aimed to divert and capture circulating CXCR4+ tumor cells. To this aim, different thermoresponsive gels based on methylcellulose (MC) or poloxamers, loaded with CXCL12, with or without hyaluronic acid (HA) were designed and their mechanical properties correlated with the ability to attract and capture in vitro CXCR4+ cells. Results of in vitro cell studies showed that all prepared gels induced CEM tumor cell migration whereas only gels based on MC embedded with CXCL12 are able to capture them.
Collapse
Affiliation(s)
- Simona Giarra
- Department of Pharmacy, Università di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Caterina Ierano
- Molecular Immunology and Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale" - IRCCS, 80131, Naples, Italy.
| | - Marco Biondi
- Department of Pharmacy, Università di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale" - IRCCS, 80131, Naples, Italy.
| | - Virginia Campani
- Department of Pharmacy, Università di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, School of Medicine, University "Federico II", 80131, Naples, Italy.
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale" - IRCCS, 80131, Naples, Italy.
| | - Giuseppe De Rosa
- Department of Pharmacy, Università di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Laura Mayol
- Department of Pharmacy, Università di Napoli Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
28
|
Zhuo F, Liu X, Gao Q, Wang Y, Hu K, Cai Q. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:1-7. [DOI: 10.1016/j.msec.2017.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 11/29/2022]
|
29
|
Zhang Y, Dang Q, Liu C, Yan J, Cha D, Liang S, Li X, Fan B. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing. Int J Biol Macromol 2017; 102:457-467. [DOI: 10.1016/j.ijbiomac.2017.04.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
|
30
|
|
31
|
|
32
|
Kang W, Bi B, Zhuo R, Jiang X. Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior. Carbohydr Polym 2017; 160:18-25. [DOI: 10.1016/j.carbpol.2016.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
|
33
|
Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|