1
|
Akgun BS, Bostan MS, Un I, Sadak AE, Bahadori F, Eroglu MS. Physico-chemical and spectroscopic characterization of hyaluronic acid hydrogels crosslinked with 1,4-butanediol diglycidyl ether (BDDE). Int J Biol Macromol 2025; 308:142050. [PMID: 40132703 DOI: 10.1016/j.ijbiomac.2025.142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Three hyaluronic acid (HA) - based hydrogels at different HA/1,4-butanediol diglycidyl ether (BDDE) ratios were prepared, and their network characterization and drug release properties were studied. Amoxicillin (AMX) loading and release behavior of the hydrogels were investigated as a function of cross-link density. The percentage release of amoxicillin increased as the cross-link density decreased. In the network characterization, the polymer-solvent interaction parameter (χ) of HA in PBS (pH 7.4) at 25 °C was determined to be 0.418 ± 0.002 from Zimm plot using light-scattering technique. The number average molecular weight between junction points of the hydrogels (Mc¯) was calculated as a function of the HA/BDDE ratio using Flory-Rehner theory. The crosslinking reaction of HA with BDDE was monitored in real-time by 1H NMR spectroscopy, which indicated that the reaction was completed in 55.5 h at 37 °C.
Collapse
Affiliation(s)
- Busra Senguler Akgun
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Aydınevler, Maltepe 34854, Istanbul, Turkey
| | - Muge Sennaroglu Bostan
- Department of Chemical Engineering, Engineering Faculty, Marmara University, Aydınevler, Maltepe 34854, Istanbul, Turkey.
| | - Ilker Un
- TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471 Gebze, Kocaeli, Turkey
| | - Ali Enis Sadak
- TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471 Gebze, Kocaeli, Turkey
| | - Fatemeh Bahadori
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul 34500, Turkey
| | - Mehmet Sayip Eroglu
- TUBITAK-UME, Chemistry Group Laboratories, PO Box 54, 41471 Gebze, Kocaeli, Turkey; Department of Metallurgical and Materials Engineering, Technology Faculty, Marmara University, Aydınevler, Maltepe 34854, Istanbul, Turkey.
| |
Collapse
|
2
|
Afzali M, Esfandiaribayat N, Boateng J. Medicated and multifunctional composite alginate-collagen-hyaluronate based scaffolds prepared using two different crosslinking approaches show potential for healing of chronic wounds. Drug Deliv Transl Res 2024:10.1007/s13346-024-01745-0. [PMID: 39661314 DOI: 10.1007/s13346-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Chronic wounds present significant challenges with high morbidity and mortality. A cost-effective dressing that can absorb large exudate volumes, is hemostatic and therapeutically active is of current interest. This study compares two crosslinking approaches on composite scaffolds comprising fish collagen (FCOL), hyaluronic acid (HA) and sodium alginate (SA) by respectively targeting HA and SA. Crosslinking involved reacting HA with polyethylene glycol diglycidyl ether (PEGDE)/itaconic acid (IT) (IPC scaffolds) or SA with calcium chloride (CC scaffolds) and the crosslinked gels (with/without BSA) freeze-dried. Selected optimized formulations were loaded with basic fibroblast growth factor (b-FGF) as medicated scaffold dressings. NMR and FTIR spectroscopies (crosslinking/component interactions), SEM (morphology), texture analysis (mechanical strength/adhesion), and exudate handling were used to characterize the physico-chemical properties of the scaffolds. Protein (BSA) release profiles, hemostasis, biocompatibility and wound closure were assessed using HPLC, whole blood and methyl thiazolyl tetrazolium (MTT) and scratch assays respectively. The CC SA:FCOL:HA scaffolds showed improved mechanical strength, porosity, water vapor transmission rate, retained structural integrity after absorbing 50% exudate and promoted cell proliferation. The IPC scaffolds showed enhanced structural integrity, excellent hemostasis, retained three times more exudate than non-crosslinked scaffolds and provided acceptable pore size for cell adhesion and proliferation. The results show potential of CC and IPC SA:FCOL:HA scaffolds as medicated dressings for delivering proteins to chronic wounds. The study's significance lies in their potential use as multifunctional, multi-targeted and therapeutic dressings to overcome challenges with chronic wounds and use as delivery platforms for other therapeutic agents for chronic wound healing.
Collapse
Affiliation(s)
- Meena Afzali
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nessa Esfandiaribayat
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
3
|
Choi S, Cho JC, Lee S, Lee SJ. Development of Dispersion Process to Improve Quality of Hyaluronic Acid Filler Crosslinked with 1,4-Butanediol Diglycidyl Ether. Polymers (Basel) 2024; 16:3323. [PMID: 39684068 DOI: 10.3390/polym16233323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This study proposes a new and simple process that improves the quality of a hyaluronic acid (HA) filler crosslinked with 1,4-butanediol diglycidyl ether (BDDE) using solution dispersion at a low temperature. This process involves the solvent being dispersed among the solute naturally after the mixing process. The process used in this study involved two reactions. First, the solution was dispersed among HA molecules (Mw = ~0.7 MDa) creating a well-homogenized mixture. Second, the decomposition and synthesis of HA occurred naturally in an aqueous alkaline solution (>pH 11), the weight average molar mass (Mw) was adjusted (Mw = ~143,000), and the crosslinking surface area was expanded, allowing for a high degree of crosslinking. Therefore, the viscoelasticity and cohesion of the filler increased with the new method compared to the previous process both at the lab scale (previous process:new process, viscosity (cP) = 24M:43M, storage modulus (Pa) = 306:538, loss modulus (Pa) = 33:61, and tack (N) = 0.24:0.43) and at the factory scale (previous process:new process, complex viscosity (cP) = 19M:26M, storage modulus (Pa) = 229:314, loss modulus (Pa) = 71:107, and tack (N) = 0.35:0.43).
Collapse
Affiliation(s)
- Sunglim Choi
- CHA Meditech Co., Ltd., 119 Techno 2-ro (#206, Migeun Techno World, Yongsan-Dong), Yuseong-gu, Daejeon 34116, Republic of Korea
| | - Jin Cheol Cho
- CHA Meditech Co., Ltd., 119 Techno 2-ro (#206, Migeun Techno World, Yongsan-Dong), Yuseong-gu, Daejeon 34116, Republic of Korea
| | - Seunghwa Lee
- CHA Meditech Co., Ltd., 119 Techno 2-ro (#206, Migeun Techno World, Yongsan-Dong), Yuseong-gu, Daejeon 34116, Republic of Korea
| | - Seong Jin Lee
- CHA Meditech Co., Ltd., 119 Techno 2-ro (#206, Migeun Techno World, Yongsan-Dong), Yuseong-gu, Daejeon 34116, Republic of Korea
| |
Collapse
|
4
|
Lee W, Yang EJ. Structural Analysis of Hyaluronic Acid Fillers Using Nuclear Magnetic Resonance: Implications for Quality Control and Clinical Performance. Polymers (Basel) 2024; 16:2878. [PMID: 39458706 PMCID: PMC11511353 DOI: 10.3390/polym16202878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Potential disruptions in the biocompatibility of hyaluronic acid (HA) fillers can arise with mono-linked 1,4-butanediol diglycidyl ether (BDDE) or unreacted (pendant) 1,4-butanediol di-(propan-2,3-diolyl) ether. Assessing the filler's degree of modification involves evaluating improperly cross-linked BDDE. This study analyzed commercially available HA fillers using nuclear magnetic resonance (NMR), focusing on key parameters, such as the degree of modification (MoD), the cross-linker ratio (CrR), and the degree of cross-linking. We assessed thirteen commercially available HA fillers using NMR. The samples were placed in an NMR instrument, and each sample was analyzed for 26 h, including MoD and CrR assessments. MoD 1H ranged from 17.065% to 2.239%, MoD 13C ranged from 12.567% to 1.947%, and CrR 13C ranged from 0.394 to 0.014. Significant distinctions were observed in the CrR 13C values when the MoD values of the products were similar. This study underscores the importance of considering the MoD and the CrR together to ensure optimal cross-linking and minimize the risks associated with residual BDDE impurities. Utilizing NMR for HA gel characterization provides valuable insights regarding product quality control, safety assessments, and clinical performance evaluations for esthetic interventions, contributing to filler product improvements. Further studies correlating NMR findings with real-world outcomes are essential for ensuring safety and efficacy.
Collapse
Affiliation(s)
- Won Lee
- Yonsei E1 Plastic Surgery Clinic, Anyang 14072, Republic of Korea;
| | - Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Institute of Human Tissue Regeneration, Yonsei University College of Medicine, Seoul 03721, Republic of Korea
| |
Collapse
|
5
|
Nicu R, Lisa G, Darie-Nita RN, Avadanei MI, Bargan A, Rusu D, Ciolacu DE. Tailoring the Structure and Physico-Chemical Features of Cellulose-Based Hydrogels Using Multi-Epoxy Crosslinking Agents. Gels 2024; 10:523. [PMID: 39195052 DOI: 10.3390/gels10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied. The performances of the hydrogels were investigated through the gel fraction, as well as by ATR-FTIR, DVS, SEM, DSC, and TG analyses. Also, the swelling and rheological behaviors of the hydrogels were examined. The advantages and limitations of each approach were discussed and a strong correlation between the crosslinker structure and the hydrogel properties was established. The formation of new ether bonds was evidenced by ATR-FTIR spectroscopy. It was emphasized that the pore size is directly influenced by the crosslinker type, namely, it decreases with the increasing number of epoxy groups from the crosslinker molecule, i.e., from 46 ± 11.1 µm (hydrogel CE, with ECH) to 12.3 ± 2.5 µm (hydrogel CB, with BDDE) and 6.7 ± 1.5 µm (hydrogel CT, with TMPTGE). The rheological behavior is consistent with the swelling data and hydrogel morphology, such as CE with the highest Qmax and the largest pore size being relatively more elastic than CB and CT. Instead, the denser matrices obtained by using crosslinkers with more complex structures have better thermal stability. The experimental results highlight the possibility of using a specific crosslinking agent, with a defined structure and functionality, in order to establish the main characteristics of hydrogels and, implicitly, to design them for a certain field of application.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, 700050 Iasi, Romania
| | - Raluca Nicoleta Darie-Nita
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mihaela Iuliana Avadanei
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Alexandra Bargan
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Daniela Rusu
- Department of Physics of Polymers and Polymeric Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana Elena Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
6
|
Zhao J, Chen Z, Li X, Tong Z, Xu Z, Feng P, Wang P. Performance assessment of an injectable hyaluronic acid/polylactic acid complex hydrogel with enhanced biological properties as a dermal filler. J Biomed Mater Res A 2024; 112:721-732. [PMID: 38093473 DOI: 10.1002/jbm.a.37653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 03/20/2024]
Abstract
Injectable hyaluronic acid (HA) hydrogel plays an important role in dermal filling. However, conventional HA dermal fillers mostly lack bio-functional diversity and frequently cause adverse reactions because of the chemical stiffness of highly modified degree and crosslinker residues. In this study, polylactic acid (PLA) was embedded into HA hydrogel as a bioactive substance and 1,4-butanediol diglycidyl ether was used as a crosslinker to prepare the HA/PLA composite hydrogel with enhanced biocompatibility and biological performance. We aimed to investigate the properties of HA/PLA composite hydrogels as dermal fillers by assessing the rheological properties, surface microstructure, enzymolysis stability, swelling ratio, degradation rate, cytotoxicity, and anti-wrinkle effect on photo-aged skin. The results showed that the stability and stiffness of the composite hydrogel decreased with an increasing amount of PLA, while the in vivo safety of the HA/PLA hydrogel was enhanced, showing no adverse reactions such as edema, redness, or swelling. Moreover, the composite hydrogel with 2 wt% PLA exhibited excellent anti-wrinkle effects, showing the highest collagen production. Thus, the PLA-embedded HA composite hydrogel showed potential as a dermal filler with high safety, easy injectability, and excellent anti-wrinkle effects.
Collapse
Affiliation(s)
- Jiajing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoshuo Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zijin Xu
- College of Pharmacy, Jiangxi Medical College, Shangrao, China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Lee W, Shah-Desai S, Rho NK, Cho J. Etiology of Delayed Inflammatory Reaction Induced by Hyaluronic Acid Filler. Arch Plast Surg 2024; 51:20-26. [PMID: 38425859 PMCID: PMC10901605 DOI: 10.1055/a-2184-6554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/26/2023] [Indexed: 03/02/2024] Open
Abstract
The etiology and pathophysiology of delayed inflammatory reactions caused by hyaluronic acid fillers have not yet been elucidated. Previous studies have suggested that the etiology can be attributed to the hyaluronic acid filler itself, patient's immunological status, infection, and injection technique. Hyaluronic acid fillers are composed of high-molecular weight hyaluronic acids that are chemically cross-linked using substances such as 1,4-butanediol diglycidyl ether (BDDE). The mechanism by which BDDE cross-links the two hyaluronic acid disaccharides is still unclear and it may exist as a fully reacted cross-linker, pendant cross-linker, deactivated cross-linker, and residual cross-linker. The hyaluronic acid filler also contains impurities such as silicone oil and aluminum during the manufacturing process. Impurities can induce a foreign body reaction when the hyaluronic acid filler is injected into the body. Aseptic hyaluronic acid filler injections should be performed while considering the possibility of biofilm formation or delayed inflammatory reaction. Delayed inflammatory reactions tend to occur when patients experience flu-like illnesses; thus, the patient's immunological status plays an important role in delayed inflammatory reactions. Large-bolus hyaluronic acid filler injections can induce foreign body reactions and carry a relatively high risk of granuloma formation.
Collapse
Affiliation(s)
- Won Lee
- Yonsei E1 Plastic Surgery Clinic, Scientific Faculty of the Minimal Invasive Plastic Surgery Association, Dongan-ro, Dongan-gu, Anyang, Republic of Korea
| | | | - Nark-Kyoung Rho
- Department of Dermatology, Sungkyunkwan University School of Medicine, Gyeonggi-do, Republic of Korea. Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul, Republic of Korea
| | - Jeongmok Cho
- Etonne Plastic Surgery Clinic, Scientific Faculty of the Milimal Invasive Plastic Surgery Association, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
9
|
Pluda S, Salvagnini C, Fontana A, Marchetti A, Di Lucia A, Galesso D, Guarise C. Investigation of Crosslinking Parameters and Characterization of Hyaluronic Acid Dermal Fillers: From Design to Product Performances. Gels 2023; 9:733. [PMID: 37754414 PMCID: PMC10530960 DOI: 10.3390/gels9090733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Despite process similarities, distinctive manufacturing technologies offer hyaluronic acid dermal fillers with different in vitro physicochemical and rheological properties due to peculiar crosslinked hydrogel networks. A better understanding of dermal filler properties could provide specific clinical indications and expectations with more accurate performance correlations. In this study, with an emphasis on the degree of modification, hyaluronic acid concentration and molecular weight, these process parameters were able to modulate dermal filler properties, especially rheology. Moreover, an extensive characterization of commercial hyaluronic acid injectables of the Hyal System line was described to present product properties and help to elucidate related clinical effects. Standardized methodologies were applied to correlate in vitro parameters with feasible clinical indications. In view of an optimized dermal filler design, the results of the extrudability measurements allowed the quantification of the effect of hydrogel composition, rheological properties and needle size on injectability. Composition, dynamic viscosity and needle size showed an impactful influence on hydrogel extrudability. Finally, the positive influence of 200 KDa hyaluronic acid in comparison to fragments of ether-crosslinked hyaluronic acid on fibroblast recognition were shown with a migration assay.
Collapse
Affiliation(s)
- Stefano Pluda
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, Abano Terme (PD), 35031 Padova, Italy; (S.P.); (A.M.); (A.D.L.); (D.G.)
| | - Cecilia Salvagnini
- Department of Biology, University of Padova, 35121 Padova, Italy; (C.S.); (A.F.)
| | - Anna Fontana
- Department of Biology, University of Padova, 35121 Padova, Italy; (C.S.); (A.F.)
| | - Anna Marchetti
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, Abano Terme (PD), 35031 Padova, Italy; (S.P.); (A.M.); (A.D.L.); (D.G.)
| | - Alba Di Lucia
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, Abano Terme (PD), 35031 Padova, Italy; (S.P.); (A.M.); (A.D.L.); (D.G.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, Abano Terme (PD), 35031 Padova, Italy; (S.P.); (A.M.); (A.D.L.); (D.G.)
| | - Cristian Guarise
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, Abano Terme (PD), 35031 Padova, Italy; (S.P.); (A.M.); (A.D.L.); (D.G.)
| |
Collapse
|
10
|
Zhang T, Zhao S, Chen Y, Wang J, Zhang W, Liu J, Kan Y, Li JP, Guo X, Li H. In-depth characterization of 1,4-butanediol diglycidyl ether substituted hyaluronic acid hydrogels. Carbohydr Polym 2023; 307:120611. [PMID: 36781273 DOI: 10.1016/j.carbpol.2023.120611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
BDDE substituted HA hydrogels remain the most commonly used HA product in the biomedical field. The physical and biochemical properties of the hydrogels are dependent on the degree of modification and substitution patterns/positions, thus, characterizing their fine structure is of great importance for quality assurance. In this study, we developed novel LC-MS methods for accurate determination of MoD as well as in-depth characterization of the linkage network. Fragments resulted from enzymatic depolymerization were resolved by a porous graphitic carbon column followed by online tandem-MS for determining the modification site/residue. With high-resolution separation, two types of previously unknown structures were detected in the cross-linked fragments of 2-B-2 and 4-B-2. Based on the feature of resistance to NaBH4 reduction, these structures contain a GlcNAc residue modified at OH1. This special sugar unit likely derived from reducing end of the native polysaccharide could be a signature to discriminate subtle batch to batch variations.
Collapse
Affiliation(s)
- Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jianjian Liu
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Jinan, China.
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
11
|
Krishnamoorthi R, Anbazhagan R, Thankachan D, Thuy Dinh VT, Tsai HC, Lai JY, Wang CF. Antiblood Cell Adhesion of Mussel-Inspired Chondroitin Sulfate- and Caffeic Acid-Modified Polycarbonate Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:717-727. [PMID: 36584671 DOI: 10.1021/acs.langmuir.2c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.
Collapse
Affiliation(s)
- Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Darieo Thankachan
- Department of materials science and engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Van Thi Thuy Dinh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 320, Taiwan
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
12
|
Hydrogel-Crosslinked Microneedles Based on Microwave-Assisted Drying Method. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/2220918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a method and several applications for the synthesis of hydrogel-crosslinked microneedle arrays utilizing microwave-assisted drying, ensuring a significant reduction in reaction preparation time while maintaining quality. We demonstrate the feasibility of drying hydrogels using microwaves and thus extend to crosslinked microneedle fabrication. Crosslinking was performed using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent. Infrared spectra of the microneedle arrays were measured with attenuated total reflection-Fourier transform infrared (ATR-FTIR). The surface morphology of the microneedle arrays was observed with scanning electron microscopy (SEM). The microneedle arrays were evaluated in terms of mechanical strength, swelling kinetics, rheological properties, degradation rate, and glucose iontophoresis. The results show that this method can shorten the reaction preparation time by 5 hours, and the prepared crosslinked microneedle array has better crosslinking efficiency, swelling effect, and greater mechanical strength than traditional methods.
Collapse
|
13
|
Photocross-linked silk fibroin/hyaluronic acid hydrogel loaded with hDPSC for pulp regeneration. Int J Biol Macromol 2022; 215:155-168. [PMID: 35716796 DOI: 10.1016/j.ijbiomac.2022.06.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 01/07/2023]
Abstract
The construction of suitable biomaterials for pulp regeneration has always been a major challenge in the field of stomatology. Considering the complex and irregular anatomy of the root canal system, injectable hydrogels have received extensive attention as cell carriers in dental pulp regeneration. Here, we developed an injectable photocrosslinked methacrylylated silk fibroin (RSFMA)/methacrylylated hyaluronic acid (MeHA) composite hydrogel and characterized its physicochemical properties. The biocompatibility of encapsulated human dental pulp stem cells (hDPSCs) was subsequently investigated. With the addition of RSFMA, the pore size of the scaffolds became more regular with negligible change in porosity and exhibited excellent mechanical properties. Furthermore, the low concentration of RSFMA hydrogel in the composite hydrogel had higher cross-linking efficiency. In contrast to MeHA hydrogels, hDPSCs were encapsulated in hydrogels either in the absence or presence of high concentrations of RSFMA. The results indicated that cells in low-concentration RSFMA composite gel presented better growth ability, proliferation ability and osteogenic differentiation ability. This injectable photocrosslinked silk fibroin/hyaluronic acid hydrogel shows great potential in the field of dental pulp tissue engineering.
Collapse
|
14
|
La Gatta A, Bedini E, Aschettino M, Finamore R, Schiraldi C. Hyaluronan Hydrogels: Rheology and Stability in Relation to the Type/Level of Biopolymer Chemical Modification. Polymers (Basel) 2022; 14:polym14122402. [PMID: 35745978 PMCID: PMC9228881 DOI: 10.3390/polym14122402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
BDDE (1,4-butanediol-diglycidylether)-crosslinked hyaluronan (HA) hydrogels are widely used for dermo-aesthetic purposes. The rheology and stability of the gels under physiological conditions greatly affect their clinical indications and outcomes. To date, no studies investigating how these features are related to the chemistry of the polymeric network have been reported. Here, four available HA-BDDE hydrogels were studied to determine how and to what extent their rheology and stability with respect to enzymatic hydrolysis relate to the type and degree of HA structural modification. 1H-/13C-NMR analyses were associated for the quantification of the “true” HA chemical derivatization level, discriminating between HA that was effectively crosslinked by BDDE, and branched HA with BDDE that was anchored on one side. The rheology was measured conventionally and during hydration in a physiological medium. Sensitivity to bovine testicular hyaluronidase was quantified. The correlation between NMR data and gel rheology/stability was evaluated. The study indicated that (1) the gels greatly differed in the amounts of branched, crosslinked, and overall modified HA, with most of the HA being branched; (2) unexpectedly, the conventionally measured rheological properties did not correlate with the chemical data; (3) the gels’ ranking in terms of rheology was greatly affected by hydration; (4) the rheology of the hydrated gels was quantitatively correlated with the amount of crosslinked HA, whereas the correlations with the total HA modification level and with the degree of branched HA were less significant; (5) increasing HA derivatization/crosslinking over 9/3 mol% did not enhance the stability with respect to hyaluronidases. These results broaden our knowledge of these gels and provide valuable information for improving their design and characterization.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
- Correspondence:
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy;
| | - Maria Aschettino
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| | - Rosario Finamore
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (M.A.); (R.F.); (C.S.)
| |
Collapse
|
15
|
Atila D, Chen CY, Lin CP, Lee YL, Hasirci V, Tezcaner A, Lin FH. In vitro evaluation of injectable Tideglusib-loaded hyaluronic acid hydrogels incorporated with Rg1-loaded chitosan microspheres for vital pulp regeneration. Carbohydr Polym 2022; 278:118976. [PMID: 34973790 DOI: 10.1016/j.carbpol.2021.118976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Injectable systems receive attention in endodontics due to the complicated and irregular anatomical structure of root canals. Here, injectable Tideglusib (Td)-loaded hyaluronic acid hydrogels (HAH) incorporated with Rg1-loaded chitosan microspheres (CSM) were developed for vital pulp regeneration, providing release of Td and Rg1 to trigger odontoblastic differentiation of human dental pulp stem cells (DPSC) by Td and vascularization of pulp by Rg1. The optimal concentrations were determined as 90 nM and 50 μg/mL for Td and Rg1, and loaded in HA and CSM in HAH, respectively. Odontogenic (COL1A1, ALP, OCN, Axin-2, DSPP, and DMP1) and angiogenic (VEGFA, VEGFR2, and eNOS) differentiation of DPSC cultured in the presence of hydrogels was shown at gene expression level. Our results suggest that our injectable hydrogel formulation has potential to improve strategies for vital pulp regeneration. In vivo evaluations are needed to test the feasibility and potential of these hydrogels for vital pulp regeneration.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Yuan-Ling Lee
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University and Hospital, Taipei 106216, Taiwan
| | - Vasif Hasirci
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34758, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli 35053, Taiwan; Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei 106216, Taiwan.
| |
Collapse
|
16
|
de la Guardia C, Virno A, Musumeci M, Bernardin A, Silberberg MB. Rheologic and Physicochemical Characteristics of Hyaluronic Acid Fillers: Overview and Relationship to Product Performance. Facial Plast Surg 2022; 38:116-123. [PMID: 35114708 PMCID: PMC9188840 DOI: 10.1055/s-0041-1741560] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injections with hyaluronic acid (HA) fillers for facial rejuvenation and soft-tissue augmentation are among the most popular aesthetic procedures worldwide. Many HA fillers are available with unique manufacturing processes and distinct in vitro physicochemical and rheologic properties, which result in important differences in the fillers' clinical performance. The aim of this paper is to provide an overview of the properties most widely used to characterize HA fillers and to report their rheologic and physicochemical values obtained using standardized methodology to allow scientifically based comparisons. Understanding rheologic and physicochemical properties will guide clinicians in aligning HA characteristics to the facial area being treated for optimal clinical performance.
Collapse
Affiliation(s)
- Carola de la Guardia
- Medical Affairs, Allergan Aesthetics, an AbbVie company, Marlow, United Kingdom of Great Britain and Northern Ireland
| | - Ada Virno
- Clinical Development, Allergan Aesthetics, an AbbVie company, Rome, Italy
| | - Maria Musumeci
- Medical Affairs, Allergan Aesthetics, an AbbVie company, Marlow, United Kingdom of Great Britain and Northern Ireland
| | | | - Michael B Silberberg
- Medical Affairs, Allergan Aesthetics, an AbbVie company, Marlow, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
17
|
Faivre J, Pigweh AI, Iehl J, Maffert P, Goekjian P, Bourdon F. Crosslinking Hyaluronic Acid Soft-Tissue Fillers: Current Status and Perspectives from an Industrial Point of View. Expert Rev Med Devices 2021; 18:1175-1187. [PMID: 34882503 DOI: 10.1080/17434440.2021.2014320] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hyaluronan (HA)-based soft-tissue fillers are injectable crosslinked hydrogels aimed to counteract facial skin aging signs via minimally invasive procedures. The crosslinking step is required to drastically improve HA residence time in vivo and provide the gel with specific viscoelastic properties matching the clinical indications. While HA as a raw material and HA fillers are widely studied, little is reported about crosslinkers themselves used in commercial fillers. AREAS COVERED This article introduces the specifications of the ideal crosslinker in HA fillers. The properties of commercially used crosslinkers are reviewed. An up-to-date review of innovative hydrogel fabrication alternatives is conducted, and advantages and drawbacks are discussed. EXPERT OPINION HA fillers are predominantly manufactured using 1,4-butanediol diglycidyl ether (BDDE) which is considered as the gold standard crosslinker worldwide due to its proven and unrivalled clinical track record of more than 20 years. Extensive studies have been published covering BDDE-crosslinked HA fillers' chemistry, gel properties, and clinical effectiveness and safety. However, new hydrogel fabrication strategies have emerged, paving the way for innovative alternatives potentially bringing novel features to HA fillers. Nevertheless, major efforts must still be implemented to assess their safety, efficacy, stability and suitability for industrialization.
Collapse
Affiliation(s)
- Jimmy Faivre
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Genève, Switzerland
| | - Amos I Pigweh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS-UBCL-CPE UMR 5246 ICBMS, Laboratoire Chimie Organique 2- Glycosciences, F-69622 Villeurbanne Cedex, France
| | - Julien Iehl
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Genève, Switzerland
| | - Pauline Maffert
- Clinical Department, Teoxane SA, Rue de Lyon 105, 1203 Genève, Switzerland
| | - Peter Goekjian
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS-UBCL-CPE UMR 5246 ICBMS, Laboratoire Chimie Organique 2- Glycosciences, F-69622 Villeurbanne Cedex, France
| | - François Bourdon
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Genève, Switzerland
| |
Collapse
|
18
|
Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. J Biol Chem 2021; 297:101001. [PMID: 34303708 PMCID: PMC8377490 DOI: 10.1016/j.jbc.2021.101001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the β-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid –bound FoRham1 were determined, and the active site was identified on the anterior side of the β-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akiho Maruta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Osaka, Japan
- Department of Nutrition, Otemae College of Nutrition and Confectionery, Osaka, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- For correspondence: Tatsuji Sakamoto
| |
Collapse
|
19
|
Nouri-Felekori M, Nezafati N, Moraveji M, Hesaraki S, Ramezani T. Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. Int J Biol Macromol 2021; 183:2030-2043. [PMID: 34097959 DOI: 10.1016/j.ijbiomac.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023]
Abstract
In this study, azide and alkyne moieties were introduced to the structure of citric acid-modified hydroxyethyl cellulose (HEC) and then through a bioorthogonal click chemistry method: Strain-promoted azide-alkyne cycloaddition, a novel crosslinked HEC scaffold (click sample) was obtained. Chemical modifications and successful crosslinking of the samples were assessed with FTIR and 1H NMR spectroscopy. Lyophilized samples exhibited a porous interconnected microarchitecture with desirable features for commensurate cartilage tissue engineering applications. As the stability of scaffolds improved upon crosslinking, considerable water uptake and swelling degree of ~650% could still be measured for the click sample. Offering Young's modulus of ~10 MPa and tensile strength of ~0.43 MPa, the mechanical characteristics of click sample were comparable with those of normal cartilage tissue. Various in vitro biological assays, including MTT analysis, cellular attachment, histological staining with safranin O, and real-time PCR decisively approved significant biocompatibility, chondrogenic ability, and bioorthogonal features of click sample.
Collapse
Affiliation(s)
- Mohammad Nouri-Felekori
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Nader Nezafati
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran.
| | - Marzie Moraveji
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Saeed Hesaraki
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| | - Tayebe Ramezani
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
20
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
21
|
Faivre J, Gallet M, Tremblais E, Trévidic P, Bourdon F. Advanced Concepts in Rheology for the Evaluation of Hyaluronic Acid-Based Soft Tissue Fillers. Dermatol Surg 2021; 47:e159-e167. [PMID: 33492870 PMCID: PMC8078113 DOI: 10.1097/dss.0000000000002916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Crosslinked hyaluronic acid (HA)-based soft tissue fillers possess unique viscoelastic properties intended to match specific product indications. Manufacturing has an impact on HA chain integrity and on filler properties. OBJECTIVE This study introduces 2 new rheological parameters to evaluate the macroscopic characteristics of fillers. METHODS AND MATERIALS A library of reference commercialized HA fillers was selected to cover the full spectrum of product indications. Gels were assessed in terms of size of released HA fragments as a readout of gel integrity, degree of modification, cohesivity, and rheological properties. RESULTS The elastic modulus G' often used to characterize fillers was shown not to follow macroscopic mechanical properties. To improve the mechanical characterization of fillers, Strength and Stretch scores were developed and tested. The Strength score defined the ability of a filler to sustain constant viscoelasticity over a wide range of constraints and represented the filler mechanical resilience. The Stretch score measured the propensity of a filler to deform in view to improve implant adaptation to facial animation for natural-looking results. CONCLUSION Strength and Stretch scores sorted rheological parameters to macroscopic cohesivity assays more accurately than G' and may thus help predict the gel behavior once implanted and submitted to facial dynamics.
Collapse
Affiliation(s)
- Jimmy Faivre
- All authors are affiliated with the Research and Development Department, Teoxane SA, Genève, Switzerland
| | - Mélanie Gallet
- All authors are affiliated with the Research and Development Department, Teoxane SA, Genève, Switzerland
| | - Elodie Tremblais
- All authors are affiliated with the Research and Development Department, Teoxane SA, Genève, Switzerland
| | - Patrick Trévidic
- All authors are affiliated with the Research and Development Department, Teoxane SA, Genève, Switzerland
| | - François Bourdon
- All authors are affiliated with the Research and Development Department, Teoxane SA, Genève, Switzerland
| |
Collapse
|
22
|
Alonso JM, Andrade del Olmo J, Perez Gonzalez R, Saez-Martinez V. Injectable Hydrogels: From Laboratory to Industrialization. Polymers (Basel) 2021; 13:650. [PMID: 33671648 PMCID: PMC7926321 DOI: 10.3390/polym13040650] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
The transfer of some innovative technologies from the laboratory to industrial scale is many times not taken into account in the design and development of some functional materials such as hydrogels to be applied in the biomedical field. There is a lack of knowledge in the scientific field where many aspects of scaling to an industrial process are ignored, and products cannot reach the market. Injectable hydrogels are a good example that we have used in our research to show the different steps needed to follow to get a product in the market based on them. From synthesis and process validation to characterization techniques used and assays performed to ensure the safety and efficacy of the product, following regulation, several well-defined protocols must be adopted. Therefore, this paper summarized all these aspects due to the lack of knowledge that exists about the industrialization of injectable products with the great importance that it entails, and it is intended to serve as a guide on this area to non-initiated scientists. More concretely, in this work, the characteristics and requirements for the development of injectable hydrogels from the laboratory to industrial scale is presented in terms of (i) synthesis techniques employed to obtain injectable hydrogels with tunable desired properties, (ii) the most common characterization techniques to characterize hydrogels, and (iii) the necessary safety and efficacy assays and protocols to industrialize and commercialize injectable hydrogels from the regulatory point of view. Finally, this review also mentioned and explained a real example of the development of a natural hyaluronic acid hydrogel that reached the market as an injectable product.
Collapse
Affiliation(s)
- Jose Maria Alonso
- I+Med. S. Coop., Parque Tecnológico de Alava. Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.A.d.O.); (R.P.G.); (V.S.-M.)
| | | | | | | |
Collapse
|
23
|
Ruhr D, John M, Reiche A. Determination of the effective degree of cross-linking of porous cellulose membranes cross-linked with bifunctional epoxides. Carbohydr Polym 2021; 251:117043. [DOI: 10.1016/j.carbpol.2020.117043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
|
24
|
Krishna KV, Benito A, Alkorta J, Gleyzes C, Dupin D, Loinaz I, Pandit A. Crossing the hurdles of translation—a robust methodology for synthesis, characterization and GMP production of cross‐linked high molecular weight hyaluronic acid particles (cHA). NANO SELECT 2020. [DOI: 10.1002/nano.202000066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- K. Vijaya Krishna
- CÚRAM SFI Research Centre for Medical Devices National University of Ireland Galway Ireland
| | - Ana Benito
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Janire Alkorta
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | | | - Damien Dupin
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Iraida Loinaz
- CIDETEC Basque Research and Technology Alliance (BRTA) Pº Miramón Donostia‐San Sebastián 20014 Spain
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices National University of Ireland Galway Ireland
| |
Collapse
|
25
|
Evaluation of the Rheologic and Physicochemical Properties of a Novel Hyaluronic Acid Filler Range with eXcellent Three-Dimensional Reticulation (XTR™) Technology. Polymers (Basel) 2020; 12:polym12081644. [PMID: 32722003 PMCID: PMC7463506 DOI: 10.3390/polym12081644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Soft-tissue fillers made of hyaluronic acid and combined with lidocaine have recently become a popular tool in aesthetic medicine. Several manufacturers have developed their own proprietary formulae with varying manufacturing tools, concentrations, crosslinked three-dimensional network structures, pore size distributions of the fibrous networks, as well as cohesivity levels and rheological properties, lending fillers and filler ranges their unique properties and degradability profiles. One such range of hyaluronic acid fillers manufactured using the novel eXcellent three-dimensional reticulation (XTR™) technology was evaluated in comparison with other HA fillers and filler ranges by an independent research laboratory. Fillers manufactured with the XTR™ technology were shown to have characteristic rheological, crosslinking and biophysical factors that support the suitability of this filler range for certain patient profiles.
Collapse
|
26
|
Xue Y, Chen H, Xu C, Yu D, Xu H, Hu Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv 2020; 10:7206-7213. [PMID: 35493875 PMCID: PMC9049836 DOI: 10.1039/c9ra09271d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
High molecular weight hyaluronic acid (HMW-HA) and low molecular weight hyaluronic acid (LMW-HA) were mixed at different ratios and cross-linked with 1,4-butanediol diglycidyl ether (BDDE) to prepare five hyaluronic acid hydrogels A–E. Enzymolysis stability, swelling rate, crosslinking degree, rheological characteristics, BDDE residual rate, surface microstructure, and cytotoxicity of different hydrogels were investigated. The results showed that hydrogel B obtained by 10% HA (w/v, HMW-HA and LMW-HA having a mass ratio of 4 : 1) crosslinking with 1% BDDE (v/v) had stronger in vitro anti-degradation ability, better mechanical properties and lower cytotoxicity than those prepared by mixing in different proportions. Hydrogel B has potential applications in regenerative medicine and tissue engineering. High molecular weight hyaluronic acid (HMW-HA) and low molecular weight hyaluronic acid (LMW-HA) were mixed at different ratios and cross-linked with 1,4-butanediol diglycidyl ether (BDDE) to prepare five hyaluronic acid hydrogels A–E.![]()
Collapse
Affiliation(s)
- Yu Xue
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Hongyue Chen
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Chao Xu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Dinghua Yu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Huajin Xu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yi Hu
- School of Pharmaceutical Sciences
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
27
|
Seong YJ, Lin G, Kim BJ, Kim HE, Kim S, Jeong SH. Hyaluronic Acid-Based Hybrid Hydrogel Microspheres with Enhanced Structural Stability and High Injectability. ACS OMEGA 2019; 4:13834-13844. [PMID: 31497700 PMCID: PMC6714525 DOI: 10.1021/acsomega.9b01475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 05/09/2023]
Abstract
For hydrogel injection applications, it is important to improve the strength and biostability of the hydrogel as well as its injectability to pass easily through the needle. Making gel microspheres is one approach to achieve these improvements. Granulization of a bulk hydrogel is a common procedure used to form microsized particles; however, the nonuniform size and shape cause an uneven force during injection, damaging the surrounding tissue and causing pain to the patients. In this study, injectable hyaluronic acid (HA)-based hybrid hydrogel microspheres were fabricated using a water-in-oil emulsion process. The injectability was significantly enhanced because of the relatively uniform size and spherical shape of the hydrogel formulates. In addition, the biostability and mechanical strength were also increased owing to the increased cross-linking density compared with that of conventionally fabricated gel microparticles. This tendency was further improved after in situ calcium phosphate precipitation. Our findings demonstrate the great potential of HA-based hydrogel microspheres for various clinical demands requiring injectable biomaterials.
Collapse
Affiliation(s)
- Yun-Jeong Seong
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Guang Lin
- Department
of Reconstructive and Plastic Surgery, Seoul
National University Hospital, Seoul 03080, Republic
of Korea
| | - Byung Jun Kim
- Department
of Reconstructive and Plastic Surgery, Seoul
National University Hospital, Seoul 03080, Republic
of Korea
| | - Hyoun-Ee Kim
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
- Biomedical
Implant Convergence Research Center, Advanced
Institutes of Convergence
Technology, Suwon 16229, Republic of Korea
| | - Sukwha Kim
- Department
of Reconstructive and Plastic Surgery, Seoul
National University Hospital, Seoul 03080, Republic
of Korea
- E-mail: . Phone: +82 2 2072 3530. Fax: +82 2 3675 3680 (S.K.)
| | - Seol-Ha Jeong
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
- E-mail: . Phone: +82
2 880 8320. Fax: +82 2 884 1413 (S.-H.J.)
| |
Collapse
|
28
|
Xu X, Pejcic B, Heath C, Myers MB, Doherty C, Gozukara Y, Wood CD. Polyethylenimine "Snow": An Emerging Material for Efficient Carbon Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26770-26780. [PMID: 31322857 DOI: 10.1021/acsami.9b05921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amine-functionalized solid adsorbents are one of the most promising alternatives to the conventional "amine scrubbing" for carbon capture with a number of prominent examples being reported. However, their widespread application in industry is unfulfilled due to their overall performance and complex fabrication, which relies on a porous support. In this "proof of concept" study, we report an approach for generating a new type of material called polyethylenimine (PEI) 'snow', which can be prepared for use in under 15 min. The material does not require a support, and the resulting CO2 uptake is the highest reported to date for PEI-functionalized materials. This was achieved through a rigorous material program that identified conditions where a material with the requisite properties could be generated. From experimental measurements, the virtual dryness of the PEI snow results in fast CO2 absorption kinetics, which is comparable to conventional solid adsorbents, but its CO2 uptake (451.5 mg CO2/g PEI) is the highest reported so far. Breakthrough curves demonstrate the outstanding CO2 selectivity over N2 and CH4 (above 1000), with the potential for post-combustion capture and natural gas sweeting. This strategy can be applied in affordable and efficient gas treatment for various large point sources.
Collapse
Affiliation(s)
- Xingguang Xu
- Energy Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Kensington, Perth , WA 6151 , Australia
| | - Bobby Pejcic
- Energy Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Kensington, Perth , WA 6151 , Australia
| | - Charles Heath
- Energy Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Kensington, Perth , WA 6151 , Australia
| | - Matthew B Myers
- Energy Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Kensington, Perth , WA 6151 , Australia
| | - Cara Doherty
- Manufacturing Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Clayton, Melbourne , VIC 3168 , Australia
| | - Yesim Gozukara
- Manufacturing Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Clayton, Melbourne , VIC 3168 , Australia
| | - Colin D Wood
- Energy Business Unit , Commonwealth Scientific Industrial Research Organisation (CSIRO) , Kensington, Perth , WA 6151 , Australia
- Curtin University of Science and Technology , Curtin Oil and Gas Innovation Centre (COGIC) , Kensington, Perth , WA 6151 , Australia
| |
Collapse
|
29
|
Monticelli D, Martina V, Mocchi R, Rauso R, Zerbinati U, Cipolla G, Zerbinati N. Chemical Characterization of Hydrogels Crosslinked with Polyethylene Glycol for Soft Tissue Augmentation. Open Access Maced J Med Sci 2019; 7:1077-1081. [PMID: 31049084 PMCID: PMC6490493 DOI: 10.3889/oamjms.2019.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) based hydrogels for esthetic applications found widespread use. HA should be crosslinked for this application to achieve the correct viscoelastic properties and avoid fast degradation by the hyaluronidase enzyme naturally present in the skin: these properties are controlled by the amount of crosslinker and the fraction that is effectively crosslinked (i.e. that binds two HA chains). AIM Crosslinking by polyethylene glycol diglycidyl ether (PEGDE) has been more recently introduced and showed attractive features in terms of viscoelastic properties and reduced biodegradation. Aim of this paper is to define a method for the determination of the crosslinking properties of these recently introduced fillers, method that is lacking at the moment. MATERIAL AND METHOD The percentage of crosslinker and the fraction that is effectively crosslinked were determined by proton Nuclear Magnetic Resonance (1H NMR) and by 13C NMR, respectively. The filler were preliminarily washed with acetonitrile to remove residual PEG and then digested by hyaluronidase to obtain a sample that can be analysed by NMR. RESULTS The crosslinking parameters were determined in four samples of NEAUVIA PEG-crosslinked dermal fillers (produced by MatexLab S.p.A., Italy). The percentage of crosslinker was between 2.8% and 6.2% of HA, whereas the effective crosslinker ratios were between 0.07 and 0.16 (ratio between the moles of effectively crosslinked PEG and total moles of PEG). Moreover, a digestion procedure alternative to enzymatic digestion, based on acidic hydrolysis, was successfully tested for the determination of crosslinker percentage. CONCLUSIONS The proposed method successfully determined the two crosslinking parameters in PEG-crosslinked dermal fillers. The estimated percentage of crosslinker is similar to previously reported data for other crosslinkers, whereas the effective crosslinker ratio is lower for PEG crosslinked hydrogels.
Collapse
Affiliation(s)
- Damiano Monticelli
- University of Insubria, Department of Science and High Technology, Como, Italy
| | - Virginia Martina
- MatexLab S.p.a., Department of Research and Development, Brindisi, Italy
| | - Roberto Mocchi
- UB-CARE S.r.l. Spin-off University of Pavia, Pavia, Italy
| | - Raffaele Rauso
- University of Foggia, Department of Plastic Reconstructive Surgery, Foggia, Italy
| | - Umberto Zerbinati
- Centro Medico Polispecialistico, Dermatology Department, Pavia, Italy
| | - Giovanna Cipolla
- Centro Medico Polispecialistico, Dermatology Department, Pavia, Italy
| | - Nicola Zerbinati
- University of Insubria, Department of Medicine and Surgery, School of Medicine, Varese, Italy
| |
Collapse
|
30
|
Wende FJ, Gohil S, Nord LI, Karlsson A, Kenne AH, Sandström C. Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether. Int J Biol Macromol 2019; 131:812-820. [PMID: 30880057 DOI: 10.1016/j.ijbiomac.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 02/01/2023]
Abstract
Hyaluronic acid (HA) cross-linked with 1,4-butanediol diglycidyl ether (BDDE) are hydrogels with many biomedical applications. Degree of substitution, cross-linking and substitution position of the cross-linker might influence the properties of the hydrogels. We showed earlier that the most common substitution position of the cross-linker on the hyaluronan chain was the 4-hydroxyl of N-acetylglucosamine. This result has led us to investigate unsulfated chondroitin (CN) which only differ from HA in the primary structure by the configuration at C4 of the aminoglycan. In the present study, we have investigated (i) the substitution positions of the cross-linker in CN using NMR and LC-MS and compared the results to the data obtained for HA (ii) the effect of alkali on the 13C and 1H chemical shifts in CN and HA (iii) the temperature coefficients and chemical shifts of hydroxyl protons in CN and HA. In CN, the 2-hydroxyl of glucuronic acid and 6-hydroxyl of N-acetylgalactosamine were found to be the major sites of substitution by BDDE. Moreover, while chondroitinase was not able to cleave HA tetrasaccharide substituted at the 4-hydroxyl GlcNAc reducing end by BDDE, it is able to degrade CN-BDDE down to disaccharide units.
Collapse
Affiliation(s)
- Frida J Wende
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Suresh Gohil
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Lars I Nord
- Research A&C Galderma, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | - Anders Karlsson
- Research A&C Galderma, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | | | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
31
|
Xu C, Zhang Molino B, Wang X, Cheng F, Xu W, Molino P, Bacher M, Su D, Rosenau T, Willför S, Wallace G. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B 2018; 6:7066-7075. [PMID: 32254590 DOI: 10.1039/c8tb01757c] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present for the first time approaches to 3D-printing of nanocellulose hydrogel scaffolds based on double crosslinking, first by in situ Ca2+ crosslinking and post-printing by chemical crosslinking with 1,4-butanediol diglycidyl ether (BDDE). Scaffolds were successfully printed from 1% nanocellulose hydrogels, with their mechanical strength being tunable in the range of 3 to 8 kPa. Cell tests suggest that the 3D-printed and BDDE-crosslinked nanocellulose hydrogel scaffolds supported fibroblast cells' proliferation, which was improving with increasing rigidity. These 3D-printed scaffolds render nanocellulose a new member of the family of promising support structures for crucial cellular processes during wound healing, regeneration and tissue repair.
Collapse
Affiliation(s)
- Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fidalgo J, Deglesne PA, Arroyo R, Sepúlveda L, Ranneva E, Deprez P. Detection of a new reaction by-product in BDDE cross-linked autoclaved hyaluronic acid hydrogels by LC-MS analysis. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:367-376. [PMID: 30410412 PMCID: PMC6197218 DOI: 10.2147/mder.s166999] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Hyaluronic acid (HA), a naturally occurring polysaccharide, is used in the production of dermal fillers for esthetic purposes. As it has a few days of half-life in human tissues, HA-based dermal filler is chemically modified to increase its lifetime in the body. The most common modification used in commercial HA-based filler is the cross-linking of HA chains using 1,4-butanediol diglycidyl ether (BDDE) as cross-linking agent. Residual, or unreacted, BDDE is considered nontoxic when it is <2 parts per million (ppm); therefore, the quantification of residual BDDE in the final dermal filler is mandatory to ensure the safety of the patients. Materials and methods The present study describes the detection and characterization of one by-product of the cross-linking reaction between BDDE and HA in alkaline conditions by combining both liquid chromatography and mass spectroscopy (LC–MS). Results After different analyses, it was found that the alkaline conditions and the high temperatures employed to sterilize the HA–BDDE hydrogel promote the formation of this new by-product, a “propene glicol-like” compound. LC–MS analysis confirmed that this by-product have the same monoisotopic mass as that of BDDE, a different retention time (tR), and also a different UV absorbance (λ=200 nm) pattern. Unlike BDDE, it was observed in the LC–MS analysis that this by-product had a higher detection at 200 nm in the same assay conditions. Conclusion These results suggest that this new compound does not have an epoxide on its structure. The discussion is open to assess the risk of this new by-product found in the production of HA–BDDE hydrogels (HA dermal fillers) for commercial purposes.
Collapse
Affiliation(s)
- Javier Fidalgo
- Scientific Department, Skin Tech Pharma Group, Castello D'Empúries, Cataluña, Spain,
| | | | - Rodrigo Arroyo
- Scientific Department, Skin Tech Pharma Group, Castello D'Empúries, Cataluña, Spain,
| | - Lilian Sepúlveda
- Scientific Department, Skin Tech Pharma Group, Castello D'Empúries, Cataluña, Spain,
| | - Evgeniya Ranneva
- Scientific Department, Skin Tech Pharma Group, Castello D'Empúries, Cataluña, Spain,
| | - Philippe Deprez
- Scientific Department, Skin Tech Pharma Group, Castello D'Empúries, Cataluña, Spain,
| |
Collapse
|
33
|
Soucy JR, Shirzaei Sani E, Portillo Lara R, Diaz D, Dias F, Weiss AS, Koppes AN, Koppes RA, Annabi N. Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. Tissue Eng Part A 2018; 24:1393-1405. [PMID: 29580168 PMCID: PMC6150941 DOI: 10.1089/ten.tea.2017.0502] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Suturing peripheral nerve transections is the predominant therapeutic strategy for nerve repair. However, the use of sutures leads to scar tissue formation, hinders nerve regeneration, and prevents functional recovery. Fibrin-based adhesives have been widely used for nerve reconstruction, but their limited adhesive and mechanical strength and inability to promote nerve regeneration hamper their utility as a stand-alone intervention. To overcome these challenges, we engineered composite hydrogels that are neurosupportive and possess strong tissue adhesion. These composites were synthesized by photocrosslinking two naturally derived polymers, gelatin-methacryloyl (GelMA) and methacryloyl-substituted tropoelastin (MeTro). The engineered materials exhibited tunable mechanical properties by varying the GelMA/MeTro ratio. In addition, GelMA/MeTro hydrogels exhibited 15-fold higher adhesive strength to nerve tissue ex vivo compared to fibrin control. Furthermore, the composites were shown to support Schwann cell (SC) viability and proliferation, as well as neurite extension and glial cell participation in vitro, which are essential cellular components for nerve regeneration. Finally, subcutaneously implanted GelMA/MeTro hydrogels exhibited slower degradation in vivo compared with pure GelMA, indicating its potential to support the growth of slowly regenerating nerves. Thus, GelMA/MeTro composites may be used as clinically relevant biomaterials to regenerate nerves and reduce the need for microsurgical suturing during nerve reconstruction.
Collapse
Affiliation(s)
- Jonathan R. Soucy
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Ehsan Shirzaei Sani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Roberto Portillo Lara
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
- Tecnológico de Monterrey, Escuela de IngenierÍa y Ciencias, Zapopan, JAL, Mexico
| | - David Diaz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Felipe Dias
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Anthony S. Weiss
- Charles Perkins Centre, School of Life and Environmental Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Ryan A. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Huerta-Ángeles G, Nešporová K, Ambrožová G, Kubala L, Velebný V. An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects. Front Bioeng Biotechnol 2018; 6:62. [PMID: 29868577 PMCID: PMC5966713 DOI: 10.3389/fbioe.2018.00062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
This review shows the steps toward material selection focalized on the design and development of medical devices based on hyaluronan (HA). The selection is based on chemical and mechanical properties, biocompatibility, sterilization, safety, and scale-up costs. These facts play a vital role in the industrialization process. Approved medical devices containing-HA are illustrated to identify key parameters. The first part of this work involves the steps toward a complete characterization of chemical and mechanical aspects, reproducibility of the processes and scale up. In a second stage, we aimed to describe the preclinical in vitro and in vivo assays and selected examples of clinical trials. Furthermore, it is important to keep in mind the regulatory affairs during the research and development (R&D) using standardization (ISO standards) to achieve the main goal, which is the functionality and safety of the final device. To keep reproducible experimental data to prepare an efficient master file for the device, based on quality and recorded manufacturing data, and a rigorous R&D process may help toward clinical translation. A strong debate is still going on because the denominated basic research in HA field does not pay attention to the purity and quality of the raw materials used during the development. So that, to achieve the next generation of devices is needed to overcome the limitations of state of art in terms of efficacy, biodegradability, and non-toxicity.
Collapse
Affiliation(s)
| | - Kristina Nešporová
- Department of Research and Development, Contipro a.s., Dolní Dobrouč, Czechia
| | - Gabriela Ambrožová
- Free Radical Pathophysiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lukas Kubala
- Free Radical Pathophysiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Vladimir Velebný
- Department of Research and Development, Contipro a.s., Dolní Dobrouč, Czechia
| |
Collapse
|
35
|
Study on an injectable biomedical paste using cross-linked sodium hyaluronate as a carrier of hydroxyapatite particles. Carbohydr Polym 2018; 195:378-386. [PMID: 29804989 DOI: 10.1016/j.carbpol.2018.04.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/05/2023]
Abstract
Exploring the long-term filler for minimally invasive plastic surgery has been widely concerned. In the present study, a series of injectable paste composed of hydroxyapatite (HAp) spherical particles and cross-linked sodium hyaluronate (cHA) solution were prepared. The physicochemical properties of cHA as a carrier of high content HAp microspheres (>50%) and as-obtained injectable HAp/cHA paste were studied. The cross-linking degree (DC), viscosity and molecular weight (Mw and Mn) of cHA increased with the increasing of the cross-linker dosage from 7.5 to 17.5 wt% under the certain conditions. HAp/cHA pastes were fabricated by homogeneously blending different sizes of HAp microspheres with cHA solution. The stability, rheological performance and push-out force of the pastes were studied, and the influence factors were discussed. The results indicated that moderate crosslinked cHA with 60% middle size HAp (HAp-M60/cHA-15.0) had appropriate comprehensive property. Finally, the in vitro cell culture approved the paste had no cytotoxicity. Although the biological performance of the pastes still need to be investigated, this preliminary study demonstrates that it is possible to carry high content HAp in cHA, expecting the better volumetric maintenance after long term implantation.
Collapse
|
36
|
Choi JT, Park SJ, Park JH. Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin. J Drug Target 2018; 26:884-894. [PMID: 29417843 DOI: 10.1080/1061186x.2018.1435664] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microneedles (MN) containing cross-linked hyaluronic acid (X-linked HA) particulates were prepared to control the degradation and swelling behaviour after transdermal drug delivery. The X-linked HA particulates were prepared by cross-linking HA chains and then passing the particulates through a sieve. Then, microneedles were prepared by micromolding method. The rheological properties of X-linked HA were studied. The penetration success rate, mechanical failure and dissolution rate of microneedles containing only hyaluronic acid (HA MN) and microneedles containing X-linked HA were compared. The delivery of fluorescein into the skin with X-linked HA MN was also observed using a confocal microscope. The size of the pulverised particulates in water ranged between 29 and 82 μm in diameter. The HA MN and X-linked HA MN were 270 μm in length. X-linked HA MN with fluorescein was inserted to a depth of 90% of the microneedle length successfully. There was no decrease in the penetration success rate for MN with up to 20% content of X-linked HA particulates. X-linked HA MN with up to 20% of particulate content did not change the dissolution time. Delay in degradation of HA, sustained drug release, and swelling behaviour of the skin layer can be obtained by X-linked HA MN.
Collapse
Affiliation(s)
- Jun-Tae Choi
- a Department of BioNano Technology and Gachon BioNano Research Institute , Gachon University , Seongnam , Geonggi-do , Korea
| | - Sang-Jin Park
- b Research Institute of Endoderma Co., Ltd , Seongnam , Gyeonggi-do , Korea
| | - Jung-Hwan Park
- a Department of BioNano Technology and Gachon BioNano Research Institute , Gachon University , Seongnam , Geonggi-do , Korea
| |
Collapse
|
37
|
Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford JL, Fares MM, Mithieux SM, Weiss AS. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 2017; 139:229-243. [PMID: 28579065 PMCID: PMC11110881 DOI: 10.1016/j.biomaterials.2017.05.011] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023]
Abstract
Hydrogel-based bioadhesives have emerged as alternatives for sutureless wound closure, since they can mimic the composition and physicochemical properties of the extracellular matrix. However, they are often associated with poor mechanical properties, low adhesion to native tissues, and lack of antimicrobial properties. Herein, a new sprayable, elastic, and biocompatible composite hydrogel, with broad-spectrum antimicrobial activity, for the treatment of chronic wounds is reported. The composite hydrogels were engineered using two ECM-derived biopolymers, gelatin methacryloyl (GelMA) and methacryloyl-substituted recombinant human tropoelastin (MeTro). MeTro/GelMA composite hydrogel adhesives were formed via visible light-induced crosslinking. Additionally, the antimicrobial peptide Tet213 was conjugated to the hydrogels, instilling antimicrobial activity against Gram (+) and (-) bacteria. The physical properties (e.g. porosity, degradability, swellability, mechanical, and adhesive properties) of the engineered hydrogel could be fine-tuned by varying the ratio of MeTro/GelMA and the final polymer concentration. The hydrogels supported in vitro mammalian cellular growth in both two-dimensional and three dimensional cultures. The subcutaneous implantation of the hydrogels in rats confirmed their biocompatibility and biodegradation in vivo. The engineered MeTro/GelMA-Tet213 hydrogels can be used for sutureless wound closure strategies to prevent infection and promote healing of chronic wounds.
Collapse
Affiliation(s)
- Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA; Biomaterials Innovation Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Devyesh Rana
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA; Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, 64700, Mexico
| | - Jessie L Gifford
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad M Fares
- Department of Chemical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, NSW, Australia; Bosch Institute, University of Sydney, NSW, Australia
| |
Collapse
|