1
|
Li K, Li R, Liu Y, Li G, Liu S. Diversity, mechanism and structure-activity relationships of marine anticoagulant-active polysaccharides: A review. Int J Biol Macromol 2025; 306:141742. [PMID: 40049491 DOI: 10.1016/j.ijbiomac.2025.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Thrombosis is a major complication of cardiovascular disease that can lead to fatal myocardial infarction, acute ischemic stroke and venous thromboembolism, posing a significant threat to human health and even life. Recent research showed that polysaccharides from marine organisms, including marine plants and marine animals, exhibit excellent anticoagulant activity. However, different marine anticoagulant-active polysaccharides (MAPs) exhibit significant differences in both the structure and anticoagulant activity. This review systematically summarizes the diversity and structure of MAPs from the last 30 years. We compared the anticoagulant activity and drug development potential of MAPs from different organisms including red algae, green algae, brown algae, marine fish, sea urchins and sea cucumbers, etc., and analyzed the structure-activity relationships of some MAPs with specific structures. In addition, we also discuss the current challenges and future perspectives of MAPs for the development of novel anticoagulant drugs. This review not only offers a comprehensive understanding of the diversity of marine anticoagulant polysaccharides but also provides valuable reference and guidance for the development of novel anticoagulant drugs in the future.
Collapse
Affiliation(s)
- Kaiqiang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 26623, China.
| | - Yuanjie Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 26623, China
| |
Collapse
|
2
|
Felix AL, Penno SM, Bezerra FF, Mourão PAS. Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future. Glycobiology 2025; 35:cwae098. [PMID: 39706802 DOI: 10.1093/glycob/cwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024] Open
Abstract
Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.
Collapse
Affiliation(s)
- Adriani L Felix
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Suzane M Penno
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Francisco F Bezerra
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
3
|
Ata O, Bozdogan N, Mataraci CE, Kumcuoglu S, Kaya Bayram S, Tavman S. Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chem 2025; 462:141023. [PMID: 39217742 DOI: 10.1016/j.foodchem.2024.141023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, β chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ozge Ata
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Ceren Evrim Mataraci
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | | | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye.
| |
Collapse
|
4
|
Sajith MP, Pitchai A, Ramasamy P. Anticoagulant Protective Effects of Sulfated Chitosan Derived From the Internal Bone of Spineless Cuttlefish (Sepiella inermis). Cureus 2024; 16:e64558. [PMID: 39144883 PMCID: PMC11323196 DOI: 10.7759/cureus.64558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background This study investigated the anticoagulant properties of sulfated chitosan derived from the internal bone of the spineless cuttlefish Sepiella inermis. Chitosan, a biopolymer, is used in various biomedical applications including anticoagulation. Sulfation of chitosan enhances its biological activity, making it a potential therapeutic agent. This study explored the efficacy of sulfated chitosan in preventing blood clot formation to provide a novel anticoagulant alternative. Objectives This study aimed to synthesize and characterize the anticoagulant properties of sulfated chitosan extracted from the internal bone of the spineless cuttlefish S. inermis using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and X-Ray Diffraction (XRD) and evaluate the anticoagulant properties of sulfated chitosan extracted from the internal bone of spineless cuttlefish S. inermis. Materials and methods Chitin and chitosan were extracted from the cuttlebone of a specimen of S. inermis, and sulfated chitosan was synthesized by sulfation of chitosan. Sulfated chitosan was subsequently used to evaluate its anticoagulant properties using tests such as activated partial thromboplastin time (APTT) and prothrombin time (PT). Characteristic investigations were conducted, including FTIR, FESEM, and XRD analyses. Results The results of this study suggested the possibility of using S. inermis internal bone as an unconventional source of natural anticoagulant that can be combined with biomedical applications. Anticoagulant activity measured using APTT and PT showed that sulfated chitosan was a strong anticoagulant. Conclusion We examined the anticoagulant activity of S. inermis extract using thrombin and activated partial thromboplastin times. Our results demonstrated the heparin-like anticoagulant action of the extracted sulfated chitosan, suggesting that it may be a great alternative anticoagulant treatment.
Collapse
Affiliation(s)
- Megha Poolakkal Sajith
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Annathai Pitchai
- Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pasiyappazham Ramasamy
- Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Bougatef H, Volpi N, Ben Amor I, Capitani F, Maccari F, Gargouri J, Sila A, Bougatef A. Chondroitin sulfate from heads of corb: Recovery, structural analysis and assessment of anticoagulant activity. Carbohydr Res 2024; 541:109163. [PMID: 38805806 DOI: 10.1016/j.carres.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
In this study, glycosaminoglycans (GAGs) were extracted from corb (Sciaena umbra) heads and thoroughly examined for their structure. Through cellulose acetate electrophoresis, the GAGs were identified as chondroitin sulfate (CS), with a recovery yield of 10.35 %. The CS exhibited notable characteristics including a high sulfate content (12.4 %) and an average molecular weight of 38.32 kDa. Further analysis via 1H NMR spectroscopy and SAX-HPLC revealed that the CS primarily consisted of alternating units predominantly composed of monosulfated disaccharides at positions 6 and 4 of GalNAc (52.6 % and 38.8 %, respectively). The ratio of sulfate groups between positions 4 and 6 of GalNAc (4/6 ratio) was approximately 0.74, resulting in an overall charge density of 0.98. Thermal properties of the CS were assessed using techniques such as differential scanning calorimetry and thermogravimetric analysis. Notably, the CS demonstrated concentration-dependent prolongation of activated partial thromboplastin time (aPTT) and thrombin time (TT) while showing no effect on platelet function. At 200 μg/mL, aPTT and TT coagulation times were 1.4 and 3.7 times faster than the control, respectively. These findings suggest that CS derived from corb heads holds promise as an anticoagulant agent for therapy, although further clinical investigations are necessary to validate its efficacy.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road Km 0.5, 3003, Sfax, Tunisia
| | - Federica Capitani
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - Jalel Gargouri
- Laboratory of Hematology, Medical Faculty of Sfax. University of Sfax, Magida Boulila Avenue, 3029, Sfax, Tunisia
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, 2100, Gafsa, Tunisia
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax, 3038, Tunisia; High Institute of Biotechnology of Sfax, University of Sfax, Sfax, 3038, Tunisia.
| |
Collapse
|
6
|
Liu Y, Li R, Song L, Li K, Yu H, Xing R, Liu S, Li P. Intermediate molecular weight-fucosylated chondroitin sulfate from sea cucumber Cucumaria frondosa is a promising anticoagulant targeting intrinsic factor IXa. Int J Biol Macromol 2024; 269:131952. [PMID: 38692541 DOI: 10.1016/j.ijbiomac.2024.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.
Collapse
Affiliation(s)
- Yuanjie Liu
- College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Shi S, Hu M, Peng X, Cheng C, Feng S, Pu X, Yu X. Double crosslinking decellularized bovine pericardium of dialdehyde chondroitin sulfate and zwitterionic copolymer for bioprosthetic heart valves with enhanced antithrombogenic, anti-inflammatory and anti-calcification properties. J Mater Chem B 2024; 12:3417-3435. [PMID: 38525920 DOI: 10.1039/d4tb00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Liu G, Chang Y, Mei X, Chen G, Zhang Y, Jiang X, Tao W, Xue C. Identification and structural characterization of a novel chondroitin sulfate-specific carbohydrate-binding module: The first member of a new family, CBM100. Int J Biol Macromol 2024; 255:127959. [PMID: 37951443 DOI: 10.1016/j.ijbiomac.2023.127959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Chondroitin sulfate is a biologically and commercially important polysaccharide with a variety of applications. Carbohydrate-binding module (CBM) is an important class of carbohydrate-binding protein, which could be utilized as a promising tool for the applications of polysaccharides. In the present study, an unknown function domain was explored from a putative chondroitin sulfate lyase in PL29 family. Recombinant PhCBM100 demonstrated binding capacity to chondroitin sulfates with Ka values of 2.1 ± 0.2 × 106 M-1 and 6.0 ± 0.1 × 106 M-1 to chondroitin sulfate A and chondroitin sulfate C, respectively. The 1.55 Å resolution X-ray crystal structure of PhCBM100 exhibited a β-sandwich fold formed by two antiparallel β-sheets. A binding groove in PhCBM100 interacting with chondroitin sulfate was subsequently identified, and the potential of PhCBM100 for visualization of chondroitin sulfate was evaluated. PhCBM100 is the first characterized chondroitin sulfate-specific CBM. The novelty of PhCBM100 proposed a new CBM family of CBM100.
Collapse
Affiliation(s)
- Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Wenwen Tao
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
9
|
Hossain A, Dave D, Shahidi F. Sulfated polysaccharides in sea cucumbers and their biological properties: A review. Int J Biol Macromol 2023; 253:127329. [PMID: 37844809 DOI: 10.1016/j.ijbiomac.2023.127329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
10
|
Lan D, Zhang J, Shang X, Yu L, Xu C, Wang P, Cui L, Cheng N, Sun H, Ran J, Sha L, Yin R, Gao N, Zhao J. Branch distribution pattern and anticoagulant activity of a fucosylated chondroitin sulfate from Phyllophorella kohkutiensis. Carbohydr Polym 2023; 321:121304. [PMID: 37739534 DOI: 10.1016/j.carbpol.2023.121304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Fucosylated chondroitin sulfate (FCS) extracted from Phyllophorella kohkutiensis (PkFCS) is composed of d-GalNAc, d-GlcA, l-Fuc and -SO42-. According to the defined structures revealed by NMR spectra of the branches released by mild acid hydrolysis and oligosaccharides generated by β-eliminative depolymerization, the backbone of PkFCS is CS-E, and the branch types attached to C-3 of d-GlcA include l-Fuc2S4S, l-Fuc3S4S, l-Fuc4S, and the disaccharide α-d-GalNAc-1,2-α-l-Fuc3S4S with the ratio of 43:13:22:22. Notably, novel heptasaccharide and hendecasaccharide were identified that are branched with continuous distribution of the disaccharide. The structural sequences of the oligosaccharides indicate that three unique structural motifs are present in the entire PkFCS polymer, including a motif branched with randomly distributed different sulfated l-Fuc units, a motif containing regular l-Fuc2S4S branches and a motif enriched in α-d-GalNAc-1,2-α-l-Fuc3S4S. This is the first report about the distribution pattern of diverse branches in natural FCS. Natural PkFCS exhibited potent anticoagulant activity on APTT prolonging and anti-iXase activity. Regarding the structurally defined oligosaccharides with sulfated fucosyl side chains, octasaccharide (Pk4b) is the minimum fragment responsible for its anticoagulant activity correlated with anti-iXase. However, further glycosyl modification with a non-sulfated d-GalNAc at the C-2 position of l-Fuc3S4S could significantly decrease the anticoagulant and anti-iXase activity.
Collapse
Affiliation(s)
- Di Lan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaolei Shang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lijuan Yu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Lige Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Nanqi Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianing Ran
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Le Sha
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
11
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
12
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
13
|
Zhao M, Qin Y, Fan Y, Wang X, Yi H, Cui X, Li F, Wang W. Structural Characterization and Glycosaminoglycan Impurities Analysis of Chondroitin Sulfate from Chinese Sturgeon. Polymers (Basel) 2022; 14:polym14235311. [PMID: 36501703 PMCID: PMC9736423 DOI: 10.3390/polym14235311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chinese sturgeon was an endangered cartilaginous fish. The success of artificial breeding has promoted it to a food fish and it is now beginning to provide a new source of cartilage for the extraction of chondroitin sulfate (CS). However, the structural characteristics of sturgeon CS from different tissues remain to be determined in more detail. In this study, CSs from the head, backbone, and fin cartilage of Chinese sturgeon were individually purified and characterized for the first time. The molecular weights, disaccharide compositions, and oligosaccharide sulfation patterns of these CSs are significantly different. Fin CS (SFCS), rich in GlcUAα1-3GalNAc(4S), has the biggest molecular weight (26.5 kDa). In contrast, head CS (SHCS) has a molecular weight of 21.0 kDa and is rich in GlcUAα1-3GalNAc(6S). Most features of backbone CS (SBCS) are between the former two. Other glycosaminoglycan impurities in these three sturgeon-derived CSs were lower than those in other common commercial CSs. All three CSs have no effect on the activity of thrombin or Factor Xa in the presence of antithrombin III. Hence, Chinese sturgeon cartilage is a potential source for the preparation of CSs with different features for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Mei Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Xiaoyu Cui
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Correspondence: (F.L.); (W.W.); Tel.: +86-532-58631406 (F.L. & W.W.); Fax: +86-532-58631405 (F.L. & W.W.)
| |
Collapse
|
14
|
Meng D, Leng X, Zhang Y, Luo J, Du H, Takagi Y, Dai Z, Wei Q. Comparation of the structural characteristics and biological activities of chondroitin sulfates extracted from notochord and backbone of Chinese sturgeon (Acipenser sinensis). Carbohydr Res 2022; 522:108685. [PMID: 36209515 DOI: 10.1016/j.carres.2022.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
|
15
|
Chandika P, Tennakoon P, Kim TH, Kim SC, Je JY, Kim JI, Lee B, Ryu B, Kang HW, Kim HW, Kim YM, Kim CS, Choi IW, Park WS, Yi M, Jung WK. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar Drugs 2022; 20:md20100654. [PMID: 36286477 PMCID: PMC9604568 DOI: 10.3390/md20100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.
Collapse
Affiliation(s)
- Pathum Chandika
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Pipuni Tennakoon
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
| | - Jae-Il Kim
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - BoMi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myunggi Yi
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
16
|
Palani K, Balasubramanian B, Malaisamy A, Maluventhen V, Arumugam VA, Al-Dhabi NA, Valan Arasu M, Pushparaj K, Liu WC, Arumugam M. Sulfated Polysaccharides Derived from Hypnea valentiae and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with In Silico Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3715806. [PMID: 35911161 PMCID: PMC9328948 DOI: 10.1155/2022/3715806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Carrageenan, a sulfated polysaccharide, was produced by certain species of marine red seaweeds, which have been used as a significant source of food, feed, and antibiotic agent throughout history due to their alleged human health benefits. The present study aimed to derive the polysaccharides from Hypnea valentiae and describe the biological applications. Carrageenan was characterized by FT-IR, C-NMR, AFM, and their antimicrobial, antioxidant, and anticoagulant capabilities; furthermore, the larvicidal effect of methanol extract was generated from the seaweed against Aedes aegypti larvae at various concentrations. The molecular docking experiments were carried out computationally for finding the molecular insight of the macromolecules and small molecules' interaction using GLIDE docking by using Schrodinger software. Antibacterial zones of inhibition in different concentrations are compared with the 40 mg/mL higher activity against bacterial pathogens. Carrageenan is strong in all antioxidant activities, with the overall antioxidant (70.1 ± 0.61%) of radical at 250 μg/mL concentration being exhibited. The DPPH scavenging is effective in the inhibition of (65.74 ± 0.58%) radical at a concentration of 160 μg/mL and the hydroxyl scavenging (65.72 ± 0.60%) of activity at a concentration of 125 μg/mL being exhibited. Anticoagulant activities (APPT and PT) of carrageenan fraction were tested. H. valentiae and heparin sulphate shows higher activity of APTT (106.50 IU at 25 μg/mL) in comparison with the PT test (57.86 IU at 25 μg/mL) and the methanol extraction of higher larvicidal activity on A. aegypti (LC50 = 99.675 μg/mL). In this study, the carrageenan was exploited through in vitro and in silico molecular docking studies against antimicrobial, antioxidant, and anticoagulant properties. The results were establishing the potentiality of the carrageenan which is an alternative source to control the mosquitocidal property in the future. Moreover, molecular docking of carrageenan against multiple targets results in -7 to -6 Kcal/mol binding score. Findings of carrageen from in vitro to in silico studies are needed for further validation of clinical pieces of evidence.
Collapse
Affiliation(s)
- Kokila Palani
- Ethnopharmacology and Algal Biotechnology Division, Department of Botany, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Arunkumar Malaisamy
- Integrative Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Viji Maluventhen
- Department of Botany, Thiagarajar College, Madurai 625009, Tamil Nadu, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| | - Wen-Chao Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Maruthupandian Arumugam
- Ethnopharmacology and Algal Biotechnology Division, Department of Botany, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
17
|
Gong PX, Wu YC, Chen X, Zhou ZL, Chen X, Lv SZ, You Y, Li HJ. Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydr Polym 2022; 287:119362. [PMID: 35422306 DOI: 10.1016/j.carbpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shi-Zhong Lv
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
18
|
Dong FK, Quan XG, Wang QB, Liu ZM, Cui T, Wang WJ, Tang DM, Zhang RM, Zhang C, Wang HY, Ren Q. Purification, structural characterization, and anticoagulant activity evaluation of chondroitin sulfate from codfish (Gadus macrocephalus) bones. Int J Biol Macromol 2022; 210:759-767. [PMID: 35526771 DOI: 10.1016/j.ijbiomac.2022.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Chondroitin sulfate (CCS) was purified from discarded codfish (Gadus macrocephalus) bones, and its chemical structure and anticoagulant activity were assessed. CCS was obtained via enzymatic lysis and ion-exchange column chromatography, with a yield of approximately 0.15%. High-performance gel performance chromatography revealed CCS to be a largely homogeneous polysaccharide with a relatively low molecular weight of 12.3 kDa. FT-IR spectroscopy, NMR spectroscopy, and SAX-HPLC indicated that CCS was composed of monosulfated disaccharides (ΔDi4S 73.85% and ΔDi6S 19.06%) and nonsulfated disaccharides (ΔDi0S 7.09%). In vitro anticoagulation analyses revealed that CCS was able to significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) (p < 0.05). At a CCS concentration of 5 μg/mL and 25 μg/mL, APTT and TT were approximately 1.08 and 1.12 times higher, respectively, compared to the negative control group. The results indicated that CCS might offer value as a dietary fiber supplement with the potential to prevent the incidence of coagulation-related thrombosis.
Collapse
Affiliation(s)
- Fa-Kun Dong
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Xian-Gao Quan
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qing-Bing Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zhao-Ming Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Teng Cui
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wen-Jing Wang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Dao-Min Tang
- Rongsense Aquatic Food Group Co. LTD, Rizhao, Shandong, China
| | - Rui-Ming Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Chen Zhang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Hui-Yun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
19
|
Chen X, Wu YC, Gong PX, Zhang YH, Li HJ. Chondroitin sulfate deposited on foxtail millet prolamin/caseinate nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects. Food Funct 2022; 13:5343-5352. [PMID: 35466985 DOI: 10.1039/d2fo00572g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, curcumin (Cur)-loaded chondroitin sulfate (CS)-sodium caseinate (NaCas)-stabilized foxtail millet prolamin (FP) composite nanoparticles (NPs) were fabricated via a one-pot process. FP is capable of self-assembly via liquid antisolvent precipitation under neutral and alkaline conditions (pH 7.0-11.0). Under this condition, the microstructures of hydrophobic FP cores, amphiphilic NaCas and hydrophilic CS shells were fabricated readily by a one-pot method. With an optimal FP/NaCas/CS weight ratio of 3 : 2 : 4, FP-NaCas-CS NPs shared globular microstructures at about 145 nm, and hydrophobic interactions, electrostatic forces, and hydrogen bonds were the main driving forces for the formation and maintenance of stable FP-NaCas-CS NPs. CS coating enhanced the pH stability but reduced the ionic strength stability. The formed NPs were stable over a wide pH range from 2.0 to 8.0 and elevated salt concentrations from 0 to 3 mol L-1 NaCl. FP-NaCas-CS NPs exhibited a higher Cur encapsulation efficiency of 93.4% and re-dispersion capability after lyophilization. Moreover, CS coating promoted selective accumulation in CD44-overexpressing HepG2 cells, resulting in higher inhibition of tumor growth compared to free Cur and FP-NaCas NP-encapsulated Cur. As for comparison, encapsulated Cur exhibited reduced cytotoxicity on normal liver cells L-O2. This preclinical study suggests that FP-NaCas-CS NPs could be very beneficial in terms of encapsulating hydrophobic drugs, improving the effectiveness of cancer therapies and reducing side effects on normal tissues.
Collapse
Affiliation(s)
- Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Yu-He Zhang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China.
| |
Collapse
|
20
|
Xu H, Zhou Q, Liu B, Chen F, Wang M. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health: Structures and biological activities. Carbohydr Polym 2022; 275:118691. [PMID: 34742418 DOI: 10.1016/j.carbpol.2021.118691] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023]
Abstract
Fucosylated chondroitin sulfates (FCS) are a sulfated polysaccharide exclusively existing in the body wall of sea cucumber. FCS possesses a mammalian chondroitin sulfate like backbone, namely repeating disaccharides units composed of GlcA and GalNAc, with fucosyl branches linked to GlcA and/or GalNAc residues. It is found that FCS can prevent unhealthy dietary pattern-induced metabolic syndromes, including insulin resistance and β-cell function improvement, anti-inflammation, anti-hyperlipidemia, and anti-adipogenesis. Further studies show that those activities of FCS might be achieved through positively modulating gut microbiota composition. Besides, FCS also show therapeutic efficacy in cancer, HIV infection, and side effects of cyclophosphamide. Furthermore, bioactivities of FCS are closely affected by their molecular weights, sulfation pattern of the fucosyl branches, and chain conformations. This review summarizes the recent 20 years studies to provide references for the future studies and applications of FCS in functional foods or drugs.
Collapse
Affiliation(s)
- Hui Xu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
21
|
Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, Zhao Q, Du B, Yang Y. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Ultrasonic-Assisted Extraction and Structural Characterization of Chondroitin Sulfate Derived from Jumbo Squid Cartilage. Foods 2021; 10:foods10102363. [PMID: 34681412 PMCID: PMC8535863 DOI: 10.3390/foods10102363] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Chondroitin sulfate (ChS) is usually used as an oral nutraceutical supplement, and has been popular in Asia, Europe, and United States for many years. In this study, a potential and sustainable source of ChS from jumbo squid (Dosidicus gigas) cartilage was explored; ultrasound-assisted extraction (UAE) was used to extract ChS from jumbo squid cartilage. The result of mass transfer coefficients based on Fick's law showed that UAE had higher mass transfer efficacy. The response surface methodology (RSM) combined with Box-Behnken design (BBD) was employed to evaluate the effects of the extraction parameters. The optimal conditions were extraction temperature of 52 °C, extraction time of 46 min, and NaOH concentration of 4.15%. The crude extract was precipitated by 50% ethanol, which obtained a purified ChS with 23.7% yield and 82.3% purity. The purified ChS measured by energy-dispersive X-ray spectroscopy (EDX) had a carbon to sulfur molar ratio of approximately 14:1. The FTIR, 1H, and 13C NMR confirmed jumbo squid ChS were present in the form of chondroitin-4-sulfate and chondroitin-6-sulfate, with a 4S/6S ratio of 1.62. The results of this study provide an efficient process for production and purification of ChS, and are significant for the development and utilization of ChS from jumbo squid cartilage in the nutrient food or pharmaceutical industries.
Collapse
|
23
|
Ma M, Wang H, Yuan Y, Wang Y, Yang S, Lv Z. The absorption of glycosaminoglycans of different molecular weight obtained from Apostichopus japonicus: an in vitro and in situ study. Food Funct 2021; 12:5551-5562. [PMID: 34008639 DOI: 10.1039/d1fo00624j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to investigate the absorption and transport of glycosaminoglycan from Apostichopus japonicus (AHG) and its depolymerized derivatives (DAHG-1, DAHG-2, DAHG-3). The AHG and depolymerized AHGs (DAHGs) were characterized by high-performance gel permeation chromatography (HPGPC), Raman spectroscopy and atomic force microscopy (AFM). The results showed that there was no significant difference of an AHG primary structure and functional groups during the depolymerization. Meanwhile, AFM observation showed that AHG and DAHGs possessed linear structures. In this study, a rapid and sensitive liquid chromatographic post-column derivatization method was used to investigate the absorption of AHG and DAHGs with the Caco-2 cell model, the M cell model and the intestinal recirculating perfusion. It was found that AHG and DAHGs can be absorbed in the intestine, and their transport involved endocytosis.
Collapse
Affiliation(s)
- Mengjie Ma
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| | - Han Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Yuanhong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China. and Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, People's Republic of China
| | - Shuang Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China. and Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, People's Republic of China
| | - Zhihua Lv
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China. and Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, People's Republic of China
| |
Collapse
|
24
|
Peng C, Wang Q, Jiao R, Xu Y, Han N, Wang W, Zhu C, Li F. A novel chondroitin sulfate E from Dosidicus gigas cartilage and its antitumor metastatic activity. Carbohydr Polym 2021; 262:117971. [PMID: 33838835 DOI: 10.1016/j.carbpol.2021.117971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Chondroitin sulfate (CS) chains containing GlcUAβ1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Qingbin Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Runmiao Jiao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Naihan Han
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; Shandong Police College, Jinan, 250200, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
25
|
Prolonged release and shelf-life of anticoagulant sulfated polysaccharides encapsulated with ZIF-8. Int J Biol Macromol 2021; 183:1174-1183. [PMID: 33984382 DOI: 10.1016/j.ijbiomac.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Natural active polysaccharides are attracting increased attention from pharmaceutical industries for their valuable biological activities. However, the application of polysaccharides has been restricted due to their relatively large molecular weight, complex structure, and instability. Metal-organic frameworks (MOFs) have emerged to help deliver cargo to specific locations, achieving the objectives of eliminating the potential damage to the body, protecting the drugs, and improving therapeutic effectiveness. Here, a pH-responsive zeolitic imidazolate framework (ZIF-8) was synthesized to encapsulated three sulfated polysaccharides (heparin, fucan sulfate, fucosylated chondroitin sulfate) and a non-sulfated polysaccharide, hyaluronic acid. The resulting polysaccharides@ZIF-8 biocomposites showed differences in terms of morphology, particle size, encapsulation, and release efficiency. These biocomposites retained antithrombotic activity and the framework ZIF-8 effectively protected these polysaccharides from degradation and prolonged shelf-life of the anticoagulants from the unfavorable environment.
Collapse
|
26
|
Gong PX, Li QY, Wu YC, Lu WY, Zeng J, Li HJ. Structural elucidation and antidiabetic activity of fucosylated chondroitin sulfate from sea cucumber Stichopus japonicas. Carbohydr Polym 2021; 262:117969. [PMID: 33838834 DOI: 10.1016/j.carbpol.2021.117969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
A fucosylated chondroitin sulfate was isolated from the body wall of sea cucumber Stichopus japonicus (FCSsj), whose structure was characterized by NMR spectroscopy and HILIC-FTMS. At the ratio of 1.00:0.26:0.65, three fucosyl residues were found: 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S), which were only linked to the O-3 of glucuronic acid residues (GlcA). Besides mono-fucosyl moieties, di-fucosyl branches, namely Fuc2,4Sα(1→3)Fuc4S, were also found to be attached to the O-3 of GlcA. The antidiabetic activity of FCSsj was evaluated using glucosamine induced insulin resistant (IR) Hep G2 cells in vitro. It was found that FCSsj significantly promoted the glucose uptake and glucose consumption of IR-Hep G2 cells in a dose-dependent manner, and could alleviate the cell damage. Furthermore, FCSsj could promote the glycogen synthesis in the glucosamine-induced IR-Hep G2 cells. These results provided a supplement for studying the antidiabetic activity of FCSsj.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Qin-Ying Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China.
| | - Wen-Yu Lu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Jun Zeng
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
27
|
Muruganantham S, Krishnaswami V, Alagarsamy S, Kandasamy R. Anti-platelet Drug-loaded Targeted Technologies for the Effective Treatment of Atherothrombosis. Curr Drug Targets 2021; 22:399-419. [PMID: 33109044 DOI: 10.2174/1389450121666201027125303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
Atherothrombosis results from direct interaction between atherosclerotic plaque and arterial thrombosis and is the most common type of cardiovascular disease. As a long term progressive disease, atherosclerosis frequently results in an acute atherothrombotic event through plaque rupture and platelet-rich thrombus formation. The pathophysiology of atherothrombosis involves cholesterol accumulation endothelial dysfunction, dyslipidemia, immuno-inflammatory, and apoptotic aspects. Platelet activation and aggregation is the major cause for stroke because of its roles, including thrombus, contributing to atherosclerotic plaque, and sealing off the bleeding vessel. Platelet aggregates are associated with arterial blood pressure and cardiovascular ischemic events. Under normal physiological conditions, when a blood vessel is damaged, the task of platelets within the circulation is to arrest the blood loss. Antiplatelet inhibits platelet function, thereby decreasing thrombus formation with complementary modes of action to prevent atherothrombosis. In the present scientific scenario, researchers throughout the world are focusing on the development of novel drug delivery systems to enhance patient's compliance. Immediate responding pharmaceutical formulations become an emerging trend in the pharmaceutical industries with better patient compliance. The proposed review provides details related to the molecular pathogenesis of atherothrombosis and recent novel formulation approaches to treat atherothrombosis with particular emphasis on commercial formulation and upcoming technologies.
Collapse
Affiliation(s)
- Selvakumar Muruganantham
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
28
|
Doshi G, Nailwal N. A Review on Molecular Mechanisms and Patents of Marine-derived Anti-thrombotic Agents. Curr Drug Targets 2021; 22:318-335. [PMID: 33081673 DOI: 10.2174/1389450121666201020151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Thrombosis is a condition of major concern worldwide as it is associated with life-threatening diseases related to the cardiovascular system. The condition affects 1 in 1000 adults annually, whereas 1 in 4 dies due to thrombosis, and this increases as the age group increases. The major outcomes are considered to be a recurrence, bleeding due to commercially available anti-coagulants, and deaths. The side effects associated with available anti-thrombotic drugs are a point of concern. Therefore, it is necessary to discover and develop an improvised benefit-risk profile drug, therefore, in search of alternative therapy for the treatment of thrombosis, marine sources have been used as promising treatment agents. They have shown the presence of sulfated fucans/galactans, fibrinolytic proteases, diterpenes, glycosaminoglycan, glycoside, peptides, amino acids, sterols, polysaccharides, polyphenols, vitamins, and minerals. Out of these marine sources, many chemicals were found to have anti-thrombotic activities. This review focuses on the recent discovery of anti-thrombotic agents obtained from marine algae, sponges, mussels, and sea cucumber, along with their mechanism of action and patents on its extraction process, preparation methods, and their applications. Further, the article concludes with the author's insight related to marine drugs, which have a promising future.
Collapse
Affiliation(s)
- Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Namrata Nailwal
- M. Pharm Research Scholar, Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Li H, Yuan Q, Lv K, Ma H, Gao C, Liu Y, Zhang S, Zhao L. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: A review. Carbohydr Polym 2021; 251:117034. [DOI: 10.1016/j.carbpol.2020.117034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
|
30
|
Chandika P, Heo SY, Oh GW, Choi IW, Park WS, Jung WK. Antithrombin III-mediated blood coagulation inhibitory activity of chitosan sulfate derivatized with different functional groups. Int J Biol Macromol 2020; 161:1552-1558. [PMID: 32791278 DOI: 10.1016/j.ijbiomac.2020.08.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Acylated chitosan sulfate (ChS1), a sulfated polysaccharide with high anticoagulant activity, was chemically synthesized and structurally characterized using FT-IR analysis. The beneficial structural properties and high availability of the sulfate group in ChS1 led to greater anticoagulant activity through both the intrinsic and common pathways with antithrombin III (AT III)-mediated inhibition, particularly involving coagulation factors FXa and FIIa. The analysis of the binding affinities using surface plasma resonance found that the equilibrium dissociation constant (KD) of ChS1 for FXa and FIIa in the presence of AT III was 67.4 nM and 112.6 nM, respectively, indicating the stronger interaction of the AT III/ChS1 complex with the ligands and the inhibition of activated FX and FII. The results of amidolytic assays further demonstrated the stronger inhibition of the proteolytic conversion of factor X by the intrinsic FXase complex and of FII by the prothrombinase complex. Molecular docking analysis further validated the protein-ligand interactions of ChS1 with AT III and their binding affinity.
Collapse
Affiliation(s)
- Pathum Chandika
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yeong Heo
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 48513, Republic of Korea; Ingram School of Engineering, Texas State University, San Marcos, TX 78666, United States of America.
| |
Collapse
|
31
|
Dwivedi R, Pomin VH. Marine Antithrombotics. Mar Drugs 2020; 18:md18100514. [PMID: 33066214 PMCID: PMC7602030 DOI: 10.3390/md18100514] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Thrombosis remains a prime reason of mortality worldwide. With the available antithrombotic drugs, bleeding remains the major downside of current treatments. This raises a clinical concern for all patients undergoing antithrombotic therapy. Novel antithrombotics from marine sources offer a promising therapeutic alternative to this pathology. However, for any potential new molecule to be introduced as a real alternative to existing drugs, the exhibition of comparable anticoagulant potential with minimal off-target effects must be achieved. The relevance of marine antithrombotics, particularly sulfated polysaccharides, is largely due to their unique mechanisms of action and lack of bleeding. There have been many investigations in the field and, in recent years, results have confirmed the role of potential marine molecules as alternative antithrombotics. Nonetheless, further clinical studies are required. This review covers the core of the data available so far regarding the science of marine molecules with potential medical applications to treat thrombosis. After a general discussion about the major biochemical steps involved in this pathology, we discuss the key structural and biomedical aspects of marine molecules of both low and high molecular weight endowed with antithrombotic/anticoagulant properties.
Collapse
|
32
|
Bano S, Fatima S, Ahamad S, Ansari S, Gupta D, Tabish M, Rehman SU, Jairajpuri MA. Identification and characterization of a novel isoform of heparin cofactor II in human liver. IUBMB Life 2020; 72:2180-2193. [PMID: 32827448 DOI: 10.1002/iub.2361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
Heparin cofactor II (HCII) is predominantly expressed in the liver and inhibits thrombin in blood plasma to influence the blood coagulation cascade. Its deficiency is associated with arterial thrombosis. Its cleavage by neutrophil elastase produces fragment that helps in neutrophil chemotaxis in the acute inflammatory response in human. In the present study, we have identified a novel alternatively spliced transcript of the HCII gene in human liver. This novel transcript includes an additional novel region in continuation with exon 3 called exon 3b. Exon 3b acts like an alternate last exon, and hence its inclusion in the transcript due to alternative splicing removes exon 4 and encodes for a different C-terminal region to give a novel protein, HCII-N. MD simulations of HCII-N and three-dimensional structure showed a unique 51 amino acid sequence at the C-terminal having unique RCL-like structure. The HCII-N protein purified from bacterial culture showed a protein migrating at lower molecular weight (MW 55 kDa) as compared to native HCII (MW 66 kDa). A fluorescence-based analysis revealed a more compact structure of HCII-N that was in a more hydrophilic environment. The HCII-N protein, however, showed no inhibitory activity against thrombin. Due to large conformational variation observed in comparison with native HCII, HCII-N may have alternate protease specificity or a non-inhibitory role. Western blot of HCII purified from large plasma volume showed the presence of a low MW 59 kDa band with no thrombin activity. This study provides the first evidence of alternatively spliced novel isoform of the HCII gene.
Collapse
Affiliation(s)
- Shadabi Bano
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
33
|
Structure characterization of a heavily fucosylated chondroitin sulfate from sea cucumber (H. leucospilota) with bottom-up strategies. Carbohydr Polym 2020; 240:116337. [DOI: 10.1016/j.carbpol.2020.116337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
|
34
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
35
|
Chahed L, Balti R, Elhiss S, Bouchemal N, Ajzenberg N, Ollivier V, Chaubet F, Maaroufi RM, Mansour MB. Anticoagulant activity of fucosylated chondroitin sulfate isolated from Cucumaria syracusana. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Zhang J, Liu S, Li L, Wang G, Liu F, Zhao Y, Jing Y, Li Z. Effect of polysaccharide extract SPSS1 from Apostichopus japonicas spermary on HepG2 cells via iTRAQ-based proteome analysis. J Food Biochem 2020; 44:e13168. [PMID: 32160323 DOI: 10.1111/jfbc.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
In this study, polysaccharide extract was prepared from Apostichopus japonicus spermary and purified by ion-exchange chromatography and gel filtration chromatography. Two main fractions named SPSS1 and SPSS2 were obtained and analyzed by ultraviolet spectroscopy and mixed with KBr, respectively. Chemical components analysis proved that SPSS1 and SPSS2 were rich in sulfate. Monosaccharide analysis indicated that in addition to the high content of lactose in both kinds of polysaccharides, the highest content of monosaccharide in SPSS1 was galactose, while in SPSS2 it was fucose. Further, the antitumor study of SPSS1 was carried and the results showed that SPSS1 treatment inhibited the proliferation of HepG2 cells. Through the iTRAQ-based proteome analysis, there were 208 differential proteins between control tumor cells and SPSS1 treatment of tumor cells. Compared to control tumor cells, 135 proteins were upregulated and 73 proteins were downregulated in treatment tumor cells. PRACTICAL APPLICATIONS: Our study suggested that polysaccharide from sea cucumbers had the potential to be further developed as antitumor drugs.
Collapse
Affiliation(s)
- Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, China.,College of Biotechnology, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shaowei Liu
- College of Biotechnology, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yunping Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yuexin Jing
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Zhenduo Li
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
37
|
Two different fucosylated chondroitin sulfates: Structural elucidation, stimulating hematopoiesis and immune-enhancing effects. Carbohydr Polym 2019; 230:115698. [PMID: 31887892 DOI: 10.1016/j.carbpol.2019.115698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/14/2023]
Abstract
Two fucosylated chondroitin sulfates FCShp and FCSht were isolated from the sea cucumber Holothuria polii and Holothuria tubulosa, respectively. The NMR spectroscopy and HILIC-FTMS methods were applied for their detailed structural characterization. Chemical analysis indicated that the two FCSs all contained a chondroitin sulfate backbone chondroitin sulfate-like core and fucosyl branches of α-L-Fuc2,4S, α-L-Fuc4S or α-L-Fuc3,4S linked to O-3 of glucuronic acid residues. The main branches of FCShp and FCSht were monofucose, and the small amounts of di-, tri- and tetrafucose with α-1,3-linkage type were also detected. Finally, we investigated the immunomodulatory function of FCShp and FCSht in cyclophosphamide (CTX)-induced immunosuppressed mouse models. The results showed that FCShp and FCSht had beneficial effects on hematopoietic function recovery in CTX-induced bone marrow suppression mice. Notably, the α-L-Fuc2,4S was more important to the activity than α-L-Fuc3,4S. These results provided basis for developing the drugs to reduce side effects of chemotherapy.
Collapse
|
38
|
Lin X, Yao M, Lu JH, Wang Y, Yin X, Liang M, Yuan E, Ren J. Identification of novel oligopeptides from the simulated digestion of sea cucumber (Stichopus japonicus) to alleviate Aβ aggregation progression. J Funct Foods 2019; 60:103412. [DOI: 10.1016/j.jff.2019.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
39
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
40
|
Tiwari A, Pritam S, Mishra K, Khan M, Upmanyu N, Ghosh D. Nutraceuticals from Marine Bionetworks. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180109153825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
“Nutrition” and “Pharmaceutical” together build up the perception of “Nutraceuticals” that
refer to the food or dietary supplements that help to incorporate additional health benefits to the fundamental
sustenance accomplished on daily basis. Each nutraceutical contains one or more bioactive
molecules that are usually obtained by chemical and/ or biotechnological synthesis or by extraction
from natural sources. Among the natural sources, marine bionetwork possess immense potential for
the presence of bioactive compounds. Some of these bioactive compounds as isolated from marine
sources, have potential use as nutraceuticals. This mini review provides a brief overview of nutraceutical
compounds from marine sources that are currently under research and/or have been commercialized.
A detailed discussion on the biochemical categories of compounds and the marine organisms that
play as potential sources of these bioactive nutraceutical compounds have been included.
Collapse
Affiliation(s)
- Abhitav Tiwari
- School of Pharmacy and Research, People's University, Bhopal, India
| | - Shambhawi Pritam
- School of Pharmacy and Research, People's University, Bhopal, India
| | - Keerti Mishra
- School of Pharmacy and Research, People's University, Bhopal, India
| | - Mehshara Khan
- School of Pharmacy and Research, People's University, Bhopal, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal, India
| | - Dipanjana Ghosh
- School of Pharmacy and Research, People's University, Bhopal, India
| |
Collapse
|
41
|
Bougatef H, Krichen F, Capitani F, Amor IB, Gargouri J, Maccari F, Mantovani V, Galeotti F, Volpi N, Bougatef A, Sila A. Purification, compositional analysis, and anticoagulant capacity of chondroitin sulfate/dermatan sulfate from bone of corb (Sciaena umbra). Int J Biol Macromol 2019; 134:405-412. [PMID: 31071403 DOI: 10.1016/j.ijbiomac.2019.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) were isolated and purified for the first time from the bone of corb (Sciaena umbra) (CBG) and their chemical composition and anticoagulant activity were assessed. Infrared spectrum and agarose-gel electrophoresis for extracted CS/DS were also investigated. The results showed that the purified CS/DS obtained at a yield of 10% contains about 31.28% sulfate and an average molecular mass of 23.35 kDa. Disaccharide analysis indicated that CBG was composed of monosulfated disaccharides in positions 6 and 4 of the N-acetylgalactosamine (8.6% and 40.0%, respectively) and disulfated disaccharides in different percentages. The charge density was 1.4 and the ratio of 4:6 sulfated residues was equal to 4.64. Chondroitinase AC showed that the purified CS/DS contained mainly 74% CS and 26% DS. Moreover, the new CS/DS extracted from bone of corb showed a strong anticoagulant effect through activated partial thrombosis time (aPTT), thrombin time (TT) and prothrombin time (PT). In fact, CBG prolonged significantly (p < 0.05), aPTT and PT about 2.62 and 1.26 fold, respectively, greater than that of the negative control at a concentration of 1000 μg/mL. However, TT assay of CBG was prolonged 3.53 fold compared with the control at 100 μg/mL. The purified CS/DS displayed a promising anticoagulant potential, which may be used as a novel and soothing drug.
Collapse
Affiliation(s)
- Hajer Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Fatma Krichen
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ikram Ben Amor
- Regional Centre for Blood Transfusion Sfax, El-Ain Road Km 0.5, P.C. 3003 Sfax, Tunisia
| | - Jalel Gargouri
- Regional Centre for Blood Transfusion Sfax, El-Ain Road Km 0.5, P.C. 3003 Sfax, Tunisia
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Mantovani
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
| | - Assaâd Sila
- Laboratory for the Improvement of Plants and Valorization of Agroresources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, 2100 Gafsa, Tunisia.
| |
Collapse
|
42
|
Abdelhedi O, Khemakhem H, Nasri R, Jridi M, Mora L, Ben Amor I, Jamoussi K, Toldrá F, Gargouri J, Nasri M. Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Mar Drugs 2019; 17:E194. [PMID: 30934709 PMCID: PMC6520678 DOI: 10.3390/md17040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, the antihypertensive activity of Purafect®-smooth hound viscera protein hydrolysate (VPH) and its peptide fraction with molecular weight (MW) below 1 kDa (VPH-I) was investigated. In addition, the lipase inhibitory activity, as well the anticoagulant potential, in vitro, were assessed. The antihypertensive effects of VPH and VPH-I were studied during 24 h (short-term effect) and 30 days (long-term effect) using high-salt (18% NaCl) and -fructose (10%) diet (HSFD)-induced hypertension. Data showed that, 4 h post-administration of VPH and VPH-I (200 mg/kg BW), the systolic blood pressure of rats was reduced by about 6 and 9 mmHg, respectively. These effects were similar to that obtained with Captopril (~9 mmHg at t = 4 h). On the other hand, exposing the rats to daily to HSFD, coupled to the administration of viscera peptides, was found to attenuate hypertension. In addition, the proteins' treatments were able to correct lipid and glycemic disorders, by reducing the total cholesterol and triglyceride contents and resorting to the plasma glucose level, compared to the HSFD group. Overall, the present findings demonstrated the preventive effect of VPH-peptides from hypertension complications, as a result of their biological properties.
Collapse
Affiliation(s)
- Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Hana Khemakhem
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Ikram Ben Amor
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Jalel Gargouri
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| |
Collapse
|
43
|
Shi D, Qi J, Zhang H, Yang H, Yang Y, Zhao X. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int J Biol Macromol 2019; 132:738-747. [PMID: 30904529 DOI: 10.1016/j.ijbiomac.2019.03.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
To minimize undesired pharmacological activities and improve the bioavailability, the fucoidan and fucosylated chondroitin sulfate (FCS) from Holothuria floridana were depolymerized under hydrothermal conditions and the mechanism underlying hydrothermal depolymerization was proposed. Our results demonstrated that fucoidan and FCS from Holothuria floridana were able to be gradually depolymerized without desulfation at 100-121 °C by control of pH at 5-6 to obtain controlled molecular weight. It was the first time to find that pH also plays a key role on the hydrothermal depolymerization of fucoidan and FCS. The monosaccharide composition, FT-IR and NMR analysis showed that the structure of the optimized hydrothermal depolymerized fucoidan and FCS remained almost unchanged. By comparison, FCS was more difficult to be depolymerized than fucoidan under the same hydrothermal condition. The oligosaccharide profile in depolymerized fucoidan and FCS by HILIC-MS analysis further revealed that FCS was depolymerized with preferential cleavage of β-1 → 4 glycosidic linkage and decarboxylation on glucuronic acid during hydrothermal treatment, which was quite different with the random fracture type of fucoidan due to their different structure. These results indicated that hydrothermal depolymerization and action mechanism of fucoidan and FCS from sea cucumber were quite different for their different structure.
Collapse
Affiliation(s)
- Deling Shi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Junhua Qi
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China.; The Technology Center of Qingdao Customs, No. 70, Qutangxia Road, Qingdao 266001, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, No. 10, Lincheng Street, Zhoushan 316021, China
| | - Yi Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, YuShan Road, Qingdao, Shandong Province 266003, PR China..
| |
Collapse
|
44
|
Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int J Biol Macromol 2019; 121:1145-1153. [DOI: 10.1016/j.ijbiomac.2018.10.129] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
45
|
Souissi N, Boughriba S, Abdelhedi O, Hamdi M, Jridi M, Li S, Nasri M. Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus. RSC Adv 2019; 9:11538-11551. [PMID: 35520239 PMCID: PMC9063433 DOI: 10.1039/c9ra00959k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the antioxidant, antibacterial and anticoagulant activities of sulfated polysaccharides extracted from Solen marginatus flesh were investigated via physicochemical characterization of the crude polysaccharide SM-CP and its deproteinized fraction (SM-DP); their total sugar contents were 47.15% and 66.01%. The results obtained via molecular weight evaluation showed that SM-CP mainly had a high molecular weight (1075 kDa), whereas SM-DP had a lower molecular weight (almost 237.9 kDa); in addition, thermal analysis (differential scanning calorimetry and thermogravimetry) was conducted; the results indicated that SM-CP was thermally more stable as its degradation temperature was 307 °C, whereas SM-DP was thermally less stable, with the degradation temperature of 288 °C. Moreover, the results obtained via the investigation of biological properties revealed that the extracted polysaccharides exhibited strong antioxidant and anticoagulant activities. Subsequently, SM-CP was fractionated using the DEAE-cellulose column. The peak (FII) eluted at high NaCl concentrations indicated highest anticoagulant activity as designated by the prolongation of the activated partial thromboplastin time (over 120 s), prothrombin time (28 s) and low level of fibrinogen (0.7 g l−1). The overall data demonstrated the significant therapeutic potential of the polysaccharides extracted from razor clam flesh. In this study, some biological activities of sulfated polysaccharides extracted from Solen marginatus flesh were investigated via physicochemical characterization of the crude polysaccharide SM-CP and its deproteinized fraction SM-DP.![]()
Collapse
Affiliation(s)
- Nabil Souissi
- Laboratoire de Biodiversité Marine
- Institut National des Sciences et Technologies de la Mer
- Centre de Sfax
- Sfax
- Tunisia
| | - Soumaya Boughriba
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Ola Abdelhedi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Marwa Hamdi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Mourad Jridi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Suming Li
- Institut Européen des Membranes
- UMR CNRS 5635
- Université de Montpellier
- 34095 Montpellier Cedex 5
- France
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| |
Collapse
|
46
|
Ghlissi Z, Krichen F, Kallel R, Amor IB, Boudawara T, Gargouri J, Zeghal K, Hakim A, Bougatef A, Sahnoun Z. Sulfated polysaccharide isolated from Globularia alypum L.: Structural characterization, in vivo and in vitro anticoagulant activity, and toxicological profile. Int J Biol Macromol 2018; 123:335-342. [PMID: 30419328 DOI: 10.1016/j.ijbiomac.2018.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
A sulfated polysaccharide from Globularia alypum L. (GASP) was extracted with a yield of 14.2%. GASP is composed mostly of sulfate and total sugars (13.29% and 71.56%, respectively) with small amount of proteins and lipids. The chemical and structural characterization was studied by Infra-Red spectroscopic and gas chromatography-mass spectrometry (GC-MS). GASP composed of eight carbohydrates where galactose, glucose, and mannose are the major compounds (33.47%, 26.71% and 18.21%, respectively). The in vitro and in vivo anticoagulant activities in rats were tested using the standard coagulation assays activated partial thromboplastin time (aPTT), prothrombine time (TT) and thrombin time (PT) tests. Both doses of GASP (200 and 500 mg/kg b.w) displayed a significant in vitro (1.22 and 1.33-fold, 1.17 and 1.27-fold, and 1.21 and 1.26-fold, respectively) and in vivo (1.47 and 2.52-fold; 1.20 and 1.43-fold; 1.21 and 1.40-fold, respectively) compared with the control. Toxicity studies on liver performed by the catalytic activity of transaminases in plasma, oxidative stress markers and hepatic morphological changes indicated that GASP at both doses are not toxics. The important pharmacological and toxicological profile of GASP revealed that this compound may be used as a novel and effective drug.
Collapse
Affiliation(s)
- Zohra Ghlissi
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia.
| | - Fatma Krichen
- Laboratory of Plant Improvement and Valorization of Agro-Resources, ENIS, University of Sfax, 3038 Sfax, Tunisia
| | - Rim Kallel
- Anatomopathology Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road Km 0.5, 3003 Sfax, Tunisia
| | - Tahiya Boudawara
- Anatomopathology Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Jalel Gargouri
- Laboartory of Haematology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Khaled Zeghal
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Ahmed Hakim
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Ali Bougatef
- Laboratory of Plant Improvement and Valorization of Agro-Resources, ENIS, University of Sfax, 3038 Sfax, Tunisia
| | - Zouheir Sahnoun
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
47
|
Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
48
|
Bougatef H, Krichen F, Capitani F, Amor IB, Maccari F, Mantovani V, Galeotti F, Volpi N, Bougatef A, Sila A. Chondroitin sulfate/dermatan sulfate from corb (Sciaena umbra) skin: Purification, structural analysis and anticoagulant effect. Carbohydr Polym 2018; 196:272-278. [DOI: 10.1016/j.carbpol.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/18/2018] [Accepted: 05/06/2018] [Indexed: 01/17/2023]
|
49
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
50
|
Studies on European eel skin sulfated glycosaminoglycans: Recovery, structural characterization and anticoagulant activity. Int J Biol Macromol 2018; 115:891-899. [DOI: 10.1016/j.ijbiomac.2018.04.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
|