1
|
Sun Y, Wu S, Jiao Z, Liu D, Li X, Shang T, Tian Z. Preparation and characterization of active packaging film containing chitosan/gelatin/brassica crude extract. Sci Rep 2025; 15:6729. [PMID: 40000666 PMCID: PMC11862006 DOI: 10.1038/s41598-025-90638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Chitosan (CS), gelatin (GE), and brassica (BR) were utilized as the primary components to develop an active packaging film with outstanding properties. Active film-forming solutions were prepared using the solution casting method to produce these films. The resulting active films were characterized through various techniques, including X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, and light transmittance (T%), opacity, water solubility (WS), water vapour transmittance rate (WVTR), oxygen permeability (OP), mechanical properties, and antioxidant and antimicrobial properties. Orthogonal test results indicated that the optimal preparation ratio for the composite film was achieved with 2.5 g CS, 3.5 g GE, 6 g glycerol (GL) dissolved in distilled water. Under these conditions, the active packaging film exhibited excellent mechanical properties. In summary, the chitosan/gelatin/brassica crude extract-based active packaging film developed in this study presents a promising option for practical applications.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Shifang Wu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| | - Dafeng Liu
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Xueru Li
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China
| | - Tiancui Shang
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
| | - Zhu Tian
- College of Biological Science and Technology, Yili Normal University, Yining, 835000, China.
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China.
| |
Collapse
|
2
|
Momeni P, Nourisefat M, Farzaneh A, Shahrousvand M, Abdi MH. The engineering, drug release, and in vitro evaluations of the PLLA/HPC/ Calendula Officinalis electrospun nanofibers optimized by Response Surface Methodology. Heliyon 2024; 10:e23218. [PMID: 38205286 PMCID: PMC10777380 DOI: 10.1016/j.heliyon.2023.e23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
A system based on poly(l-lactic acid) (PLLA) and hydroxypropyl cellulose (HPC) was considered in this study to achieve electrospun mats with outstanding properties and applicability in biomedical engineering. A novel binary solvent system of chloroform/N,N-dimethylformamide (CF/DMF:70/30) was utilized to minimize the probable phase separation between the polymeric components. Moreover, Response Surface Methodology (RSM) was employed to model/optimize the process. Finally, to scrutinize the ability of the complex in terms of drug delivery, Calendula Officinalis (Marigold) extract was added to the solution of the optimal sample (Opt.PH), and then the set was electrospun (PHM). As a result, the presence of Marigold led to higher values of fiber diameter (262 ± 34 nm), pore size (483 ± 102 nm), and surface porosity (81.0 ± 7.3 %). As this drug could also prohibit the micro-scale phase separation, the PHM touched superior tensile strength and Young modulus of 11.3 ± 1.1 and 91.2 ± 4.2 MPa, respectively. Additionally, the cumulative release data demonstrated non-Fickian diffusion with the Korsmeyer-Peppas exponent and diffusion coefficient of n = 0.69 and D = 2.073 × 10-14 cm2/s, respectively. At the end stage, both the Opt.PH and PHM mats manifested satisfactory results regarding the hydrophilicity and cell viability/proliferation assessments, reflecting their high potential to be used in regenerative medicine applications.
Collapse
Affiliation(s)
- Pegah Momeni
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Maryam Nourisefat
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Arman Farzaneh
- Department of polymer engineering and color technology, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran
| | - Mohammad Hossein Abdi
- School of Chemical and polymer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Sun J, Zhang J, Peng X, Zhang X, Yuan Z, Liu X, Liu S, Zhao X, Yu S, Yi X. Carboxymethyl cellulose/polyvinyl alcohol composite aerogel supported beta molecular sieve for CH 4 adsorption and storage. Carbohydr Polym 2023; 321:121246. [PMID: 37739488 DOI: 10.1016/j.carbpol.2023.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 09/24/2023]
Abstract
Biomass aerogel is attractive in various applications due to their renewable, biodegradable and eco-friendly advantages. Herein, a novel beta molecular sieve/carboxymethyl cellulose/polyvinyl alcohol composite aerogel (beta/CP) is prepared by direct mixing and directional freeze-drying as an efficient gas adsorbent with hierarchical porosity. The beta molecular sieve is uniformly dispersed in the three-dimensional skeleton of the aerogel. By adjusting the loading mass of the beta molecular sieve to constitute a reasonable porosity and pore size distribution, the synergistic effect between pore structures of different scales improves the adsorption performance. The experiment results of beta/CP-4 show that the CH4 adsorption capacity can reach 60.33 cm3/g at 298 K and 100 bar, which is almost the same as that of the pure beta molecular sieve (62.09 cm3/g). The strong interaction between the aerogel and it prevents the molecular sieve agglomeration, improves the pore utilization, and also reduces the cost of using molecular sieve adsorbent. The above results indicate that the composite has good potential for application in the field of CH4 storage.
Collapse
Affiliation(s)
- Jinqiang Sun
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China.
| | - Xiaoqian Peng
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Xu Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Zhipeng Yuan
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Sijia Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, PR China.
| |
Collapse
|
4
|
Zanette RDSS, Fayer L, Vasconcellos R, de Oliveira LFC, Maranduba CMDC, de Alvarenga ÉLFC, Martins MA, Brandão HDM, Munk M. Cytocompatible and osteoinductive cotton cellulose nanofiber/chitosan nanobiocomposite scaffold for bone tissue engineering. Biomed Mater 2023; 18:055016. [PMID: 37494940 DOI: 10.1088/1748-605x/aceac8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Natural polymeric nanobiocomposites hold promise in repairing damaged bone tissue in tissue engineering. These materials create an extracellular matrix (ECM)-like microenvironment that induces stem cell differentiation. In this study, we investigated a new cytocompatible nanobiocomposite made from cotton cellulose nanofibers (CNFs) combined with chitosan polymer to induce osteogenic stem cell differentiation. First, we characterized the chemical composition, nanotopography, swelling properties, and mechanical properties of the cotton CNF/chitosan nanobiocomposite scaffold. Then, we examined the biological characteristics of the nanocomposites to evaluate their cytocompatibility and osteogenic differentiation potential using human mesenchymal stem cells derived from exfoliated deciduous teeth. The results showed that the nanobiocomposite exhibited favorable cytocompatibility and promoted osteogenic differentiation of cells without the need for chemical inducers, as demonstrated by the increase in alkaline phosphatase activity and ECM mineralization. Therefore, the cotton CNF/chitosan nanobiocomposite scaffold holds great promise for bone tissue engineering applications.
Collapse
Affiliation(s)
- Rafaella de Souza Salomão Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Rebecca Vasconcellos
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Luiz Fernando Cappa de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Carlos Magno da Costa Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | | | - Maria Alice Martins
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, Brazil
| | - Humberto de Mello Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), 36038-330 Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| |
Collapse
|
5
|
Yang F, Zhang J, Lin T, Ke L, Huang L, Deng SP, Zhang J, Tan S, Xiong Y, Lu M. Fabrication of waste paper/graphene oxide three-dimensional aerogel with dual adsorption capacity toward methylene blue and ciprofloxacin. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Shahrousvand M, Golshan Ebrahimi N. Designing Nanofibrous Poly(ε-caprolactone)/Hydroxypropyl Cellulose/Zinc Oxide/Melilotus Officinalis Wound Dressings Using Response Surface Methodology. Int J Pharm 2022; 629:122338. [PMID: 36309291 DOI: 10.1016/j.ijpharm.2022.122338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Nanofibrous wound dressing is one of the most prominent stratagems for wound caring/management. This research is an approach for designing an electrospun wound dressing based on poly(ε-caprolactone)/hydroxypropyl cellulose/zinc oxide nanoparticles (PCL/HPC/n-ZnO), in which response surface methodology (RSM) was utilized to ascertain the optimum sample. It was observed that the addition of n-ZnO and Melilotus Officinalis (MO) extract could increase the fibers mean diameter, pore size, and crystallinity of mats. The mentioned quantities for a sample with the highest MO content (PHZM10) were equal to 469±105 nm, 544±370 nm, and 49.67%, respectively. Moreover, enhancing the amount of MO led to an increase in mechanical properties. In this respect, the PHZM10 sample had the modulus, strength, and toughness of 82.41±0.61, 20.45±0.30 MPa, and 4194.86 mJ, respectively. Also, according to the MTT assay, no cytotoxicity was reported from any of the manufactured samples. Besides, it was concluded that the antibacterial activity and nanofibrous structure of mats, and also their potential for release of MO extract could accelerate the wound healing. Hence, the wound closure index for the PHZM10 group was 99.3±1.1%. Based on all noted results, the PCL/HPC/n-ZnO/MO electrospun mats can be proposed as reassuring wound dressing candidates.
Collapse
|
7
|
Synthesis of pH-Sensitive polydopamine capsules via pickering emulsions stabilized by cellulose nanocrystals to study drug release behavior. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zanette RDSS, Fayer L, de Oliveira ER, Almeida CG, Oliveira CR, de Oliveira LFC, Maranduba CMC, Alvarenga ÉC, Brandão HM, Munk M. Cytocompatibility and osteogenic differentiation of stem cells from human exfoliated deciduous teeth with cotton cellulose nanofibers for tissue engineering and regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:627-650. [PMID: 34807809 DOI: 10.1080/09205063.2021.2008787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose nanofibers (CNFs) are natural polymers with physical-chemical properties that make them very attractive for modulating stem cell differentiation, a crucial step in tissue engineering and regenerative medicine. Although cellulose is cytocompatible, when materials are in nanoscale, they become more reactive, needing to evaluate its potential toxic effect to ensure safe application. This study aimed to investigate the cytocompatibility of cotton CNF and its differentiation capacity induction on stem cells from human exfoliated deciduous teeth. First, the cotton CNF was characterized. Then, the cytocompatibility and the osteogenic differentiation induced by cotton CNF were examined. The results revealed that cotton CNFs have about 6-18 nm diameters, and the zeta potential was -10 mV. Despite gene expression alteration, the cotton CNF shows good cytocompatibility. The cotton CNF induced an increase in phosphatase alkaline activity and extracellular matrix mineralization. The results indicate that cotton CNF has good cytocompatibility and can promote cell differentiation without using chemical inducers, showing great potential as a new differentiation inductor for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rafaella de S S Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eduarda R de Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila G Almeida
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Cauê R Oliveira
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, São Carlos, Brazil
| | - Luiz F C de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carlos M C Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Érika C Alvarenga
- Department of Natural Sciences, Federal University of São João Del Rei, São João del Rei, Brazil
| | - Humberto M Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
9
|
Mesgari M, Aalami AH, Sathyapalan T, Sahebkar A. A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers' mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets' quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Hossain KMZ, Deeming L, Edler KJ. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv 2021; 11:39027-39044. [PMID: 35492448 PMCID: PMC9044626 DOI: 10.1039/d1ra08086e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) to prevent coalescence. However, synthetic surfactants are not always a suitable choice in some applications, especially in pharmaceuticals, food and cosmetics, due to toxicity and lack of compatibility and biodegradability. Therefore, this review reports recent literature (2018-2021) on the use of comparatively safer biodegradable polysaccharide particles, proteins, lipids and combinations of these species in various Pickering emulsion formulations. Also, an overview of the various tuneable factors associated with the functionalisation or surface modification of these solid particles, that govern the stability of the Pickering emulsions is provided.
Collapse
Affiliation(s)
- Kazi M Zakir Hossain
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Laura Deeming
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| | - Karen J Edler
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
- Centre for Sustainable Chemical Technologies, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
11
|
Wei L, Deng N, Wang X, Zhao H, Yan J, Yang Q, Kang W, Cheng B. Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A. Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 2021; 182:168-178. [PMID: 33838184 DOI: 10.1016/j.ijbiomac.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Hafez Jafari
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mamak Bakhtiari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Beeta Tavana
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Shahrousvand M, Haddadi-Asl V, Shahrousvand M. Step-by-step design of poly (ε-caprolactone) /chitosan/Melilotus officinalis extract electrospun nanofibers for wound dressing applications. Int J Biol Macromol 2021; 180:36-50. [PMID: 33727184 DOI: 10.1016/j.ijbiomac.2021.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Composition of polymers and choosing the type of solvents in electrospinning systems is of great importance to achieve a mat with optimal properties. In this work, with emphasizing the influence of a novel solvent system, an electrospun wound dressing was designed in four steps. Firstly, to study the effect of polymer-solvent interactions and electrospinning distance, a constant amount of polycaprolactone (PCL) was dissolved at different compositions of formic acid (FA)/dichloromethane (DCM) and was electrospun at different distances. The composition of 80FA/20DCM and distance of 15 cm were selected as optimal conditions by lowest average diameter of fibers and simultaneously good surface uniformity. In the second step, the concentration of PCL was considered variable to achieve the lowest diameter of fibers. Finally, in the third and fourth steps, different concentrations of chitosan (CN) and constant dosage of Melilotus officinalis (MO) extract were added to the solution. The extract contained fibers had a mean diameter of 275 ± 41 nm which is in the required condition for wound caring. Eventually, the optimized PCL/CN and PCL/CN/MO specimens were evaluated by FTIR, DSC, Tensile, water contact angle, antibacterial assays, cell viability, and drug release analysis for determining their function and properties.
Collapse
Affiliation(s)
- Mohammad Shahrousvand
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran.
| |
Collapse
|
15
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydr Polym 2019; 225:115220. [DOI: 10.1016/j.carbpol.2019.115220] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
|
17
|
Ghaffari-Bohlouli P, Hamidzadeh F, Zahedi P, Shahrousvand M, Fallah-Darrehchi M. Antibacterial nanofibers based on poly(l-lactide-co-d,l-lactide) and poly(vinyl alcohol) used in wound dressings potentially: a comparison between hybrid and blend properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:219-243. [DOI: 10.1080/09205063.2019.1683265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Hamidzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int J Biol Macromol 2019; 139:509-520. [DOI: 10.1016/j.ijbiomac.2019.07.221] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
19
|
Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds. Int J Biol Macromol 2019; 138:262-271. [PMID: 31302125 DOI: 10.1016/j.ijbiomac.2019.07.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Poly (2‑hydroxyethyl methacrylate) (PHEMA) was crosslinked in the presence of biocompatible and biodegradable poly(caprolactone) (PCL) based polyurethanes (PUs) and cellulose nanowhiskers (CNWs). The CNWs were obtained from wastepaper. In order to crosslink PHEMA (10 wt%), a novel acrylic-urethane cross-linker was produced by a condensation reaction of PHEMA and hexamethylene diisocyanate (HDI). The PU-PHEMA-CNWs scaffolds were prepared by solvent casting/particulate leaching method in different weight percentages of CNWs (i.e., 0, 0.1, 0.5, and 1 wt%). The structural, mechanical, and in vitro biological properties of bio-nanocomposites were evaluated via FTIR, SEM, tensile, and MTT assay. The tensile strength of PU-PHEMA-0, PU-PHEMA-0.1, PU-PHEMA-0.5, and PU-PHEMA-1 were 76.2, 95.8, 98.1, and 89.8 kPa, respectively. Incorporation of CNWs also resulted in improved cell proliferation on PU-PHEMA-CNWs scaffolds. The bone marrow derived human mesenchymal stem cells (hMSCs) were seeded on the prepared porous scaffolds and incubated in osteogenic medium. Based on the results including calcium content assay, alkaline phosphatase assay, and mineralization staining, PU-PHEMA-CNW scaffolds were introduced as a suitable election for imitating the behavior of cellular niche. Bone mineralization and osteogenesis differentiation of hMSCs on PU-PHEMA-CNW scaffolds were significantly more than control after 14 days.
Collapse
|
20
|
Zabihi E, Babaei A, Shahrampour D, Arab-Bafrani Z, Mirshahidi KS, Majidi HJ. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int J Biol Macromol 2019; 131:107-116. [DOI: 10.1016/j.ijbiomac.2019.01.224] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/01/2019] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
|
21
|
Ghaffari-Bohlouli P, Shahrousvand M, Zahedi P, Shahrousvand M. Performance evaluation of poly (l-lactide-co-D, l-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Int J Biol Macromol 2019; 122:1008-1016. [DOI: 10.1016/j.ijbiomac.2018.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
22
|
Yu J, Zhang D, Zhu S, Chen P, Zhu GT, Jiang X, Di S. Eco-friendly and facile one-step synthesis of a three dimensional net-like magnetic mesoporous carbon derived from wastepaper as a renewable adsorbent. RSC Adv 2019; 9:12419-12427. [PMID: 35515839 PMCID: PMC9063764 DOI: 10.1039/c9ra01332f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Millions of tons of paper and its derivatives are annually wasted without being recycled and reused. To promote the comprehensive utilization of resources and eco-friendly preparation, waste filter paper, printer paper, and napkins were chosen as carbon sources to one-step synthesize three types of three dimensional (3D) net-like magnetic mesoporous carbon (MMC) by an eco-friendly and low-cost method. These mesoporous (3.90–7.68 nm) composites have a high specific surface area (287–423 m2 g−1), well-developed porosity (0.24–0.74 cm3 g−1) and abundant oxygen-containing functional groups. Compared to the other two composites, the adsorbent derived from filter paper showed the highest adsorption capacity towards methylene blue (MB) (qmax = 332.03 mg g−1) and rhodamine B (RhB) (qmax = 389.59 mg g−1) with a high adsorption rate (<5 min). According to the effect of pH value on adsorption capacity, and combining the analysis of Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy, the main adsorption mechanisms can be summarized as hydrogen bonds, electrostatic interactions, and π–π interaction. Besides, the occurrence of redox reactions between Fe2+/Fe0 and dye cannot be ignored. Finally, experiments on reusability were performed. They showed that the 3D net-like MMC could be easily regenerated and still maintained a removal efficiency of above 80% for RhB and 90% for MB after five cycles. Millions of tons of paper and its derivatives are annually wasted without being recycled and reused.![]()
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Donghuan Zhang
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430075
- P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Gang-Tian Zhu
- Key Laboratory of Tectonics and Petroleum Resources
- Ministry of Education
- China University of Geosciences
- Wuhan 430075
- P. R. China
| | - Xiangtao Jiang
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan 430074
- P. R. China
| |
Collapse
|
23
|
|
24
|
Jafari H, Shahrousvand M, Kaffashi B. Reinforced Poly(ε-caprolactone) Bimodal Foams via Phospho-Calcified Cellulose Nanowhisker for Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2484-2493. [DOI: 10.1021/acsbiomaterials.7b01020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hafez Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| | - Babak Kaffashi
- School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Enghelab Avenue, Tehran, 1417613131, Iran
| |
Collapse
|