1
|
Khan B, Abdullah S, Khan S. Current Progress in Conductive Hydrogels and Their Applications in Wearable Bioelectronics and Therapeutics. MICROMACHINES 2023; 14:mi14051005. [PMID: 37241628 DOI: 10.3390/mi14051005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wearable bioelectronics and therapeutics are a rapidly evolving area of research, with researchers exploring new materials that offer greater flexibility and sophistication. Conductive hydrogels have emerged as a promising material due to their tunable electrical properties, flexible mechanical properties, high elasticity, stretchability, excellent biocompatibility, and responsiveness to stimuli. This review presents an overview of recent breakthroughs in conductive hydrogels, including their materials, classification, and applications. By providing a comprehensive review of current research, this paper aims to equip researchers with a deeper understanding of conductive hydrogels and inspire new design approaches for various healthcare applications.
Collapse
Affiliation(s)
- Bangul Khan
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Saad Abdullah
- School of Innovation, Design and Engineering, Division of Intelligent Future Technologies, Mälardalen University, P.O. Box 883, 721 26 Västerås, Sweden
| | - Samiullah Khan
- Center for Eye & Vision Research, 17W Science Park, Hong Kong SAR, China
| |
Collapse
|
2
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
3
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
4
|
Liu J, Tian B, Liu Y, Wan JB. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int J Mol Sci 2021; 22:13516. [PMID: 34948312 PMCID: PMC8703588 DOI: 10.3390/ijms222413516] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
Hydrogels possess porous structures, which are widely applied in the field of materials and biomedicine. As a natural oligosaccharide, cyclodextrin (CD) has shown remarkable application prospects in the synthesis and utilization of hydrogels. CD can be incorporated into hydrogels to form chemically or physically cross-linked networks. Furthermore, the unique cavity structure of CD makes it an ideal vehicle for the delivery of active ingredients into target tissues. This review describes useful methods to prepare CD-containing hydrogels. In addition, the potential biomedical applications of CD-containing hydrogels are reviewed. The release and degradation process of CD-containing hydrogels under different conditions are discussed. Finally, the current challenges and future research directions on CD-containing hydrogels are presented.
Collapse
Affiliation(s)
- Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| |
Collapse
|
5
|
Luo P, Xiang S, Li C, Zhu M. Photomechanical polymer hydrogels based on molecular photoswitches. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng‐Fei Luo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Shi‐Li Xiang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
6
|
Cao J, Wu X, Wang L, Shao G, Qin B, Wang Z, Wang T, Fu Y. A cellulose-based temperature sensitivity molecular imprinted hydrogel for specific recognition and enrichment of paclitaxel. Int J Biol Macromol 2021; 181:1231-1242. [PMID: 34022304 DOI: 10.1016/j.ijbiomac.2021.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A microcrystalline cellulose-based temperature sensitivity paclitaxel molecular imprinted hydrogel (MCC-TSMIHs-PTX) was successfully prepared by temperature-sensitive monomer N-isopropylacrylamide, functional monomer 4-vinylpyridine, cross-linking agent N, N'-methylenebisacrylamide and microcrystalline cellulose. They showed imprinting effective responses to the temperature changes. The results of adsorption kinetics, adsorption equilibrium, thermodynamics, selectivity and reusability showed the successful formation of a grafting thermosensitivity hydrogel with higher adsorption capacity and specific recognition. When the temperature reached 308 K, imprinting effect of hydrogel cavities would be most effective and conducive to capture template molecules. When the temperature reached 288 K, the lowest imprinting effect would facilitate the desorption of PTX. Finally, the MCC-TSMIHs-PTX was applied to enrich the paclitaxel in Taxus × media extracts samples, the relative contents of PTX in the samples were increased greatly from 7.23% to 78.32%, indicating the MCC-TSMIHs-PTX was a stable adsorption capacity for efficient separation and enrichment of PTX in Taxus × media extracts.
Collapse
Affiliation(s)
- Jingsong Cao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China; The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
7
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Dong X, Yang A, Bai Y, Kong D, Lv F. Dual fluorescence imaging-guided programmed delivery of doxorubicin and CpG nanoparticles to modulate tumor microenvironment for effective chemo-immunotherapy. Biomaterials 2020; 230:119659. [DOI: 10.1016/j.biomaterials.2019.119659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022]
|
9
|
Vonesch M, Wytko JA, Kitagishi H, Kano K, Weiss J. Modelling haemoproteins: porphyrins and cyclodextrins as sources of inspiration. Chem Commun (Camb) 2019; 55:14558-14565. [PMID: 31748764 DOI: 10.1039/c9cc07545c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of hydrophobic cavities with porphyrin derivatives has been used to mimic haemoprotein structures. The most employed cavity in this field is β-cyclodextrin (β-CD), and scaffolds combining β-CDs and porphyrins are expected to inspire the combination of porphyrins and cucurbiturils in the near future. Aside from providing water solubility to various porphyrinic structures, the β-CD framework can also modulate and control the reactivity of the metal core of the porphyrin. After a general introduction of the challenges faced in the field of haemoprotein models and the binding behavior of β-CDs, this article will discuss covalent and non-covalent association of porphyrins with β-CDs. In each approach, the role of the CD differs according to the relative position of the concave CD host, either directly controlling the binding and transformation of a substrate on the metalloporphyrin or playing a dual role of controlling the water solubility and selecting the axial ligand of the metal core. The discussion will be of interest to the cucurbituril community as well as to the cavitand community, as the information provided should be useful for the design of haemoprotein mimics using cucurbiturils.
Collapse
Affiliation(s)
- Maxime Vonesch
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| |
Collapse
|
10
|
Mavridis IM, Yannakopoulou K. Porphyrinoid-Cyclodextrin Assemblies in Biomedical Research: An Update. J Med Chem 2019; 63:3391-3424. [PMID: 31808344 DOI: 10.1021/acs.jmedchem.9b01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyrinoids, well-known cofactors in fundamental processes of life, have stimulated interest as synthetic models of natural systems and integral components of photodynamic therapy, but their utilization is compromised by self-aggregation in aqueous media. The capacity of cyclodextrins to include hydrophobic molecules in their cavity provides porphyrinoids with a protective environment against oxidation and the ability to disperse efficiently in biological fluids. Moreover, engineered cyclodextrin-porphyrinoid assemblies enhance the photodynamic abilities of porphyrinoids, can carry chemotherapeutics for synergistic modalities, and can be enriched with functions including cell recognition, tissue penetration, and imaging. This Perspective includes synthetic porphyrinoid-cyclodextrin models of proteins participating in fundamental processes, such as enzymatic catalysis, respiration, and electron transfer. In addition, since porphyrinoid-cyclodextrin systems comprise third generation photosensitizers, recent developments for their utilization in photomedicine, that is, multimodal therapy for cancer (e.g., PDT, PTT) and antimicrobial treatment, and eventually in biocompatible therapeutic or diagnostic platforms for next-generation nanomedicine and theranostics are discussed.
Collapse
Affiliation(s)
- Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| |
Collapse
|
11
|
Li L, Scheiger JM, Levkin PA. Design and Applications of Photoresponsive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807333. [PMID: 30848524 PMCID: PMC9285504 DOI: 10.1002/adma.201807333] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Indexed: 05/16/2023]
Abstract
Hydrogels are the most relevant biochemical scaffold due to their tunable properties, inherent biocompatibility, and similarity with tissue and cell environments. Over the past decade, hydrogels have developed from static materials to "smart" responsive materials adapting to various stimuli, such as pH, temperature, chemical, electrical, or light. Light stimulation is particularly interesting for many applications because of the capability of contact-free remote manipulation of biomaterial properties and inherent spatial and temporal control. Moreover, light can be finely adjusted in its intrinsic properties, such as wavelength and intensity (i.e., the energy of an individual photon as well as the number of photons over time). Water is almost transparent for light in the photochemically relevant range (NIR-UV), thus hydrogels are well-suited scaffolds for light-responsive functionality. Hydrogels' chemical and physical variety combined with light responsiveness makes photoresponsive hydrogels ideal candidates for applications in several fields, ranging from biomaterials, medicine to soft robotics. Herein, the progress and new developments in the field of light-responsive hydrogels are elaborated by first introducing the relevant photochemistries before discussing selected applications in detail.
Collapse
Affiliation(s)
- Lei Li
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Johannes M. Scheiger
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Institute of Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Pavel A. Levkin
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz Pl. 176344Eggenstein‐LeopoldshafenGermany
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| |
Collapse
|
12
|
Feng X, Liu C, Wang X, Jiang Y, Yang G, Wang R, Zheng K, Zhang W, Wang T, Jiang J. Functional Supramolecular Gels Based on the Hierarchical Assembly of Porphyrins and Phthalocyanines. Front Chem 2019; 7:336. [PMID: 31157209 PMCID: PMC6530257 DOI: 10.3389/fchem.2019.00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Supramolecular gels containing porphyrins and phthalocyanines motifs are attracting increased interests in a wide range of research areas. Based on the supramolecular gels systems, porphyrin or phthalocyanines can form assemblies with plentiful nanostructures, dynamic, and stimuli-responsive properties. And these π-conjugated molecular building blocks also afford supramolecular gels with many new features, depending on their photochemical and electrochemical characteristics. As one of the most characteristic models, the supramolecular chirality of these soft matters was investigated. Notably, the application of supramolecular gels containing porphyrins and phthalocyanines has been developed in the field of catalysis, molecular sensing, biological imaging, drug delivery and photodynamic therapy. And some photoelectric devices were also fabricated depending on the gelation of porphyrins or phthalocyanines. This paper presents an overview of the progress achieved in this issue along with some perspectives for further advances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
13
|
Dong X, Liang J, Yang A, Wang C, Kong D, Lv F. In Vivo Imaging Tracking and Immune Responses to Nanovaccines Involving Combined Antigen Nanoparticles with a Programmed Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21861-21875. [PMID: 29901978 DOI: 10.1021/acsami.8b04867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Combined nanovaccine can generate robust and persistent antigen-specific immune responses. A combined nanovaccine was developed based on antigen-loaded genipin-cross-linked-polyethyleneimine-antigen nanoparticles and in vivo multispectral fluorescence imaging tracked the antigen delivery of combined nanovaccine. The inner layer antigen nanoparticles carried abundant antigens by self-cross-linking for persistent immune response, whereas the outer antigen on the surface of antigen nanoparticles provided the initial antigen exposure. The delivery of combined nanovaccine was tracked dynamically and objectively by the separation of inner genipin cross-linked antigen nanoparticle and the outer fluorescent antigen. The immune responses of the combined nanovaccine were evaluated including antigen-specific CD4+ and CD8+ T-cell responses, IgG antibody level, immunological memory, and CD8+ cytotoxic T lymphocyte responses. The results indicated that the inner and outer antigens of combined vaccine can be tracked in real time with a programmed delivery by the dual fluorescence imaging. The programmed delivery of the inner and outer antigens induced strong immune responses with a combination of a quick delivery and a persistent delivery. With adequate antigen exposure, the dendritic cells were effectively activated and matured, and following T cells were further activated for immune response. Compared with a single nanoparticle formulation, the combined nanovaccine exactly elicited a stronger antigen-specific immune response.
Collapse
Affiliation(s)
- Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Jie Liang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Afeng Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Chun Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
- Department of Biomedical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , P. R. China
| |
Collapse
|
14
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
15
|
Yang A, Dong X, Liang J, Zhang Y, Yang W, Liu T, Yang J, Kong D, Lv F. Photothermally triggered disassembly of a visible dual fluorescent poly(ethylene glycol)/α-cyclodextrin hydrogel. SOFT MATTER 2018; 14:4495-4504. [PMID: 29808187 DOI: 10.1039/c8sm00626a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The real-time tracking and adjustment of the disassembly and status of hydrogels in vivo are important challenges to accurate and precise assessment. In this article, a photothermally controllable, visible, dual fluorescent thermosensitive hydrogel was designed and developed based on a porphyrin-poly(ethylene glycol)/IR-820-α-cyclodextrin hydrogel. Due to the photothermal effect and fluorescence emission of IR-820, it can exert the dual functions of photothermal control and fluorescence imaging tracking. The IR-820 conjugated hydrogel can regulate the hydrogel disassembly by the photothermal effect of IR-820. Furthermore, each component of the hydrogel can be tracked by the fluorescence of IR-820 and porphyrin. Fluorescence imaging tracking and remote photothermal control were merged into the visible and controlled hydrogel disassembly after subcutaneous injection using mice as models. The dual fluorescence imaging visualization of cyclodextrin/poly(ethylene glycol) hydrogels revealed the disassembly process by tracking each component, and the hydrogel disassembly can be efficiently accelerated under laser irradiation with the photothermal effect of IR-820. This affords an important basis for understanding the disassembly process of the poly(ethylene glycol)/α-cyclodextrin hydrogel.
Collapse
Affiliation(s)
- Afeng Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang X, Wang P, Xue S, Zheng X, Xie Z, Chen G, Sun T. Nanoparticles based on glycyrrhetinic acid modified porphyrin for photodynamic therapy of cancer. Org Biomol Chem 2018; 16:1591-1597. [PMID: 29445787 DOI: 10.1039/c7ob03108d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles were prepared from amphiphilic glycyrrhetinic acid–porphyrin conjugates (TPP–GA) and applied for the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Thyroid Surgery
- The First Hospital of Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Peisong Wang
- Department of Thyroid Surgery
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Shuai Xue
- Department of Thyroid Surgery
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Guang Chen
- Department of Thyroid Surgery
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|