1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Hua Z, Zhao Y, Zhang M, Wang Y, Feng H, Wei X, Wu X, Chen W, Xue Y. Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. J Biomater Appl 2025; 39:1121-1142. [PMID: 39929142 DOI: 10.1177/08853282251320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.
Collapse
Affiliation(s)
- Zekun Hua
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yinuo Zhao
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Haoyu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Wu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Cho IS, Shiomoto S, Yukawa N, Tanaka Y, Huh KM, Tanaka M. The Role of Intermediate Water in Enhancing Blood and Cellular Compatibility of Chitosan-Based Biomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8301-8311. [PMID: 40036609 DOI: 10.1021/acs.langmuir.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Tissue engineering and regenerative medicine require biomaterials that balance blood compatibility with cell adhesion, proliferation, and differentiation. Chitosan and its derivatives, owing to their biocompatibility, biodegradability, and functional versatility, have been extensively explored for biomedical applications, including vascular grafts and tissue engineering scaffolds. This study investigates the effect of chemical modifications on the water state of chitosan derivatives─specifically, free water (FW), intermediate water (IW), and nonfreezing water (NFW)─and their implications for protein interactions, platelet adhesion, and mesenchymal stem cell (MSC) behavior. By incorporating hydrophilic and hydrophobic groups, the hydration of chitosan derivatives was precisely controlled, which significantly influenced blood compatibility and cell adhesion. Hexanoyl glycol chitosan (HGC) demonstrated reduced platelet adhesion, low fibrinogen denaturation, and favorable MSC adhesion, making it a promising candidate for applications requiring both enhanced blood compatibility and regenerative potential. These findings underscore the importance of hydration water modulation in designing advanced biomaterials for blood-contacting and regenerative medicine applications.
Collapse
Affiliation(s)
- Ik Sung Cho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoki Yukawa
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kang-Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Tanvir MAH, Khaleque MA, Lee J, Park JB, Kim GH, Lee HH, Kim YY. Three-Dimensional Bioprinting for Intervertebral Disc Regeneration. J Funct Biomater 2025; 16:105. [PMID: 40137384 PMCID: PMC11943008 DOI: 10.3390/jfb16030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications.
Collapse
Affiliation(s)
- Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Junhee Lee
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea;
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Ga-Hyun Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Hwan-Hee Lee
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| |
Collapse
|
5
|
Wang X, Huang Y, Yang Y, Tian X, Jin Y, Jiang W, He H, Xu Y, Liu Y. Polysaccharide-based biomaterials for regenerative therapy in intervertebral disc degeneration. Mater Today Bio 2025; 30:101395. [PMID: 39759846 PMCID: PMC11699348 DOI: 10.1016/j.mtbio.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Intervertebral disc (IVD) degeneration represents a significant cause of chronic back pain and disability, with a substantial impact on the quality of life. Conventional therapeutic modalities frequently address the symptoms rather than the underlying etiology, underscoring the necessity for regenerative therapies that restore disc function. Polysaccharide-based materials, such as hyaluronic acid, alginate, chitosan, and chondroitin sulfate, have emerged as promising candidates for intervertebral disc degeneration (IVDD) therapy due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix (ECM) of the nucleus pulposus (NP). These materials have demonstrated the capacity to support cell viability, facilitate matrix production, and alleviate inflammation in vitro and in vivo, thus supporting tissue regeneration and restoring disc function in comparison to conventional treatment. Furthermore, polysaccharide-based hydrogels have demonstrated the potential to deliver bioactive molecules, including growth factors, cytokines and anti-inflammatory drugs, directly to the degenerated disc environment, thereby enhancing therapeutic outcomes. Therefore, polysaccharide-based materials provide structural support and facilitate the regeneration of native tissue, representing a versatile and effective approach for the treatment of IVDD. Despite their promise, challenges such as limited long-term stability, potential immunogenicity, and the difficulty in scaling up production for clinical use remain. This review delineates the potential of various polysaccharides during the fabrication of hydrogels and scaffolds for disc regeneration, guiding and inspiring future research to focus on optimizing these materials for clinical translation for IVDD repair and regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yixue Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xin Tian
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Yesheng Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hanliang He
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
6
|
Lee YJ, Lee E, Kim SE, Shin H, Huh KM. Synthesis and characterization of methacryl glycol chitosan as a novel functionally advanced thermogel for biomedical applications. Int J Biol Macromol 2024; 280:135858. [PMID: 39307499 DOI: 10.1016/j.ijbiomac.2024.135858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Thermo-responsive hydrogels (thermogels), known for their sol-gel transition capabilities, have garnered significant interest for biomedical applications over recent decades. However, conventional thermogels are hindered by intrinsic physicochemical and functional limitations that impede their broader utility. This study introduces methacryl glycol chitosan (MGC) as a novel thermogel, offering enhanced functionality and addressing these limitations. MGCs, synthesized through N-methacrylation of glycol chitosan, exhibit tunable thermogelling and photo-crosslinking behaviors. The thermo-reversible sol-gel transition of MGCs occurs within a 21-54 °C range, adjustable by polymer concentration and methacryl substitution degree. Photo-crosslinking using UV light further enhances the mechanical properties of MGC thermogels, creating thermo-irreversible, chemically crosslinked hydrogels. MGCs show no cytotoxic effects and effectively support cell encapsulation. In vivo studies demonstrate stable crosslinking with minimal UV-induced skin damage. Due to their unique thermo-sensitivity, multi-functionality, and customizable properties, MGC thermogels are promising novel biomaterials for various biomedical applications, particularly injectable tissue engineering and cell encapsulation, thus overcoming the limitations of conventional thermogels.
Collapse
Affiliation(s)
- Young Ju Lee
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong Eun Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Cheng X, Wu L. Injectable smart-blended hydrogel cross-linked with Vanillin to accelerate differentiation of intervertebral disc-derived stem cells (IVDSCs) for promoting degenerative nucleolus pulposus in a rat model. Inflammopharmacology 2024:10.1007/s10787-024-01554-4. [PMID: 39207637 DOI: 10.1007/s10787-024-01554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleus pulposus (NP) degradation is a primary factor in intervertebral disk degeneration (IVD) and a major contributor to low back pain. Intervertebral disk-derived stem cell (IVDSC) therapy presents a promising solution, yet identifying suitable cell carriers for NP transplantation remains challenging. The present study investigates this issue by developing smart injectable hydrogels incorporating vanillin (V) and hyaluronic acid (HA) encapsulated with IVDSCs to facilitate IVD regeneration. MATERIALS AND METHODS The hydrogel was cross linked by carbodiimide-succinimide (EDC-NHS) method. Enhanced mechanical properties were achieved by integrating collagen and HA into the hydrogel. The rheological analysis revealed the pre-gel viscoelastic and shear-thinning characteristics. RESULTS In vitro, cell viability was maintained up to 500 µg/mL, with a high proliferation rate observed over 14 days. The hydrogels supported multilineage differentiation, as confirmed by osteogenic and adipogenic induction. Anti-inflammatory effects were demonstrated by reduced cytokine release (TNF-α, IL-6, IL-1β) after 24 h of treatment. Gene expression studies indicated elevated levels of chondrocyte markers (Acan, Sox9, Col2). In vivo, hydrogel injection into the NP was monitored via X-ray imaging, showing a significant increase in disk height index (DHI%) after 8 weeks, alongside improved histologic scores. Biomechanical testing revealed that the hydrogel effectively mimicked NP properties, enhancing compressive stiffness and reducing neutral zone stiffness post-denucleation. CONCLUSION The results suggest that the synthesized VCHA-NP hydrogel can be used as an alternative to NPs, offering a promising path for IVD regeneration.
Collapse
Affiliation(s)
- Xiangyang Cheng
- Department of Orthopedics, Minhang Hospital, Fudan University, No.170, Xin Song Road, Shanghai, 201199, China
| | - Liang Wu
- Department of Orthopedics, Minhang Hospital, Fudan University, No.170, Xin Song Road, Shanghai, 201199, China.
| |
Collapse
|
8
|
Park KH, Truong TT, Park JH, Park Y, Kim H, Hyun SA, Shim HE, Mallick S, Park HJ, Huh KM, Kang SW. Robust and customizable spheroid culture system for regenerative medicine. Biofabrication 2024; 16:045016. [PMID: 39053497 DOI: 10.1088/1758-5090/ad6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Three-dimensional cell spheroids show promise for the reconstruction of native tissues. Herein, we report a sophisticated, uniform, and highly reproducible spheroid culture system for tissue reconstruction. A mesh-integrated culture system was designed to precisely control the uniformity and reproducibility of spheroid formation. Furthermore, we synthesized hexanoyl glycol chitosan, a material with ultralow cell adhesion properties, to further improve spheroid formation efficiency and biological function. Our results demonstrate improved biological function in various types of cells and ability to generate spheroids with complex structures composed of multiple cell types. In conclusion, our spheroid culture system offers a highly effective and widely applicable approach to generating customized spheroids with desired structural and biological features for a variety of biomedical applications.
Collapse
Affiliation(s)
- Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thuy Trang Truong
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Yujin Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejoen 34114, Republic of Korea
| | - Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sudipta Mallick
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
9
|
Nezadi M, Keshvari H, Shokrolahi F, Shokrollahi P. Injectable, self-healing hydrogels based on gelatin, quaternized chitosan, and laponite as localized celecoxib delivery system for nucleus pulpous repair. Int J Biol Macromol 2024; 266:131337. [PMID: 38574911 DOI: 10.1016/j.ijbiomac.2024.131337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 μg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.
Collapse
Affiliation(s)
- Maryam Nezadi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
10
|
Fang M, Liu W, Wang Z, Li J, Hu S, Li Z, Chen W, Zhang N. Causal associations between gut microbiota with intervertebral disk degeneration, low back pain, and sciatica: a Mendelian randomization study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1424-1439. [PMID: 38285276 DOI: 10.1007/s00586-024-08131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Although studies have suggested that gut microbiota may be associated with intervertebral disk disease, their causal relationship is unclear. This study aimed to investigate the causal relationship between the gut microbiota and its metabolic pathways with the risk of intervertebral disk degeneration (IVDD), low back pain (LBP), and sciatica. METHODS Genetic variation data for 211 gut microbiota taxa at the phylum to genus level were obtained from the MiBioGen consortium. Genetic variation data for 105 taxa at the species level and 205 metabolic pathways were obtained from the Dutch Microbiome Project. Genetic variation data for disease outcomes were obtained from the FinnGen consortium. The causal relationships between the gut microbiota and its metabolic pathways and the risk of IVDD, LBP, and sciatica were evaluated via Mendelian randomization (MR). The robustness of the results was assessed through sensitivity analysis. RESULTS Inverse variance weighting identified 46 taxa and 33 metabolic pathways that were causally related to IVDD, LBP, and sciatica. After correction by weighted median and MR-PRESSO, 15 taxa and nine pathways remained stable. After FDR correction, only the effect of the genus_Eubacterium coprostanoligenes group on IVDD remained stable. Sensitivity analyses showed no evidence of horizontal pleiotropy, heterogeneity, or reverse causation. CONCLUSION Some microbial taxa and their metabolic pathways are causally related to IVDD, LBP, and sciatica and may serve as potential intervention targets. This study provides new insights into the mechanisms of gut microbiota-mediated development of intervertebral disk disease.
Collapse
Affiliation(s)
- Miaojie Fang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Department of Orthopedics Surgery, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Liu
- Department of Orthopedics Surgery, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, Zhejiang, People's Republic of China
| | - Zhan Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shaojun Hu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zilong Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Weishan Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| | - Ning Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, 310009, Hangzhou, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Qiu R, Cai K, Zhang K, Ying Y, Hu H, Jiang G, Luo K. The current status and development trend of hydrogel application in spinal surgery. J Mater Chem B 2024; 12:1730-1747. [PMID: 38294330 DOI: 10.1039/d3tb02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Spinal diseases often result in compromised mobility and diminished quality of life due to the intricate anatomy surrounding the nervous system. Medication and surgical interventions remain the primary treatment methods for spinal conditions. However, currently available medications have limited efficacy in treating spinal surgical diseases and cannot achieve a complete cure. Furthermore, surgical intervention frequently results in inevitable alterations and impairments to the initial anatomical integrity of the spinal structure, accompanied by the consequential loss of certain physiological functionalities. Changes in spine surgery treatment concepts and modalities in the last decade have led to a deepening of minimally invasive treatment, with treatment strategies focusing more on repairing and reconstructing the patient's spine and preserving physiological functions. Therefore, developing novel and more efficient treatment strategies to reduce spinal lesions and iatrogenic injuries is essential. In recent years, significant advancements in biomedical research have led to the discovery that hydrogels possess excellent biocompatibility, biodegradability, and adjustable mechanical properties. The application of hydrogel-based biotechnology in spinal surgery has demonstrated remarkable therapeutic potential. This review presents the therapeutic strategies for spinal diseases based on hydrogel tissue engineering technology.
Collapse
Affiliation(s)
- Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Hangtian Hu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
12
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Pan S, Zhu C, Wu Y, Tao L. Chitosan-Based Self-Healing Hydrogel: From Fabrication to Biomedical Application. Polymers (Basel) 2023; 15:3768. [PMID: 37765622 PMCID: PMC10535505 DOI: 10.3390/polym15183768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biocompatible self-healing hydrogels are new-generation smart soft materials that hold great promise in biomedical fields. Chitosan-based self-healing hydrogels, mainly prepared via dynamic imine bonds, have attracted broad attention due to their mild preparation conditions, excellent biocompatibility, and self-recovery ability under a physiological environment. In this review, we present a comprehensive overview of the design and fabrication of chitosan-based self-healing hydrogels, and summarize their biomedical applications in tissue regeneration, customized drug delivery, smart biosensors, and three/four dimensional (3D/4D) printing. Finally, we will discuss the challenges and future perspectives for the development of chitosan-based self-healing hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Chongyu Zhu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
14
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
15
|
Li P, Hu J, Wang J, Zhang J, Wang L, Zhang C. The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020165. [PMID: 36829659 PMCID: PMC9952459 DOI: 10.3390/bioengineering10020165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A myocardial infarction (MI) is the leading cause of morbidity and mortality, seriously threatens human health, and becomes a major health burden of our society. It is urgent to pursue effective therapeutic strategies for the regeneration and restore myocardial function after MI. This review discusses the role of hydrogel in cardiac repair and regeneration for MI. Hydrogel-based cardiac patches and injectable hydrogels are the most commonly used applications in cardiac regeneration medicine. With injectable hydrogels, bioactive compounds and cells can be delivered in situ, promoting in situ repair and regeneration, while hydrogel-based cardiac patches reduce myocardial wall stress, which passively inhibits ventricular expansion. Hydrogel-based cardiac patches work as mechanically supportive biomaterials. In cardiac regeneration medicine, clinical trials and commercial products are limited. Biomaterials, biochemistry, and biological actives, such as intelligent hydrogels and hydrogel-based exosome patches, which may serve as an effective treatment for MI in the future, are still under development. Further investigation of clinical feasibility is warranted. We can anticipate hydrogels having immense translational potential for cardiac regeneration in the near future.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
16
|
Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater Today Bio 2022; 18:100523. [PMID: 36590980 PMCID: PMC9800636 DOI: 10.1016/j.mtbio.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens. By contrast, the extracellular matrix (ECM), including collagen and glycosaminoglycans, which are well retained, have been extensively studied in IVD regeneration. DCM inherits the native architecture and specific-differentiation induction ability of IVD and has demonstrated effectiveness in IVD regeneration in vitro and in vivo. Moreover, significant improvements have been achieved in the preparation process, mechanistic insights, and application of DCM for IDD repair. Herein, we comprehensively summarize and provide an overview of the roles and applications of DCM for IDD repair based on the existing evidence to shed a novel light on the clinical treatment of IDD.
Collapse
Key Words
- (3D), three-dimensional
- (AF), annular fibers
- (AFSC), AF stem cells
- (APNP), acellular hydrogel descendent from porcine NP
- (DAF-G), decellularized AF hydrogel
- (DAPI), 4,6-diamidino-2-phenylindole
- (DCM), decellularized matrix
- (DET), detergent-enzymatic treatment
- (DWJM), Wharton's jelly matrix
- (ECM), extracellular matrix
- (EVs), extracellular vesicles
- (Exos), exosome
- (IDD), intervertebral disc degeneration
- (IVD), intervertebral disc
- (LBP), Low back pain
- (NP), nucleus pulposus
- (NPCS), NP-based cell delivery system
- (PEGDA/DAFM), polyethylene glycol diacrylate/decellularized AF matrix
- (SD), sodium deoxycholate
- (SDS), sodium dodecyl sulfate
- (SIS), small intestinal submucosa
- (TGF), transforming growth factor
- (bFGF), basic fibroblast growth factor
- (hADSCs), human adipose-derived stem cells
- (hDF), human dermal fibroblast
- (iAF), inner annular fibers
- (oAF), outer annular fibers
- (sGAG), sulfated glycosaminoglycan
- Decellularized matrix
- Intervertebral disc degeneration
- Regenerative medicine
- Tissue engineering
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li He
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Corresponding author. Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Corresponding author. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
17
|
Zhao X, Ma H, Han H, Zhang L, Tian J, Lei B, Zhang Y. Precision medicine strategies for spinal degenerative diseases: Injectable biomaterials with in situ repair and regeneration. Mater Today Bio 2022; 16:100336. [PMID: 35799898 PMCID: PMC9254127 DOI: 10.1016/j.mtbio.2022.100336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
As the population ages, spinal degeneration seriously affects quality of life in middle-aged and elderly patients, and prevention and treatment remain challenging for clinical surgeons. In recent years, biomaterials-based injectable therapeutics have attracted much attention for spinal degeneration treatment due to their minimally invasive features and ability to perform precise repair of irregular defects. However, the precise design and functional control of bioactive injectable biomaterials for efficient spinal degeneration treatment remains a challenge. Although many injectable biomaterials have been reported for the treatment of spinal degeneration, there are few reviews on the advances and effects of injectable biomaterials for spinal degeneration treatment. This work reviews the current status of the design and fabrication of injectable biomaterials, including hydrogels, bone cements and scaffolds, microspheres and nanomaterials, and the current progress in applications for treating spinal degeneration. Additionally, registered clinical trials were also summarized and key challenges and clinical translational prospects for injectable materials for the treatment of spinal degenerative diseases are discussed.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
18
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
20
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
21
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
22
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
23
|
Du Y, Li J, Tang X, Liu Y, Bian G, Shi J, Zhang Y, Zhao B, Zhao H, Sui K, Xi Y. The Thermosensitive Injectable Celecoxib-Loaded Chitosan Hydrogel for Repairing Postoperative Intervertebral Disc Defect. Front Bioeng Biotechnol 2022; 10:876157. [PMID: 35837544 PMCID: PMC9274121 DOI: 10.3389/fbioe.2022.876157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Percutaneous endoscopic lumbar discectomy has been widely used in clinical practice for lumbar spine diseases. But the postoperative disc re-herniation and inflammation are the main reason for pain recurrence after surgery. The postoperative local defect of the intervertebral disc will lead to the instability of the spine, further aggravating the process of intervertebral disc degeneration. In this work, we successfully synthesized the thermosensitive injectable celecoxib-loaded chitosan hydrogel and investigated its material properties, repair effect, biocompatibility, and histocompatibility in in vitro and in vivo study. In vitro and in vivo, the hydrogel has low toxicity, biodegradability, and good biocompatibility. In an animal experiment, this composite hydrogel can effectively fill local tissue defects to maintain the stability of the spine and delay the process of intervertebral disc degeneration after surgery. These results indicated that this composite hydrogel will be a promising way to treat postoperative intervertebral disc disease in future clinical applications.
Collapse
Affiliation(s)
- Yukun Du
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianyi Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yingying Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Guoshuai Bian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Jianzhuang Shi
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
| | - Yixin Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Health Care Ward III, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baomeng Zhao
- Department of Surgery teaching and research, Binzhou Medical University, Yantai, China
| | - Hongri Zhao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, China
- *Correspondence: Kunyan Sui, ; Yongming Xi,
| | - Yongming Xi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Kunyan Sui, ; Yongming Xi,
| |
Collapse
|
24
|
Kim Y, Hu Y, Jeong JP, Jung S. Injectable, self-healable and adhesive hydrogels using oxidized Succinoglycan/chitosan for pH-responsive drug delivery. Carbohydr Polym 2022; 284:119195. [DOI: 10.1016/j.carbpol.2022.119195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
25
|
|
26
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
27
|
Shim J, Kang J, Yun SI. Chitosan-dipeptide hydrogels as potential anticancer drug delivery systems. Int J Biol Macromol 2021; 187:399-408. [PMID: 34314799 DOI: 10.1016/j.ijbiomac.2021.07.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022]
Abstract
A novel chitosan-dipeptide hydrogel was fabricated through a combination of self-assembly of 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) and its electrostatic interaction with glycol chitosan (GCS). Hydrogel strength and stability depended on its composition. The highest gel strength was observed at a Fmoc-FF mass fraction (ϕFF) of 0.85, whereby the highest combined strength of the two interactions was achieved. As the ϕFF increased above 0.6, gel stability decreased in buffered solution at pH 7.46. The incorporation of doxorubicin (DOX) as a cationic model drug significantly increased the stability of the complex hydrogels. DOX-loaded hydrogels exhibited slow DOX release, probably due to the drug's strong binding to Fmoc-FF via electrostatic attraction and the high gel stability. These hydrogels also exhibited excellent thixotropic features that facilitated the development of injectable self-healing drug delivery systems. Notably, DOX release was significantly accelerated as the pH of the medium decreased from 7.46 to 5.5 and 4.0, possibly due to hydrogel components' protonation. The DOX-loaded hydrogel exhibited notable cytotoxicity against A549 human lung cancer cells, which suggests the newly developed hydrogel to be a promising candidate vehicle for the localized and controlled drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Jaemin Shim
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Jiseon Kang
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Seok Il Yun
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea.
| |
Collapse
|
28
|
Yu Y, Yu X, Tian D, Yu A, Wan Y. Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. Int J Biol Macromol 2021; 182:1746-1758. [PMID: 34052276 DOI: 10.1016/j.ijbiomac.2021.05.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Amino-functionalized mesoporous silica nanoparticles with radially porous architecture were optimally synthesized, and they were used together with silk fibroin and chitosan to produce a type of covalently crosslinked composite hydrogel using genipin as a crosslinker. The optimally achieved composite gels were found to be thermo-responsive at physiological temperature and pH with well-defined injectability. They were also detected to have mechanically strong and elastic characteristics. In addition, these gels showed the ability to release bioactive Si ions suited to an effective dose range in approximately linear manners for a few weeks. Studies on the cell-gel constructs revealed that the composite gels well supported the growth of seeded MC3T3-E1 cells, and the deposition of matrix components. Results obtained from the detection of alkaline phosphatase activity and the matrix mineralization in the cell-gel constructs confirmed that these composite gels had certain osteogenic capacity. The obtained results suggest that these composite gels have promising potential in bone repair and regeneration.
Collapse
Affiliation(s)
- Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Danlei Tian
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
29
|
Zheng J, Lv S, Zhong Y, Jiang X. Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1564-1583. [PMID: 33957063 DOI: 10.1080/09205063.2021.1926893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microspheres and injectable hydrogels derived from natural biopolymers have been extensively investigated as controlled local drug delivery systems. In this study, we prepared carboxymethyl chitin microspheres (CMCH-Ms) with a diameter of 10-100 μm through physical crosslinking by increasing temperature in an aqueous two-phase system without using organic solvents, surfactants and crosslinking agents. The stable microspheres keeping spherical shape with porous microstructure in different pH environments were embeded in thermosensitive hydroxypropyl chitin (HPCH) hydrogels. The morphology, gelation rate, swelling, rheological and mechanical properties, in vitro degradation and cytotoxicity, drug loading and drug release of the CMCH-Ms/HPCH gel scaffolds were examined. In vitro degradation and cytotoxicity test indicated that CMCH-Ms/HPCH gel scaffolds were biodegradable and non-cytotoxic. Moreover, no organic solvent was used in the preparation and drug loading process of CMCH-Ms/HPCH gel scaffold. Importantly, less burst drug release and long-term sustained-release from the CMCH-Ms/HPCH composite hydrogel was observed than those from only CMCH-Ms or HPCH hydrogel. Thus, the composite CMCH-Ms/HPCH hydrogel exhibited great potential application for loading different drugs and sustained drug release in controlled local drug delivery systems.
Collapse
Affiliation(s)
- Jieyu Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
30
|
Schmitt C, Radetzki F, Stirnweiss A, Mendel T, Ludtka C, Friedmann A, Baerthel A, Brehm W, Milosevic J, Meisel HJ, Goehre F, Schwan S. Long-term pre-clinical evaluation of an injectable chitosan nanocellulose hydrogel with encapsulated adipose-derived stem cells in an ovine model for IVD regeneration. J Tissue Eng Regen Med 2021; 15:660-673. [PMID: 33989456 DOI: 10.1002/term.3216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
The potential therapeutic benefit of adipose-derived stem cells (ASCs) encapsulated in an injectable hydrogel for stimulating intervertebral disc (IVD) regeneration has been assessed by a number of translational and preclinical studies. However, previous work has been primarily limited to small animal models and short-term outcomes of only a few weeks. Long-term studies in representative large animal models are crucial for translation into clinical success, especially for permanent stabilization of major defects such as disc herniation. An injectable chitosan carboxymethyl cellulose hydrogel scaffold loaded with ASCs was evaluated regarding its intraoperative handling, crosslinking kinetics, cell viability, fully-crosslinked viscoelasticity, and long-term therapeutic effects in an ovine model. Three IVDs per animal were damaged in 10 sheep. Subcutaneous adipose tissue was the source for autologous ASCs. Six weeks after IVD damage, two of the damaged IVDs were treated via ASC-loaded hydrogel injection. After 12 months following the implantation, IVD disc height and histological and cellular changes were assessed. This system was reliable and easy to handle intraoperatively. Over 12 months, IVD height was stabilized and degeneration progression significantly mitigated compared to untreated, damaged IVDs. Here we show for the first time in a large animal model that an injectable chitosan carboxymethyl cellulose hydrogel system with encapsulated ASCs is able to affect long-term stabilization of an injured IVD and significantly decrease degeneration processes as compared to controls.
Collapse
Affiliation(s)
- Christine Schmitt
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Florian Radetzki
- Halle Wittenberg, Department for Orthopaedics and Traumatology, Martin Luther University, Halle (Saale), Germany.,Department of Orthopedic and Trauma Surgery, Dessau Municipal Hospital, Dessau-Roßlau, Germany
| | - Annika Stirnweiss
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Mendel
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Jena, Germany.,Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrea Friedmann
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andre Baerthel
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Walther Brehm
- Department of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Hans Jörg Meisel
- Spinplant GmbH, Halle, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany
| | - Felix Goehre
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurosurgery, BG Klinikum Bergmannstrost Halle gGmbH, Halle (Saale), Germany.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan Schwan
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.,Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| |
Collapse
|
31
|
Park SG, Li MX, Cho WK, Joung YK, Huh KM. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydr Polym 2021; 260:117808. [PMID: 33712154 DOI: 10.1016/j.carbpol.2021.117808] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.
Collapse
Affiliation(s)
- Seul Gi Park
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
32
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002197. [PMID: 33051905 DOI: 10.1002/adma.202002197] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Nanomedicine is extensively employed for cancer treatment owing to its unique advantages over conventional drugs and imaging agents. This increased attention to nanomedicine, however, has not fully translated into clinical utilization and patient benefits due to issues associated with reticuloendothelial system clearance, tumor heterogeneity, and complexity of the tumor microenvironment. To address these challenges, efforts are being made to modify the design of nanomedicines, including optimization of their physiochemical properties, active targeting, and response to stimuli, but these studies are often performed independently. Combining favorable nanomedicine designs from individual studies may improve therapeutic outcomes, but, this is difficult to achieve as the effects of different designs are interconnected and often conflicting. Glycol chitosan nanoparticles (CNPs) are shown to accumulate in tumors, suggesting that this type of nanoparticle may constitute a good basis for the additional modification of nanoparticles. Here, multifunctional glycol CNPs designed to overcome multiple obstacles to their use are described and key factors influencing in vivo targeted delivery, targeting strategies, and interesting stimulus-responsive designs for improving cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
34
|
Fadera S, Cheng NC, Young TH, Lee IC. In vitro study of SDF-1α-loaded injectable and thermally responsive hydrogels for adipose stem cell therapy by SDF-1/CXCR4 axis. J Mater Chem B 2020; 8:10360-10372. [PMID: 33108417 DOI: 10.1039/d0tb01961e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cell-based approaches have become a promising therapeutic strategy for treating ischemic diseases. The aim of this study was to develop injectable hydrogel systems for the local release of stromal cell-derived factor-1α (SDF-1α) to recruit adipose stem cells (ASCs) that express CXCR4 to achieve stem cell therapy and therapeutic angiogenesis. Thermoresponsive and injectable chitosan (CS)/β-glycerophosphate disodium salt pentahydrate (βGP) hydrogels with different concentrations of hyaluronic acid (HA) were designed and fabricated to achieve local and sustained release of SDF-1α for ASC recruitment. Herein, the material structures, physical properties, gelation temperature, and gelation time of hydrogels with different compositions were determined. The incorporation of 0.9% HA in CS-based hydrogels not only enhanced the gelation time but also increased the strength of the hydrogels. In addition, the results revealed that the thermoresponsive and injectable CS/βGP/HA hydrogels showed good biocompatibility. In addition, the in vitro release profiles showed that the hydrogels achieved sustained release of SDF-1α over 7 days and enhanced ASC migration. The results revealed that the hydrogels with HA enhanced the sustained release effect compared with the hydrogel without HA, indicating that the HA content regulated the physical and release properties of the injectable hydrogels. Therefore, thermoresponsive and injectable CS/βGP/HA hydrogels may provide an alternative for treating ischemic diseases via SDF-1/CXCR4 axis for ASC recruitment and retention.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S Rd, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 2020; 252:117143. [PMID: 33183602 DOI: 10.1016/j.carbpol.2020.117143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Injectable chitosan hydrogels exhibit excellent biological properties for application in biomedical engineering, however most of these hydrogels have limited applicability because "Swelling" can induce volume expansion of conventional hydrogels implanted in the body damages the surrounding tissues. Here, we report a new "Nonswelling" pentenyl chitosan (PTL-CS) hydrogel via N‒acylation reaction to graft an UV crosslinkable short hydrophobic alkyl chain (n‒pentenyl groups). The incorporated pentenyl groups can be crosslinked by UV irradiation to form hydrophobic chains via combination termination, which generate strong hydrophobic effect to extrude the excess water in hydrogel, resulting in a "Nonswelling" state at biological temperature. Furthermore, the PTL-CS solution showed no cytotoxicity in vitro and minimally invasive treatment in vivo demonstrated the PTL-CS hydrogel no adverse effects in a rat model. The nonswelling injectable and UV crosslinkable chitosan hydrogel hold potential applications in smart biomaterials and biological engineering as well as providing a new natural hydrogel in minimally invasive tissue engineering..
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Zonglin Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
36
|
Ma J, Zhong L, Peng X, Xu Y, Sun R. Functional Chitosan-based Materials for Biological Applications. Curr Med Chem 2020; 27:4660-4672. [DOI: 10.2174/0929867327666200420091312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Background:
Bio-based materials, as the plentiful and renewable resources for
natural constituents which are essential for biomedical and pharmaceutical applications, have
not been exploited adequately yet. Chitosan is a naturally occurring polysaccharide obtained
from chitin, which has recently attracted widespread attention owing to its excellent activity.
This review shows the methods of extraction and modification of chitosan and provides recent
progress of synthesis and use of chitosan-based materials in biological applications.
Methods:
By consulting the research literature of the last decade, the recent progresses of
functional chitosan-based materials for biological applications were summarized and divided
into the methods of extraction chitosan, the chemical modification of chitosan, chitosan-based
materials for biological applications were described and discussed.
Results:
Chemical modification of chitosan broadens its applications, leading to developing
numerous forms of chitosan-based materials with excellent properties. The excellent bioactivity
of chitosan-based material enables it serves potential applications in biomedical fields.
Conclusion:
Chitosan-based materials not only exhibit the excellent activities of chitosan but
also show other appealing performance of combined materials, even give the good synergistic
properties of chitosan and its composite materials. Further studies are needed to define the
ideal physicochemical properties of chitosan for each type of biomedical applications. The
development of various functional chitosan-based materials for biological applications will be
an important field of research, and this kind of material has important commercial value.
Collapse
Affiliation(s)
- Jiliang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongkang Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
37
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Lee EJ, Kang E, Kang SW, Huh KM. Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering. Carbohydr Polym 2020; 244:116432. [PMID: 32536405 DOI: 10.1016/j.carbpol.2020.116432] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
Thermogels that undergo temperature-dependent sol-gel transition have recently attracted attention as a promising biomaterial for injectable tissue engineering. However, conventional thermogels usually suffer from poor physical properties and low cell binding affinity, limiting their practical applications. Here, a simple approach for developing a new thermogel with enhanced physical properties and cell binding affinity is proposed. This thermogel (AcHA/HGC) was obtained by simple blending of a new class of polysaccharide-based thermogel, N-hexanoyl glycol chitosan (HGC), with a polysaccharide possessing good cell binding affinity, acetylated hyaluronic acid (AcHA). Gelation of AcHA/HGC was initially triggered by the thermosensitive response of HGC and gradually intensified by additional physical crosslinking mechanisms between HGC and AcHA, resulting in thermo-irreversible gelation. Compared to the thermos-reversible HGC hydrogel, the thermo-irreversible AcHA/HGC hydrogel exhibited enhanced physical stability, mechanical properties, cell binding affinity, and tissue compatibility. These results suggest that our thermo-irreversible hydrogel is a promising biomaterial for injectable tissue engineering.
Collapse
Affiliation(s)
- Eun Joo Lee
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Eunae Kang
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
39
|
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5:164-183. [PMID: 32083230 PMCID: PMC7016353 DOI: 10.1016/j.bioactmat.2020.01.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.
Collapse
Affiliation(s)
- Md. Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Nurus Sakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Taslim Ur Rashid
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Fiber and Polymer Science, North Carolina State University, Campus Box 7616, Raleigh, NC, 27695, United States
| |
Collapse
|
40
|
Peng Y, Huang D, Liu S, Li J, Qing X, Shao Z. Biomaterials-Induced Stem Cells Specific Differentiation Into Intervertebral Disc Lineage Cells. Front Bioeng Biotechnol 2020; 8:56. [PMID: 32117935 PMCID: PMC7019859 DOI: 10.3389/fbioe.2020.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy, which promotes stem cells differentiation toward specialized cell types, increases the resident population and production of extracellular matrix, and can be used to achieve intervertebral disc (IVD) repair, has drawn great attention for the development of IVD-regenerating materials. Many materials that have been reported in IVD repair have the ability to promote stem cells differentiation. However, due to the limitations of mechanical properties, immunogenicity and uncontrollable deviations in the induction of stem cells differentiation, there are few materials that can currently be translated into clinical applications. In addition to the favorable mechanical properties and biocompatibility of IVD materials, maintaining stem cells activity in the local niche and increasing the ability of stem cells to differentiate into nucleus pulposus (NP) and annulus fibrosus (AF) cells are the basis for promoting the application of IVD-regenerating materials in clinical practice. The purpose of this review is to summarize IVD-regenerating materials that focus on stem cells strategies, analyze the properties of these materials that affect the differentiation of stem cells into IVD-like cells, and then present the limitations of currently used disc materials in the field of stem cell therapy and future research perspectives.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Xian C, Yuan Q, Bao Z, Liu G, Wu J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Zheng Y, Wang W, Zhao J, Wu C, Ye C, Huang M, Wang S. Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym 2019; 222:115039. [PMID: 31320053 DOI: 10.1016/j.carbpol.2019.115039] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to design an injectable hydrogel with temperature-sensitive property for safe and high efficient in vivo colon cancer hyperthermia and chemotherapy. Chitosan (CS) solution was injected into the tumor at room temperature and automatically gelled after warming to body temperature in the present of β-glycerophosphate (β-GP). Combined localized tumor photothermal and chemotherapy were achieved by dissolving photothermal material MoS2/Bi2S3-PEG (MBP) nanosheets and drug molecule doxorubicin (DOX) into the hydrogel, and the gel system could encapsulate DOX and MBP nanosheets and prevent them from entering the blood circulation and damaging normal tissues and cells. More importantly, the CS/MBP/DOX (CMD) hydrogel exhibited a photothermal efficiency of 22.18% and 31.42% in the first and second near infrared light (NIR I and NIR II) biowindows respectively at a low MBP concentration (0.5 mg/mL). Besides, the release of the DOX from CMD hydrogel was controllable since the gel temperature could be governed by NIR laser irradiation. Moreover, the chitosan-based hydrogel had antibacterial effects. The designed composite hydrogel is anticipated to act as a platform for the high efficient treatment of tumors owing to the different penetration depths of NIR I and NIR II.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Weifan Wang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Dongfang Road, Shanghai, 200433, China
| | - Chenyao Wu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Changqing Ye
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
43
|
Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y. Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. ADVANCED MATERIALS INTERFACES 2019; 6. [DOI: 10.1002/admi.201900761] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/06/2025]
Abstract
AbstractPolysaccharide is an abundant and reproducible natural material that is biocompatible and biodegradable. Polysaccharide and its derivatives also possess distinctive properties such as hydrophilicity, mechanical stability, as well as tunable functionality. Polysaccharide‐based hydrogels can be constructed via the physical and/or chemical crosslinking of polysaccharide derivatives with different functional molecules, as porous network structures or nanofibrillar structures. This review discusses the biomedical applications of polysaccharide‐based hydrogels containing native polysaccharides, polysaccharide derivatives, and polysaccharide‐composite hydrogels. Recent works on the fabrication, physical properties, advanced engineering, biomedical applications of cellulose‐, chitosan‐, alginate‐, and starch‐based hydrogels are also elaborated. Such porous swelling scaffolds exhibit great advantages at the interface of a negative pressure system such as wound dressing. In addition, the authors also discuss and summarize the exemplary research works of these hydrogels in the applications of drug release, wound dressing, and tissue engineering. Finally, challenges and future perspectives about the development of polysaccharide‐based hydrogels are discussed.
Collapse
Affiliation(s)
- Tianxue Zhu
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Jiajun Mao
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yan Cheng
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Haoran Liu
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Lu Lv
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Mingzheng Ge
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- School of Textile and Clothing Nantong University Nantong 226019 P. R. China
| | - Shuhui Li
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Jianying Huang
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huaqiong Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Lei Yang
- Center for Health Science and Engineering Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| |
Collapse
|
44
|
Ding C, Zhang M, Ma M, Zheng J, Yang Q, Feng R. Thermal and pH dual‐responsive hydrogels based on semi‐interpenetrating network of poly(
N
‐isopropylacrylamide) and collagen nanofibrils. POLYM INT 2019. [DOI: 10.1002/pi.5852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cuicui Ding
- Department of Chemical Engineering, College of Ecological Environment and Urban ConstructionFujian University of Technology Fuzhou China
| | - Min Zhang
- Department of Light Chemical Engineering, College of Materials EngineeringFujian Agriculture and Forestry University Fuzhou China
| | - Miao Ma
- Department of Chemical Engineering, College of Ecological Environment and Urban ConstructionFujian University of Technology Fuzhou China
| | - Jiaojiao Zheng
- Department of Chemical Engineering, College of Ecological Environment and Urban ConstructionFujian University of Technology Fuzhou China
| | - Qili Yang
- Department of Light Chemical Engineering, College of Materials EngineeringFujian Agriculture and Forestry University Fuzhou China
| | - Ren Feng
- Department of Chemical Engineering, College of Ecological Environment and Urban ConstructionFujian University of Technology Fuzhou China
| |
Collapse
|
45
|
Abstract
In the treatment of brain diseases, most potent drugs that have been developed exhibit poor therapeutic outcomes resulting from the inability of a therapeutic amount of the drug to reach the brain. These drugs do not exhibit targeted drug delivery mechanisms, resulting in a high concentration of the drugs in vital organs leading to drug toxicity. Chitosan (CS) is a natural-based polymer. It has unique properties such as good biodegradability, biocompatibility, mucoadhesive properties, and it has been approved for biomedical applications. It has been used to develop nanocarriers for brain targeting via intranasal administration. Nanocarriers such as nanoparticles, in situ gels, nanoemulsions, and liposomes have been developed. In vitro and in vivo studies revealed that these nanocarriers exhibited enhanced drug uptake to the brain with reduced side effects resulting from the prolonged contact time of the nanocarriers with the nasal mucosa, the surface charge of the nanocarriers, the nano size of the nanocarriers, and their capability to stretch the tight junctions within the nasal mucosa. The aforementioned unique properties make chitosan a potential material for the development of nanocarriers for targeted drug delivery to the brain. This review will focus on chitosan-based carriers for brain targeting.
Collapse
|
46
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
47
|
Jeong YH, Oh HM, Lee MR, Kim CY, Joo C, Park SJ, Song YH, Kang C, Chung HM, Kang SW, Huh KM, Moon SH. The Effect of Hexanoyl Glycol Chitosan on the Proliferation of Human Mesenchymal Stem Cells. Polymers (Basel) 2018; 10:polym10080839. [PMID: 30960764 PMCID: PMC6404012 DOI: 10.3390/polym10080839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (AD-MSCs) have been studied as desirable cell sources for regenerative medicine and therapeutic application. However, it has still remained a challenge to obtain enough adequate and healthy cells in large quantities. To overcome this limitation, various biomaterials have been used to promote expansion of MSCs in vitro. Recently, hexanoyl glycol chitosan (HGC) was introduced as a new biomaterial for various biomedical applications, in particular 3D cell culture, because of its biodegradability, biocompatibility, and other promising biofunctional properties. In this study, the effect of HGC on the proliferation of AD-MSCs was examined in vitro, and its synergistic effect with basic fibroblast growth factor (bFGF), which has been widely used to promote proliferation of cells, was evaluated. We found that the presence of HGC increased the proliferative capacity of AD-MSCs during long-term culture, even at low concentrations of bFGF. Furthermore, it suppressed the expression of senescence-related genes and improved the mitochondrial functionality. Taken all together, these findings suggest that the HGC demonstrate a potential for sustained growth of AD-MSCs in vitro.
Collapse
Affiliation(s)
- Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hye Min Oh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea.
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Chanyang Joo
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Yun-Ho Song
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea.
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
48
|
Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr Polym 2018; 196:233-245. [PMID: 29891292 DOI: 10.1016/j.carbpol.2018.05.033] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
The advances in the field of biomaterials have led to several studies on alternative biocompatible devices and to their development focusing on their properties, benefits, limitations, and utilization of alternative resources. Due to their advantages like biocompatibility, biodegradability, and low cost, polysaccharides have been widely used in the development of hydrogels. Among the polysaccharides studied on hydrogels preparation, chitosan (pure or combined with natural/synthetic polymers) have been widely investigated for use in biomedical field. In view of potential applications of chitosan-based hydrogels, this review focuses on the most recent progress made with respect to preparation, properties, and their salient accomplishments for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Michelly C G Pellá
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Michele K Lima-Tenório
- Department of Chemistry, State University of Ponta Grossa, Av. Gen. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, Paraná, Brazil.
| | - Ernandes T Tenório-Neto
- Department of Chemistry, State University of Ponta Grossa, Av. Gen. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa, Paraná, Brazil
| | - Marcos R Guilherme
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | - Edvani C Muniz
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil; Post-graduate Program on Materials Science & Engineering, Federal University of Technology, Paraná (UTFPR-LD), CEP 86036-370, Londrina, Paraná, Brazil
| | - Adley F Rubira
- Department of Chemistry, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|