1
|
Habibah T, Matonohová J, Kulhánek J, Fitzgerald U, Ingr M, Pravda M, Pandit A, Velebný V. In situ formed aldehyde-modified hyaluronic acid hydrogel with polyelectrolyte complexes of aldehyde-modified chondroitin sulfate and gelatin: An approach for minocycline delivery. Carbohydr Polym 2024; 343:122455. [PMID: 39174092 DOI: 10.1016/j.carbpol.2024.122455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.
Collapse
Affiliation(s)
- Tutut Habibah
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia; Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Jana Matonohová
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia
| | | | - Una Fitzgerald
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | - Marek Ingr
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova, 5669, Czechia
| | - Martin Pravda
- Contipro a.s. Dolní Dobrouč 401, Dolní Dobrouč, 56102, Czechia.
| | - Abhay Pandit
- CURAM, SFI Centre for Research on Biomedical Devices, Biomedical Engineering, University of Galway, Upper Newcastle, H91 W2TY, Ireland
| | | |
Collapse
|
2
|
Unver T, Erenler AS, Bingul M, Boga M. Comparative Analysis of Antioxidant, Anticholinesterase, and Antibacterial Activity of Microbial Chondroitin Sulfate and Commercial Chondroitin Sulfate. Chem Biodivers 2023; 20:e202300924. [PMID: 37615364 DOI: 10.1002/cbdv.202300924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Chondroitin synthesis was performed using the recombinant Escherichia coli(C2987) strain created by transforming the plasmid pETM6-PACF-vgb, which carries the genes responsible for chondroitin synthesis, kfoA, kfoC, kfoF, and the Vitreoscilla hemoglobin gene (vgb). Then, Microbial chondroitin sulfate (MCS)'s antioxidant, anticholinesterase, and antibacterial activity were compared with commercial chondroitin sulfate (CCS). The antioxidant studies revealed that the MCS and CCS samples could be potential targets for scavenging radicals and cupric ion reduction. MCS demonstrated better antioxidant properties in the ABTS assay with the IC50 value of 0.66 mg than CCS. MCS showed 2.5-fold for DPPH and almost 5-fold for ABTS⋅+ (with a value of 3.85 mg/mL) better activity than the CCS. However, the compounds were not active for cholinesterase enzyme inhibitions. In the antibacterial assay, the Minimum inhibitory concentration (MIC) values of MCS against S. aureus, E. aerogenes, E. coli, P. aeruginosa, and K. pneumoniae (0.12, 0.18, 0.12, 0.18, and 0.18 g/mL, respectively) were found to be greater than that of CCS (0.42, 0.48, 0.36, 0.36, and 0.36 g/mL, respectively). This study demonstrates that MCS is a potent pharmacological agent due to its physicochemical properties, and its usability as a therapeutic-preventive agent will shed light on future studies.
Collapse
Affiliation(s)
- Tuba Unver
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ayse Sebnem Erenler
- Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Malatya, Turkey
| | - Murat Bingul
- Department of Pharmaceutical Fundamental Sciences, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
3
|
Singh AK, Peng BY, Chien ST, Chan CH, Deng YH, Pai HY, Wei HJ, Wang MF, Wang SH, Wu CY, Deng WP. Anti-aging biomaterial sturgeon chondroitin sulfate upregulating anti-oxidant and SIRT-1/c-fos gene expression to reprogram stem cell senescence and prolong longevity. Biomater Sci 2023. [PMID: 37158091 DOI: 10.1039/d2bm01997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging involves tissue and cell potential dysfunction characterized by stem cell senescence and extracellular matrix microenvironment (ECM) alteration. Chondroitin sulfate (CS), found in the ECM of normal cells and tissues, aids in maintaining tissue homeostasis. Here, CS-derived biomaterial (CSDB) from sturgeon is extracted to investigate its antiaging effect in senescence-accelerated mouse prone-8 (SAMP8) mice and elucidate the underlying mechanism of its action. Although CSDB has been widely extracted from different sources and used as a scaffold, hydrogel, or drug carrier for the treatment of various pathological diseases, CSDB has not yet been used as a biomaterial for the amelioration of senescence and aging features. In this study, the extracted sturgeon CSDB showed a low molecular weight and comprised 59% 4-sulfated CS and 23% 6-sulfated CS. In an in vitro study, sturgeon CSDB promoted cell proliferation and reduced oxidative stress to inhibit stem cell senescence. In an ex vivo study, after oral CSDB treatment of SAMP8 mice, the stem cells were extracted to analyze the p16Ink4a and p19Arf gene-related pathways, which were inhibited and then SIRT-1 gene expression was upregulated to reprogram stem cells from a senescence state for retarding aging. In an in vivo study, CSDB also restored the aging-phenotype-related bone mineral density and skin morphology to prolong longevity. Thus, sturgeon CSDB may be useful for prolonging healthy longevity as an anti-aging drug.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shaw-Ting Chien
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Hsiao-Yu Pai
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433303, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei 11030, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan.
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei 242062, Taiwan
| |
Collapse
|
4
|
Wang X, Gu Z, Wan J, Zhou X, Zhu K, Wang X, Cao X, Yu X, Peng X, Tang Y. dECM based dusal-responsive vascular graft with enzyme-controlled adenine release for long-term patency. Int J Biol Macromol 2023; 242:124618. [PMID: 37148948 DOI: 10.1016/j.ijbiomac.2023.124618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Rapid occlusion is the culprit leading to implantation failure of biological blood vessels. Although adenosine is a clinical-proven drug to overcome the problem, its short half-life and turbulent burst-release limit its direct application. Thus, a pH/temperature dual-responsive blood vessel possessed controllable long-term adenosine secretion was constructed based on acellular matrix via compact crosslinking by oxidized chondroitin sulfate (OCSA) and functionalized with apyrase and acid phosphatase. These enzymes, as adenosine micro-generators, controlled the adenosine release amount by "real-time-responding" to acidity and temperature of vascular inflammation sites. Additionally, the macrophage phenotype was switched from M1 to M2, and related factors expression proved that adenosine release was effectively regulated with the severity of inflammation. What's more, the ultra-structure for degradation resisting and endothelialization accelerating was also preserved by their "double-crosslinking". Therefore, this work suggested a new feasible strategy providing a bright future of long-term patency for transplanted blood vessels.
Collapse
Affiliation(s)
- Xu Wang
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junyu Wan
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong, China
| | - Keli Zhu
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xin Wang
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xin Cao
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610065, China.
| |
Collapse
|
5
|
Sun Z, Gao X. SRPX2 attenuated oxygen–glucose deprivation and reperfusion-induced injury in cardiomyocytes via alleviating endoplasmic reticulum stress-induced apoptosis through targeting PI3K/Akt/mTOR axis. Open Life Sci 2022; 17:1497-1504. [DOI: 10.1515/biol-2022-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Myocardial infraction (MI) is the leading cause of high morbidity and mortality worldwide. It was still urgently needed to find new and effective drugs for MI treatment by the use of myocardial ischemia/reperfusion (I/R) model. Sushi repeats contain the protein X-Linked 2 (SRPX2), which regulates a variety of important cell functions. However, its possible role in myocardial I/R and the progression of MI is still unclear. In this study, we investigated the role of SRPX2 in myocardial I/R. SRPX2 showed low expression in IR rats and H9C2 cells induced by oxygen–glucose deprivation/reperfusion (OGD/R). SRPX2 could increase OGD/R-induced H9C2 cell survival. In addition, SRPX2 suppressed the apoptosis of OGD/R-induced H9C2 cells. Furthermore, we found that SRPX2 could inhibit ER stress induced by OGD/R in H9C2 cells. Mechanically, we found that SRPX2 suppressed the PI3K/Akt/mTOR pathway, thus attenuating OGD/R -induced injury in H9C2 cells. Therefore, SRPX2 has the potential to serve as a target for MI treatment.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Cardiovascular, Tianjin Fifth Central Hospital , Tianjin 300450 , China
| | - Xin Gao
- Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , No. 100, Cross Street, Hongshan Road , Nanjing City , Jiangsu Province 210028 , China
| |
Collapse
|
6
|
Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Analysis of hyaluronan and its derivatives using chromatographic and mass spectrometric techniques. Carbohydr Polym 2020; 250:117014. [DOI: 10.1016/j.carbpol.2020.117014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
8
|
Ji Y, Zhang S, Qiao M, Jiao R, Li J, Song P, Zhang X, Huang H. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies. Carbohydr Polym 2020; 248:116796. [PMID: 32919534 DOI: 10.1016/j.carbpol.2020.116796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate (CS) is one of the major and widespread glycosaminoglycans, a family of structurally complex, linear, anionic hetero-co-polysaccharides. CS plays a vital role in various normal physiological and pathological processes, thus, showing varieties of biological activities, such as anti-oxidation, anti-atherosclerosis, anti-thrombosis, and insignificant immunogenicity. However, the heterogeneity of the naturally occurring CS potentially leads to function unspecific and limits further structure-activity relationship studies. Therefore, the synthesis of CS with well-defined and uniform chain lengths is of major interest for the development of reliable drugs. In this review, we examine the remarkable progress that has been made in the chemical, enzymatic and chemoenzymatic synthesis of CS and its derivatives, providing a broad spectrum of options to access CS of well controlled chain lengths.
Collapse
Affiliation(s)
- Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruoyu Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|