1
|
Parthasarathy V, Kumar PS, Aureen Albert A, Krishnasamy S, Chandrasekar M. Recent progress in nanocellulose-based biocomposites for bone tissue engineering and wound healing applications. Carbohydr Polym 2025; 357:123455. [PMID: 40158986 DOI: 10.1016/j.carbpol.2025.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Nanocellulose (NC) is considered as promising biomaterial owing to its stiffness, renewability, high strength, and biodegradability. NC is classified into three types such as cellulose nanocrystals (CNCs), bacterial nanocellulose (BNC), and cellulose nanofibers (CNFs), and they differ with each other in terms of size, mechanical behaviour, morphology, and crystallinity. The development of biocomposites with nanocellulose as reinforcing agent has gained much attention among researchers owing to their promising applications in various sectors. The thermal, mechanical, and biodegradable properties of both synthetic and natural polymers can be enhanced by reinforcing them with nanocellulose. The fabrication of NC-based biocomposites can be achieved by employing different techniques such as solution casting, resin impregnation and melt compounding methods. The porosity, tensile modulus, tensile strength, MVTR (moisture-vapour transmission rate), biocompatibility, hydrophilic, water retention ability, bio-adhesiveness and hemocompatibility are the essential properties of tissue engineering scaffolds and wound dressing materials, and these properties can be optimized by reinforcing them with NC. This review intends to focus on the reinforcing effect of NC on the physicochemical and thermo-mechanical characteristics of NC-based biocomposites. This review also aims to summarize the utilization of NC-based biocomposites in tissue engineering scaffolds and wound dressing applications.
Collapse
Affiliation(s)
- V Parthasarathy
- Department of Physics, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India.
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Puducherry, India
| | - Annie Aureen Albert
- Department of Physics, Hindustan Institute of Technology and Science, Padur, Tamil Nadu, India
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641 062, India
| | - M Chandrasekar
- SIMCRASH centre, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Padur, Chennai 603103, India
| |
Collapse
|
2
|
Madadi M, Amiri H, Pan J, Song G, Liu D, Gupta VK, Aghbashlo M, Tabatabaei M. Food loss and waste valorization offers a sustainable source of biopolymers in bioinks for 3D printing. NATURE FOOD 2025; 6:323-330. [PMID: 40148591 DOI: 10.1038/s43016-025-01146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Food loss and waste (FLW) valorization remains challenging due to mixed properties and composition arising from seasonal and regional variations in food production. Here we examine the capacities of 3D printing for valorizing FLW streams, with a focus on FLW-based bioinks. We consider how waste management practices, 3D printing technology and emerging FLW valorization techniques could address challenges concerning raw material sourcing, improved material printability and suitable mechanical properties. Bioink ingredients incorporating biologically active compounds derived from FLW streams could offer tailored functionalities, supporting food preservation and economic, health and environmental sustainability benefits in line with the Sustainable Development Goals.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hamid Amiri
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| | - Vijai Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland.
- Biodesign Europe, Dublin City University, Dublin, Ireland.
| | - Mortaza Aghbashlo
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.
| |
Collapse
|
3
|
Santos IA, do Lago RC, Pereira EP, Dos Santos WB, de Moraes LC, de Oliveira Meira ACF, Sampaio ICF, Bonomo RCF, de Resende JV, Tonoli GHD, de Barros Vilas Boas EV, Franco M. Enhanced physicochemical and antifungal properties of starch bionanocomposites reinforced with nanocellulose and functionalized with AgNPs derived from cocoa bean shell. Int J Biol Macromol 2025; 294:139262. [PMID: 39733908 DOI: 10.1016/j.ijbiomac.2024.139262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed. The morphological analysis indicated excellent interaction between the bionanocomposites constituents. The maximum NFC addition increased the tensile strength of the bionanocomposites by approximately 283.93 % (14.85 MPa) while Young's modulus also showed a significant increase of 303.03 % (417.14 MPa), indicating increased stiffness. Water vapor permeability of the materials decreased by approximately 47.89 %. The materials exhibited hydrophilic properties while maintaining low wettability. Furthermore, the bionanocomposites demonstrated pseudoplastic (Ȳ = 0.59) behavior and an inhibitory effect against fungal pathogens. In conclusion, these innovative materials have the potential to transform packaging technology by serving as sustainable alternatives to petroleum-derived polymers while simultaneously adding value to agro-industrial waste.
Collapse
Affiliation(s)
- Ingrid Alves Santos
- Department of Exact Sciences and Natural, State University of Southwest Bahia, 45700-000 Itapetinga, Brazil
| | | | | | | | | | | | - Igor Carvalho Fontes Sampaio
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil
| | | | | | | | | | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil.
| |
Collapse
|
4
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Luo L, Yu W, Yi Y, Xing C, Zeng L, Yang Y, Wang H, Tang Z, Tan Z. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties. Int J Biol Macromol 2023; 247:125812. [PMID: 37453632 DOI: 10.1016/j.ijbiomac.2023.125812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In this study, cellulose nanofibril (CNF) films from ramie fibers were prepared with different pectin compositions and contents, and the influence of residual pectin on the overall performances of CNF films was evaluated. There was no significant effect of the residual pectin composition on the properties of obtained CNF films. However, when the content of residual pectin was increased from 0.45 % to 9.16 %, the surface area and water absorption of CNF films were increased from 0.2223 to 0.3300 m2/g, and from 93.51 % to 122.42 %, respectively. Pectin covers the CNF surface and act as a physical barrier between the cellulose fibrils; thus the nanocellulose films with high pectin content will have a loose and porous structure, resulting in a high surface area and a high water absorption. Besides, with the residual pectin content decreasing from 9.16 % to 0.45 %, the UVA light transmittance and tensile strength of CNF films were increased from 30.6 % to 59.9 %, and from 37.67 to 100.26 MPa, respectively. After removal of amorphous pectins in CNFs, the low pectin containing CNFs are able to pack more compactly to form a strong and thin film. This paper provides guidance for the preparation of CNF films with different performance requirements.
Collapse
Affiliation(s)
- Liru Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wang Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yongjian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chen Xing
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuanru Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hongying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
6
|
Thiabmak C, Chiewchan N, Devahastin S. Production and characterization of nanofibrillated cellulose gels simultaneously exhibiting thermally stable green color and oil-in-water emulsion stabilizing capability from Centella asiatica. J Food Sci 2023; 88:3036-3048. [PMID: 37248778 DOI: 10.1111/1750-3841.16621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Nanofibrillated cellulose (NFC) gels simultaneously exhibiting Pickering stabilizing capability and thermally stable green color were developed for use as food additive in thermally processed food emulsion requiring the expression of color. Chopped Centella asiatica plant was mixed with zinc amino acid chelate solution and subject to autoclaving at 130°C for 2 h to form zinc-chlorophylls complex and to remove noncellulosic components. Autoclaved sample was high-shear homogenized at 26,000 rpm for 15 min and microfluidized at either 80, 120, or 160 MPa for 5 passes. An increase in microfluidization pressure resulted in a decrease in NFC diameters; microfluidization at 160 MPa did not nevertheless yield any further reduction in the diameters when compared with that at 120 MPa. From energy consumption point of view, microfluidization at 120 MPa for 5 passes was then noted as optimal condition for preparation of NFC coloring gel; NFC with diameters of 8-42 nm and crystallinity index of 35% was obtained. Freshly prepared gel exhibited gel-like behavior and dark green color. Heating at 121°C for 1 h did not affect diameters, viscoelasticity, and color of the gel. Addition of the gel at 0.9% or 1.2% (w/w) into soybean oil-in-water emulsion, in combination with high-shear homogenization at 18,000 rpm for 5 min, resulted in adequate emulsion stability. The emulsion exhibited stable dark green color and no phase separation after heating at 121°C for 1 h and during storage for 8 weeks. PRACTICAL APPLICATIONS: Information presented here can serve as a guideline for further development of a multifunctional food ingredient exhibiting thermally stable green color and oil-in-water emulsion stabilizing capability. In other words, one simple ingredient can serve at the same time as both natural food colorant and emulsion stabilizer.
Collapse
Affiliation(s)
- Chompunutch Thiabmak
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
7
|
Xu H, Hao Z, Gao J, Zhou Q, Li W, Liao X, Zheng M, Zhou Y, Yu Z, Song C, Xiao Y. Complexation between rice starch and cellulose nanocrystal from black tea residues: Gelatinization properties and digestibility in vitro. Int J Biol Macromol 2023; 234:123695. [PMID: 36801275 DOI: 10.1016/j.ijbiomac.2023.123695] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Huajian Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Huzhou city Linghu Xinwang Chemical Co. Ltd., China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Prabsangob N. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value-a review. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Hongho C, Chiewchan N, Devahastin S. Production of salad dressings via the use of economically prepared cellulose nanofiber from lime residue as a functional ingredient. J Food Sci 2023; 88:1101-1113. [PMID: 36717377 DOI: 10.1111/1750-3841.16478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Production of cellulose nanofiber (CNF) via the use of a more economical and less energy-intensive means is desirable. Once formed, it is necessary to determine whether or not the prepared CNF would be capable of forming a Pickering emulsion as in the case of traditionally prepared nanofiber. In the present study, oil-in-water emulsions, namely, salad dressings, with CNF as a functional ingredient, were prepared. Lime residue powder as the source of dietary fiber was subject to high-shear homogenization to form CNF suspension, which was then mixed with other ingredients. Different contents of fat (20%-40%), egg yolk (0%-4%), and lime residue powder (0%-4%) were tested. The formed CNF successfully acted as a Pickering emulsifier and allowed the production of salad dressings with desirable characteristics at 30%-40% fat, 2% egg yolk, and 2% lime residue powder. The dressings exhibited adequate physicochemical properties and remained stable throughout the storage period of 28 days. PRACTICAL APPLICATION: The presently proposed means would allow the industry to produce cellulose nanofiber (CNF) in a more economical and less energy-intensive manner. The so-produced CNF exhibits comparable properties as traditionally prepared nanofiber and can be used as a stabilizer in food emulsions.
Collapse
Affiliation(s)
- Charuwan Hongho
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
10
|
Yu W, Yi Y, Wang H, Yang Y, Xing C, Zeng L, Tang J, Tan Z. Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers. Carbohydr Polym 2022; 298:120112. [DOI: 10.1016/j.carbpol.2022.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
|
11
|
Xu Y, Xu Y, Chen H, Gao M, Yue X, Ni Y. Redispersion of dried plant nanocellulose: A review. Carbohydr Polym 2022; 294:119830. [PMID: 35868740 DOI: 10.1016/j.carbpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Nanocellulose has undergone substantial development as a high value-added cellulose product with broad applications. Dried products are advantageous to decrease transportation costs. However, dried nanocellulose has redispersion challenges when rewetting. In this work, drying techniques, factors affecting redispersibility, and strategies improving the nanocellulose redispersibility are comprehensively reviewed. Hydrogen bonds of nanocellulose are unavoidably developed during drying, leading to inferior redispersibility of dried nanocellulose, even hornification. Drying processes of nanocellulose are discussed first. Then, factors affecting redispersibility are discussed. Following that, strategies improving the nanocellulose redispersibility are analyzed and their advantages and disadvantages are highlighted. Surface charge modification and steric hindrance concept are two main pathways to overcome the redispersion challenge, which are mainly carried out by chemical modification, additive incorporation and non-cellulosic component preservation. Despite several advancements having been achieved, new approaches for enhancing the nanocellulose redispersibility are still required to promote the industrial-scale applications of nanocellulose in various domains.
Collapse
Affiliation(s)
- Yang Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Hao Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Minlan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xiaopeng Yue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
12
|
Zha L, Wang S, Berglund L, Zhou Q. Mixed-linkage (1,3;1,4)-β-d-glucans as rehydration media for improved redispersion of dried cellulose nanofibrils. Carbohydr Polym 2022; 300:120276. [DOI: 10.1016/j.carbpol.2022.120276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022]
|
13
|
Sungsinchai S, Niamnuy C, Wattanapan P, Charoenchaitrakool M, Devahastin S. Spray drying of non-chemically prepared nanofibrillated cellulose: Improving water redispersibility of the dried product. Int J Biol Macromol 2022; 207:434-442. [PMID: 35240219 DOI: 10.1016/j.ijbiomac.2022.02.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
Despite increasing interest in using nanofibrillated cellulose (NFC) as food thickener and emulsifier, poor water redispersibility of dried NFC, which is form suitable for practical utilization, significantly limits such applications. Studies are lacking on preparation of dried NFC with superior redispersibility. The present study therefore proposed and examined strategies to improve water redispersibility of spray dried NFC via the use of selected co-carriers, i.e., gum Arabic with/without xanthan gum, carboxymethyl cellulose or pectin. Synergistic interactions between NFC and co-carriers, as confirmed by X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra, helped prevent NFC agglomeration during spray drying. All reconstituted spray-dried NFC/co-carriers suspensions exhibited shear-thinning and gel-like behaviors, thus supporting the use of such suspensions as thickener and emulsifier. Spray-dried NFC with 80% gum Arabic and 20% xanthan gum (SD-NFC/GA20XG) resulted in suspension with highest viscosity; the suspension also performed best at recovering viscous characteristics of NFC. Water thickened by SD-NFC/GA20XG had strongest shear-thinning behavior, indicating that SD-NFC/GA20XG suspension resulted in smoothest mouth feel and easiest swallowing. Such observations were supported by XRD patterns of SD-NFC/GA20XG, which suggested that its relative crystallinity was the lowest. Its FTIR spectra also showed the highest intensity of -OH bending and carbonyl bands, which are directly related to water adsorption capability of NFC. Use of reconstituted SD-NFC/GA20XG as emulsifier also resulted in highest stability for oil-in-water (O/W) Pickering emulsion during storage for up to 30 days.
Collapse
Affiliation(s)
- Sirada Sungsinchai
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chalida Niamnuy
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
| | - Pattra Wattanapan
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, 123 Mittapap Road, Muang, Khon Kaen 40002, Thailand; Dysphagia Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Manop Charoenchaitrakool
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok 10140, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
14
|
Approaches for Extracting Nanofibrillated Cellulose from Oat Bran and Its Emulsion Capacity and Stability. Polymers (Basel) 2022; 14:polym14020327. [PMID: 35054733 PMCID: PMC8780780 DOI: 10.3390/polym14020327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
The pretreatment process is an essential step for nanofibrillated cellulose production as it enhances size reduction efficiency, reduces production cost, and decreases energy consumption. In this study, nanofibrillated cellulose (NFC) was prepared using various pretreatment processes, either chemical (i.e., acid, basic, and bleach) or hydrothermal (i.e., microwave and autoclave), followed by disintegration using high pressure homogenization from oat bran fibers. The obtained NFC were used as an emulsifier to prepare 10% oil-in-water emulsions. The emulsion containing chemically pretreated NFC exhibited the smallest oil droplet diameter (d32) at 3.76 μm, while those containing NFC using other pretreatments exhibited d32 values > 5 μm. The colors of the emulsions were mainly influenced by oil droplet size rather than the color of the fiber itself. Both NFC suspensions and NFC emulsions showed a storage modulus (G′) higher than the loss modulus (G″) without crossing over, indicating gel-like behavior. For emulsion stability, microwave pretreatment effectively minimized gravitational separation, and the creaming indices of all NFC-emulsions were lower than 6% for the entire storage period. In conclusion, chemical pretreatment was an effective method for nanofiber extraction with good emulsion capacity. However, the microwave with bleaching pretreatment was an alternative method for extracting nanofibers and needs further study to improve the efficiency.
Collapse
|
15
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
16
|
Rodkantuk K, Chiewchan N, Devahastin S. Feasibility of using exogenous pectin to improve water redispersibility and viscoelasticity of reconstituted dried nanofibrillated cellulose from cabbage outer leaves. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Khanisorn Rodkantuk
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
- The Academy of Science The Royal Society of Thailand Dusit, Bangkok 10300 Thailand
| |
Collapse
|
17
|
Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju YH, Ismadji S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers (Basel) 2021; 13:2052. [PMID: 34201884 PMCID: PMC8272055 DOI: 10.3390/polym13132052] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
The 'Back-to-nature' concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia;
| | - Yi-Hsu Ju
- Graduate Institute of Applied Science, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan;
- Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| |
Collapse
|
18
|
Sungsinchai S, Niamnuy C, Seubsai A, Prapainainar P, Wattanapan P, Thakhiew W, Raghavan V, Devahastin S. Comparative evaluation of the effect of microfluidisation on physicochemical properties and usability as food thickener and Pickering emulsifier of autoclaved and TEMPO‐oxidised nanofibrillated cellulose. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sirada Sungsinchai
- Department of Chemical Engineering Faculty of Engineering Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
| | - Chalida Niamnuy
- Department of Chemical Engineering Faculty of Engineering Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
- Research Network of NANOTEC‐KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
| | - Anusorn Seubsai
- Department of Chemical Engineering Faculty of Engineering Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
- Research Network of NANOTEC‐KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
| | - Paweena Prapainainar
- Department of Chemical Engineering Faculty of Engineering Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
- Research Network of NANOTEC‐KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment Kasetsart University 50 Ngam Wong Wan Road Chatuchak, Bangkok 10900 Thailand
| | - Pattra Wattanapan
- Department of Rehabilitation Medicine Faculty of Medicine Khon Kaen University 123 Mittapap Road Muang, Khon Kaen 40002 Thailand
- Dysphagia Research Group Khon Kaen University Khon Kaen 40002 Thailand
| | - Wasina Thakhiew
- Department of Nutrition Faculty of Public Health Mahidol University 420/1 Ratchawithi Road Ratchathewi, Bangkok 10400 Thailand
| | - Vijaya Raghavan
- Department of Bioresource Engineering Faculty of Agricultural and Environmental Sciences McGill University Macdonald Campus, 21111 Lakeshore Road Ste. Anne de Bellevue QC H9X 3V9 Canada
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Tungkru, Bangkok 10140 Thailand
- The Academy of Science The Royal Society of Thailand Dusit, Bangkok 10300 Thailand
| |
Collapse
|
19
|
Liu T, Wang K, Xue W, Wang L, Zhang C, Zhang X, Chen Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100077. [PMID: 36158608 PMCID: PMC9488076 DOI: 10.1016/j.ese.2020.100077] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/17/2023]
Abstract
Biomass waste comes from a wide range of sources, such as forest, agricultural, algae wastes, as well as other relevant industrial by-products. It is an important alternative energy source as well as a unique source for various bioproducts applied in many fields. For the past two decades, how to reuse, recycle and best recover various biomass wastes for high value-added bioproducts has received significant attention, which has not only come from various academia communities but also from many civil and medical industries. To summarize one of the cutting-edge technologies applied with nanocellulose biomaterials, this review focused on various preparation methods and strategies to make nanocellulose from diverse biomass wastes and their potential applications in biomedical areas and other promising new fields.
Collapse
Affiliation(s)
- Sujie Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jian Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
| |
Collapse
|
21
|
Impoolsup T, Chiewchan N, Devahastin S. On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydr Polym 2019; 230:115630. [PMID: 31887968 DOI: 10.1016/j.carbpol.2019.115630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Microwave (MW) pretreatment as an energy-efficient method to enhance the production of nanofibrillated cellulose (NFC) from lime (Citrus aurantifolia Swingle) residue after juice extraction is proposed. NFC was prepared by subjecting lime residue to MW pretreatment for up to 3 rounds; this was followed by high-shear and high-pressure homogenization. Repeated application of MW pretreatment helped remove non-cellulosic components and resulted in an increased cellulose content and crystallinity index but a decrease in fiber diameter. Freshly prepared NFC sample exhibited gel-like behavior. G' and G″ of suspension prepared from dried NFC markedly decreased, indicating the loss of gel-like property upon drying. Proper pectin molecular weight as well as pectin content were noted to play an important role in controlling aggregation of NFC during drying and hence water redispersibility of dried NFC. Significant amounts of pectin and limonin could be recovered and utilized as co-products after the first round of MW pretreatment.
Collapse
Affiliation(s)
- Tawee Impoolsup
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand.
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
22
|
Kunchitwaranont A, Chiewchan N, Devahastin S. Use and Understanding of the Role of Spontaneously Formed Nanocellulosic Fiber from Lime (Citrus aurantifolia Swingle) Residues to Improve Stability of Sterilized Coconut Milk. J Food Sci 2019; 84:3674-3681. [PMID: 31769512 DOI: 10.1111/1750-3841.14937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
Feasibility of using nanocellulosic fiber (NF) from lime residues as a stabilizer for oil-in-water emulsion was investigated. One-step process to simultaneously prepare an emulsion and NF is proposed. NF could spontaneously form by adding appropriately prepared fiber powder into the test emulsion viz. coconut milk, which was subsequently subject to homogenization and sterilization. Properties of the samples, that is, microstructure, rheological properties, emulsion stability, and color, after sterilization and after 8-week storage at 30 °C were determined. Sterilized samples exhibited pseudoplastic behavior. Samples containing higher NF concentrations exhibited higher viscosity; viscosity remained constant throughout the whole storage period. High emulsion stabilities (>97%) were observed for samples containing 0.4 to 0.8% (w/v) of NF. L* , C* , and h* of the samples were 79 to 80, 8 to 10, and 90, respectively. Three-dimensional network of NF (diameters < 50 nm) attached to fat globule surfaces formed during homogenization is postulated to help stabilize the emulsions. PRACTICAL APPLICATION: One-step process to simultaneously prepare oil-in-water emulsion as well as nanocellulosic fiber (NF) is proposed. Such a formed NF can serve as natural ingredient to stabilize the emulsion. The proposed procedures should be of great interest to an industry producing oil-in-water emulsions (for example, canned coconut milk) that is looking for a natural alternative to synthetic stabilizer.
Collapse
Affiliation(s)
- Apimook Kunchitwaranont
- Authors Kunchitwaranont, Chiewchan, and Devahastin Advanced Food Processing Research Laboratory, Faculty of Engineering, Dept. of Food Engineering, King Mongkut's Univ. of Technology Thonburi, 126 Pracha u-tid Road, Bangkok, 10140, Thailand
| | - Naphaporn Chiewchan
- Authors Kunchitwaranont, Chiewchan, and Devahastin Advanced Food Processing Research Laboratory, Faculty of Engineering, Dept. of Food Engineering, King Mongkut's Univ. of Technology Thonburi, 126 Pracha u-tid Road, Bangkok, 10140, Thailand
| | - Sakamon Devahastin
- Authors Kunchitwaranont, Chiewchan, and Devahastin Advanced Food Processing Research Laboratory, Faculty of Engineering, Dept. of Food Engineering, King Mongkut's Univ. of Technology Thonburi, 126 Pracha u-tid Road, Bangkok, 10140, Thailand.,the Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand
| |
Collapse
|
23
|
Xiao Y, Liu Y, Wang X, Li M, Lei H, Xu H. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. Int J Biol Macromol 2019; 140:225-233. [DOI: 10.1016/j.ijbiomac.2019.08.160] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/18/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
24
|
Mitbumrung W, Suphantharika M, McClements DJ, Winuprasith T. Encapsulation of Vitamin D 3 in Pickering Emulsion Stabilized by Nanofibrillated Mangosteen Cellulose: Effect of Environmental Stresses. J Food Sci 2019; 84:3213-3221. [PMID: 31589344 DOI: 10.1111/1750-3841.14835] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022]
Abstract
Vitamin D3 was encapsulated in 10% wt soybean oil-in-water (O/W) Pickering emulsions stabilized by either nanofibrillated cellulose (NFC) or whey protein isolate (WPI) at 0.3%, 0.5%, and 0.7% w/w. The vitamin D3 -enriched emulsions were tested for their stability against temperature (30 °C to 90 °C), pH (2 to 8), and ionic strength (0 to 500 mM NaCl). The mean particle diameter (d32 ), ζ-potential, and creaming stability of the oil droplets in the emulsions were measured, as well as their vitamin D3 encapsulation efficiency (EE). After preparation, the oil droplet size (d32 ) of the emulsions stabilized by NFC increased with increasing emulsifier concentration, whereas the droplet size of emulsions stabilized by WPI decreased. NFC provided good stability to the emulsions through a combination of steric and electrostatic repulsion. The EE of vitamin D3 increased with increasing emulsifier concentration. Heating or ionic strength did not significantly (P < 0.05) affect the emulsions properties and EE. On the other hand, the NFC-stabilized emulsions were sensitive to highly acidic conditions (pH 2), with an increase in particle size and decrease in EE. The WPI-stabilized emulsions aggregated around the isoelectric point of the adsorbed proteins (pI ≈ 4.8). Increasing NFC or WPI concentration improved the stability and EE of the emulsions against environmental stresses. NFC-stabilized emulsions had good long-term stability. The results show that NFC can be used as an effective emulsifier for creating vitamin-enriched emulsions with good stability. PRACTICAL APPLICATION: This study can be used to develop more effective encapsulation technologies for fat-soluble vitamins in emulsion-based food products. Encapsulation using nanofibrillated cellulose effectively protected the encapsulated vitamins against environmental stresses which occur in industrial food production (such as pH changes, salt addition, and thermal processing). Moreover, nanofibrillated cellulose extracted from mangosteen rind is a nature-derived emulsifier that is environmental friendly.
Collapse
Affiliation(s)
| | - Manop Suphantharika
- Dept. of Biotechnology, Faculty of Science, Mahidol Univ., Rama 6 Road, Bangkok, 10400, Thailand
| | | | | |
Collapse
|