1
|
Courtecuisse E, Bourasseau S, Christensen BE, Schatz C. Synthesis of linear chitosan-block-dextran copolysaccharides with dihydrazide and dioxyamine linkers. Carbohydr Polym 2024; 345:122576. [PMID: 39227123 DOI: 10.1016/j.carbpol.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. Under non-reducing conditions, chitosan with a 2,5-anhydro-D-mannose unit at its reducing end exhibited high reactivity with both PDHA and ADH. Dextran, with a normal reducing end, showed superior reactivity with PDHA compared to ADH, although complete conversion with ADH could be achieved under reductive conditions with NaBH3CN. Importantly, the oxime bond in PDHA conjugates exhibited greater stability against hydrolysis compared to the hydrazone bond in ADH conjugates. The optimal block coupling method consisted in reacting chitosan with an excess of dextran pre-functionalized with PDHA. The copolysaccharides could be synthesized in high yields under both reducing and non-reducing conditions. This methodology was applied to relatively long polysaccharide blocks with molecular weight up to 14,000 g/mol for chitosan and up to 40,000 g/mol for dextran. Surprisingly, block copolysaccharides did not self-assemble at neutral or basic pH; rather, they precipitated due to hydrogen bonding between neutralized amino groups of chitosan. However, nanoparticles could be obtained through a nanoprecipitation approach.
Collapse
Affiliation(s)
- Elise Courtecuisse
- Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, 33600 Pessac, France
| | - Sylvain Bourasseau
- Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, 33600 Pessac, France
| | - Bjørn E Christensen
- NOBIPOL - Department of Biotechnology and Food Science, NTNU, Trondheim, Norway.
| | - Christophe Schatz
- Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, 33600 Pessac, France.
| |
Collapse
|
2
|
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar Drugs 2023; 21:632. [PMID: 38132953 PMCID: PMC10744359 DOI: 10.3390/md21120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Collapse
Affiliation(s)
- Ru Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Ying Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (R.C.); (W.W.)
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (R.Y.); (Y.P.); (C.X.)
| |
Collapse
|
3
|
Vasiliev GO, Pigaleva MA, Blagodatskikh IV, Mazur DM, Levin EE, Naumkin AV, Kharitonova EP, Gallyamov MO. Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure
CO
2
. J Appl Polym Sci 2022. [DOI: 10.1002/app.52514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gleb O. Vasiliev
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
| | - Marina A. Pigaleva
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
| | - Inesa V. Blagodatskikh
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| | - Dmitrii M. Mazur
- Faculty of Chemistry Lomonosov Moscow State University Moscow Russian Federation
| | - Eduard E. Levin
- Faculty of Chemistry Lomonosov Moscow State University Moscow Russian Federation
- FSRC “Crystallography and Photonics” RAS Moscow Russia
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| | | | - Marat O. Gallyamov
- Faculty of Physics Lomonosov Moscow State University Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Moscow Russian Federation
| |
Collapse
|
4
|
de Souza ÉE, Montel ALLB, Barbosa RDS, Soares IM, Noseda MD, Souza Aguiar RWD, Alvim TDC, Ascêncio SD. Obtaining Hexoses from Chitosan through Depolymerization with Nitrous Acid. Curr Org Synth 2022; 19:767-771. [PMID: 35086452 DOI: 10.2174/1570179419666220127145745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Residues from shrimp farming have a great potential for sugar production and, consequently, an increase in the production of derivatives for the low-carbon chemical industry. Obtaining bioactives from chitosan has been extensively investigated using different methodologies. The purpose of this work was to study the chitosan depolymerization reaction aiming at the production of monomers without the use of additional enzymes or mineral acids. MATERIALS AND METHODS In this work, we systematically study the effect of sodium nitrite concentration and reaction conditions (pH and temperature ranges) in acetic acid solvent on the chitosan depolymerization reaction aiming at the production of monomers, specifically 2,5-anhydromannose, without the use of additional enzymes or mineral acids. RESULTS The results indicated that only a small range of reaction conditions and nitrite concentrations allow for obtaining the monomer, while in most combinations of these parameters, oligomers are obtained. We found that the temperature decisively affects the reaction yield, with the attainment of 2,5-anhydromannose favored at lower temperatures. CONCLUSION The method proved to be simple and easy to perform allowing to obtain 2,5-anhydromannose with low-cost reagents. This monomer can be converted into several derivatives for industrial application (5-Hydroxymethylfurfural, ethanol, etc.).
Collapse
Affiliation(s)
- Éber Eurípedes de Souza
- Graduate program in Biodiversity and Biotecnology - Amazônia Legal - Bionorte, Federal University of Tocantins, City Palmas, Brazil
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil
| | | | - Robson Dos Santos Barbosa
- Graduate program in Biodiversity and Biotecnology - Amazônia Legal - Bionorte, Federal University of Tocantins, City Palmas, Brazil
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil
| | - Ilsamar Mendes Soares
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil
- Federal Institute of Education Science and Tecnology of Tocantins, City Araguatins, Brazil
| | - Miguel Daniel Noseda
- Biochemistry and Molecular Biology Department, Federal University of Paraná, Centro Politécnico, City Curitiba, Brazil
| | - Raimundo Wagner de Souza Aguiar
- Graduate program in Biodiversity and Biotecnology - Amazônia Legal - Bionorte, Federal University of Tocantins, City Palmas, Brazil;
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil;
- Molecular Biology laboratory, Biotechnology Departament, Federal University of Tocantins, City of Gurupi, Brazil
| | - Tarso da Costa Alvim
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil
| | - Sérgio Donizeti Ascêncio
- Graduate program in Biodiversity and Biotecnology - Amazônia Legal - Bionorte, Federal University of Tocantins, City Palmas, Brazil;
- Laboratory of Research in Natural Products, Federal University of Tocantins, City Palmas, Brazil
| |
Collapse
|
5
|
Paiva WS, de Souza Neto FE, Queiroz MF, Batista LANC, Rocha HAO, de Lima Batista AC. Oligochitosan Synthesized by Cunninghamella elegans, a Fungus from Caatinga (The Brazilian Savanna) Is a Better Antioxidant than Animal Chitosan. Molecules 2021; 27:molecules27010171. [PMID: 35011403 PMCID: PMC8747077 DOI: 10.3390/molecules27010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Animal chitosan (Chit-A) is gaining more acceptance in daily activities. It is used in a range of products from food supplements for weight loss to even raw materials for producing nanoparticles and hydrogel drug carriers; however, it has low antioxidant activity. Fungal oligochitosan (OChit-F) was identified as a potential substitute for Chit-A. Cunninghamella elegans is a fungus found in the Brazilian savanna (Caatinga) that produces OligoChit-F, which is a relatively poorly studied compound. In this study, 4 kDa OChit-F with a 76% deacetylation degree was extracted from C. elegans. OChit-F showed antioxidant activity similar to that of Chit-A in only one in vitro test (copper chelation) but exhibited higher activity than that of Chit-A in three other tests (reducing power, hydroxyl radical scavenging, and iron chelation). These results indicate that OChit-F is a better antioxidant than Chit-A. In addition, Chit-A significantly increased the formation of calcium oxalate crystals in vitro, particularly those of the monohydrate (COM) type; however, OChit-F had no effect on this process in vitro. In summary, OChit-F had higher antioxidant activity than Chit-A and did not induce the formation of CaOx crystals. Thus, OChit-F can be used as a Chit-A substitute in applications affected by oxidative stress.
Collapse
Affiliation(s)
- Weslley Souza Paiva
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil;
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
- Correspondence:
| | | | - Moacir Fernandes Queiroz
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
- Biomedicine Departament, Universidade Potiguar, Natal 59056-000, Rio Grande do Norte, Brazil
| | - Lucas Alighieri Neves Costa Batista
- Laboratório de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil; (M.F.Q.); (L.A.N.C.B.)
| | - Hugo Alexandre Oliveira Rocha
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Rio Grande do Norte, Brazil;
- Biomedicine Departament, Universidade Potiguar, Natal 59056-000, Rio Grande do Norte, Brazil
| | | |
Collapse
|
6
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Bezrodnykh EA, Berezin BB, Kulikov SN, Zelenikhin PV, Vyshivannaya OV, Blagodatskikh IV, Tikhonov VE. Unusual Compatibility of N‐Reacetylated Oligochitosan with Sodium Dodecyl Sulfate in Aqueous Solution with a Wide Range of the Solution pH. STARCH-STARKE 2021. [DOI: 10.1002/star.202000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Evgeniya A. Bezrodnykh
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Boris B. Berezin
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Sergey N. Kulikov
- Department of Immunology Kazan Scientific Research Institute of Epidemiology and Microbiology Bolshaya Krasnaya st. 67 Kazan 420015 Russia
- Department of Microbiology Kazan Federal University Kremlyovskaya st. 18 Kazan 420008 Russia
| | - Pavel V. Zelenikhin
- Department of Microbiology Kazan Federal University Kremlyovskaya st. 18 Kazan 420008 Russia
| | - Oxana V. Vyshivannaya
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Inesa V. Blagodatskikh
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Vladimir E. Tikhonov
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| |
Collapse
|
8
|
Chapelle C, David G, Caillol S, Negrell C, Desroches Le Foll M. Advances in chitooligosaccharides chemical modifications. Biopolymers 2021; 112:e23461. [PMID: 34115397 DOI: 10.1002/bip.23461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/25/2023]
Abstract
Chitooligosaccharides (COS) differ from chitosan by their molar mass: those of COS are defined to be lower than 20 kg mol-1 . Their functionalization is widely described in the literature and leads to the introduction of new properties that broaden their application fields. Like chitosan, COS modification sites are mainly primary amine and hydroxyl groups. Among their chemical modification, one can find amidation or esterification, epoxy-amine/hydroxyl coupling, Schiff base formation, and Michael addition. When depolymerized through nitrous deamination, COS bear an aldehyde at the chain end that can open the way to other chemical reactions and lead to the synthesis of new interesting amphiphilic structures. This article details the recent developments in COS functionalization, primarily focusing on amine and hydroxyl groups and aldehyde-chain end reactions, as well as paying considerable attention to other types of modification. We also describe and compare the different functionalization protocols found in the literature while highlighting potential mistakes made in the chemical structures accompanied with suggestions. Such chemical modification can lead to new materials that are generally nontoxic, biobased, biodegradable, and usable in various applications.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
9
|
Chapelle C, David G, Caillol S, Negrell C, Durand G, le Foll MD. Functionalization of Chitosan Oligomers: From Aliphatic Epoxide to Cardanol-Grafted Oligomers for Oil-in-Water Emulsions. Biomacromolecules 2021; 22:846-854. [PMID: 33470101 DOI: 10.1021/acs.biomac.0c01576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrophobically modified chitooligosaccharides (COSs) were tested for suitability as an emulsifier in cationic bituminous emulsions. COSs with polymerization degrees (DPs) of 5, 10, 15, and 20 were obtained by nitrous acid deamination. A complete study on depolymerization and precise product and side product characterization was undergone. Chemical modification of COSs was performed to achieve amphiphilic structures using three fatty epoxides with a growing chain length butyl (C4), octadecyl (C9), and hexadecyl glycidyl ether (C16)). The grafting efficiency according to reaction conditions was established. Different substitution degrees (DSs) were obtained by modulating the ratio of fatty epoxy to NH2. It was shown that after a certain DS, the oligomers thus formed were not water-soluble anymore. At the end, cardanol glycidyl ether was grafted on DP 5, 10, and 15 COSs, cardanol being a biobased compound extracted from cashew nut shell; this reaction led to a potentially fully biobased structure. Water-soluble candidates with a higher DS were used as surfactants to emulsify motor oil as a simulation of bitumen. Cardanol-chitosan-based surfactants led to direct oil-in-water emulsion (60/40 w/w) composed of particles of 15 μm average size that were stable at least for 24 h.
Collapse
Affiliation(s)
| | - Ghislain David
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Claire Negrell
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 3090, France
| | - Graziella Durand
- CST COLAS 4, Rue Jean Mermoz CS 30504, Magny-les-Hameaux Cedex 78771, France
| | | |
Collapse
|
10
|
Bezrodnykh EA, Vyshivannaya OV, Polezhaev AV, Abramchuk SS, Blagodatskikh IV, Tikhonov VE. Residual heavy metals in industrial chitosan: State of distribution. Int J Biol Macromol 2020; 155:979-986. [DOI: 10.1016/j.ijbiomac.2019.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
|
11
|
Chang YW, Zeng XY, Sung WC. Effect of chitooligosaccharide and different low molecular weight chitosans on the formation of acrylamide and 5-hydroxymethylfurfural and Maillard reaction products in glucose/fructose-asparagine model systems. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Chapelle C, David G, Caillol S, Negrell C, Durand G, Desroches le Foll M, Trombotto S. Water-Soluble 2,5-Anhydro-d-mannofuranose Chain End Chitosan Oligomers of a Very Low Molecular Weight: Synthesis and Characterization. Biomacromolecules 2019; 20:4353-4360. [DOI: 10.1021/acs.biomac.9b01003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Chapelle
- Ingénierie et Architecture Macromoléculaire (IAM), 8 rue de l’école Normale, 34296 Montpellier CEDEX
5, France
| | - Ghislain David
- Ingénierie et Architecture Macromoléculaire (IAM), 8 rue de l’école Normale, 34296 Montpellier CEDEX
5, France
| | - Sylvain Caillol
- Ingénierie et Architecture Macromoléculaire (IAM), 8 rue de l’école Normale, 34296 Montpellier CEDEX
5, France
| | - Claire Negrell
- Ingénierie et Architecture Macromoléculaire (IAM), 8 rue de l’école Normale, 34296 Montpellier CEDEX
5, France
| | - Graziella Durand
- CST COLAS, 4 Rue Jean Mermoz CS 30504, 78771 Magny-les-Hameaux Cedex, France
| | | | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Univ Lyon, 69622 Villeurbanne, France
| |
Collapse
|
13
|
Delas T, Mock-Joubert M, Faivre J, Hofmaier M, Sandre O, Dole F, Chapel JP, Crépet A, Trombotto S, Delair T, Schatz C. Effects of Chain Length of Chitosan Oligosaccharides on Solution Properties and Complexation with siRNA. Polymers (Basel) 2019; 11:E1236. [PMID: 31349712 PMCID: PMC6723797 DOI: 10.3390/polym11081236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
In the context of gene delivery, chitosan has been widely used as a safe and effective polycation to complex DNA, RNA and more recently, siRNA. However, much less attention has been paid to chitosan oligosaccharides (COS) despite their biological properties. This study proposed to carry out a physicochemical study of COS varying in degree of polymerization (DP) from 5 to 50, both from the point of view of the solution properties and the complexing behavior with siRNA. The main parameters studied as a function of DP were the apparent pKa, the solubility versus pH, the binding affinity with siRNA and the colloidal properties of complexes. Some parameters, like the pKa or the binding enthalpy with siRNA, showed a marked transition from DP 5 to DP 13, suggesting that electrostatic properties of COS vary considerably in this range of DP. The colloidal properties of siRNA/COS complexes were affected in a different way by the COS chain length. In particular, COS of relatively high DP (≥50) were required to form small complex particles with good stability.
Collapse
Affiliation(s)
- Tim Delas
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Maxime Mock-Joubert
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Jimmy Faivre
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Mirjam Hofmaier
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - François Dole
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Univ. Bordeaux, 33600 Pessac, France
| | - Jean Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Univ. Bordeaux, 33600 Pessac, France
| | - Agnès Crépet
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Thierry Delair
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France.
| |
Collapse
|