1
|
Ni J, Chen X, Chen N, Yan Y, Wu Y, Li B, Huang H, Tong H, Liu Y, Dai N. Erianin alleviates LPS-induced acute lung injury via antagonizing P-selectin-mediated neutrophil adhesion function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118336. [PMID: 38750983 DOI: 10.1016/j.jep.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.
Collapse
Affiliation(s)
- Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xiaohai Chen
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, PR China
| | - Nengfu Chen
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, 325800, PR China
| | - Yawei Yan
- College of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China
| | - Hui Huang
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China.
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ningfeng Dai
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, 325800, PR China.
| |
Collapse
|
2
|
Dai N, Li G, Ni J, Li F, Tong H, Liu Y. A novel galactoxylan derived from Viola diffusa alleviates LPS-induced acute lung injury via antagonizing P-selectin-mediated adhesion function. Int J Biol Macromol 2023; 242:124821. [PMID: 37178888 DOI: 10.1016/j.ijbiomac.2023.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Acute lung injury (ALI) greatly threatens human health worldwide. P-selectin is a potential target for the treatment of acute inflammatory diseases, and natural polysaccharides exhibit high-affinity for P-selectin. Viola diffusa, a traditional Chinese herbal, shows strong anti-inflammatory effects, but pharmacodynamic substances and underlying mechanisms are still unclear. In this study, a galactoxylan polysaccharide (VDPS) derived from Viola diffusa was isolated and characterized, evaluated the protective effect on LPS induced ALI and underlying mechanism. VDPS significantly alleviated LPS-induced pathological lung injury, and decreased the numbers of total cells and neutrophils as well as the total protein contents in the bronchoalveolar lavage fluid (BALF). Moreover, VDPS reduced proinflammatory cytokine production both in BALF and lung. Interestingly, VDPS significantly restrained the activation of NF-κB signaling in the lung of LPS-exposed mice, but it cannot inhibit LPS-induced inflammation in human pulmonary microvascular endothelial cells (HPMECs) in vitro. Additionally, VDPS disrupted neutrophil adhesion and rolling on the activated HPMECs. VDPS cannot impact the expression or cytomembrane translocation of endothelial P-selectin, but remarkably interrupt the binding of P-selectin and PSGL-1. Overall, this study demonstrated that VDPS can alleviate LPS-induced ALI via inhibiting P-selectin-dependent adhesion and recruitment of neutrophils on the activated endothelium, providing a potential treatment strategy for ALI.
Collapse
Affiliation(s)
- Ningfeng Dai
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, PR China
| | - Ge Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, PR China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Fang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
3
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
5
|
Wu S, Liu J, Zhang Y, Song J, Zhang Z, Yang Y, Wu M, Tong H. Structural characterization and antagonistic effect against P-selectin-mediated function of SFF-32, a fucoidan fraction from Sargassum fusiforme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115408. [PMID: 35659565 DOI: 10.1016/j.jep.2022.115408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum fusiforme (Harvey) Setchell, or Haizao, has been used in traditional Chinese medicine (TCM) since at least the eighth century a.d. S. fusiforme is an essential component of several Chinese formulas, including Haizao Yuhu Decoction, used to treat goiter, and Neixiao Lei Li Wan used to treat scrofuloderma. The pharmacological efficacy of S. fusiforme may be related to its anti-inflammatory effect. AIM OF THE STUDY To determine the structural characteristics of SFF-32, a fucoidan fraction from S. fusiforme, and its antagonistic effect against P-selectin mediated function. MATERIALS AND METHODS The primary structure of SFF-32 was determined using methylation/GC-MS and NMR analysis. Surface morphology and solution conformation of SFF-32 were determined by scanning electron microscopy (SEM), Congo red test, and circular dichroic (CD) chromatography, respectively. The inhibitory effects of SFF-32 against the binding of P-selectin to HL-60 cells were evaluated using flow cytometry, static adhesion assay, and parallel-plate flow chamber assay. Furthermore, the blocking effect of SFF-32 on the interaction between P-selectin and PSGL-1 was evaluated using an in vitro protein binding assay. RESULTS The main linkage types of SFF-32 were proven to →[3)-α-l-Fucp-(1→3,4)-α-l-Fucp-(1]2→[4)-β-d-Manp-(1→3)-d-GlcAp-(1]2→4)-β-d-Manp-(1→3)-β-d-Glcp-(1→4)-β-d-Manp-(1→2,3)-β-d-Galp-(1→4)-β-d-Manp-(1→[4)-α-l-Rhap-(1]3→. The sulfated unit or terminal xylose residues were attached to the backbone through the C-3 of some fucose residues and terminal xylose residues were attached to C-3 of galactose residues. Moreover, SFF-32 disrupted P-selectin-mediated cell adhesion and rolling as well as blocked the interaction between P-selectin and its physiological ligand PSGL-1 in a dose-dependent manner. CONCLUSIONS Blocking the binding between P-selectin and PSGL-1 is the possible underlying mechanism by which SFF-32 inhibits P-selectin-mediated function, which demonstrated that SFF-32 may be a potential anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin, 132013, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou, 313000, PR China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
6
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
7
|
Shi S, Chang M, Liu H, Ding S, Yan Z, Si K, Gong T. The Structural Characteristics of an Acidic Water-Soluble Polysaccharide from Bupleurum chinense DC and Its In Vivo Anti-Tumor Activity on H22 Tumor-Bearing Mice. Polymers (Basel) 2022; 14:polym14061119. [PMID: 35335457 PMCID: PMC8952506 DOI: 10.3390/polym14061119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the preliminary structural characteristics and in vivo anti-tumor activity of an acidic water-soluble polysaccharide (BCP) separated purified from Bupleurum chinense DC root. The preliminary structural characterization of BCP was established using UV, HPGPC, FT-IR, IC, NMR, SEM, and Congo red. The results showed BCP as an acidic polysaccharide with an average molecular weight of 2.01 × 103 kDa. Furthermore, we showed that BCP consists of rhamnose, arabinose, galactose, glucose, and galacturonic acid (with a molar ratio of 0.063:0.788:0.841:1:0.196) in both α- and β-type configurations. Using the H22 tumor-bearing mouse model, we assessed the anti-tumor activity of BCP in vivo. The results revealed the inhibitory effects of BCP on H22 tumor growth and the protective actions against tissue damage of thymus and spleen in mice. In addition, the JC-1 FITC-AnnexinV/PI staining and cell cycle analysis have collectively shown that BCP is sufficient to induce apoptosis and of H22 hepatocarcinoma cells in a dose-dependent manner. The inhibitory effect of BCP on tumor growth was likely attributable to the S phase arrest. Overall, our study presented significant anti-liver cancer profiles of BCP and its promising therapeutic potential as a safe and effective anti-tumor natural agent.
Collapse
|
8
|
Li S, Cheng CS, Zhang C, Tang GY, Tan HY, Chen HY, Wang N, Lai AYK, Feng Y. Edible and Herbal Plants for the Prevention and Management of COVID-19. Front Pharmacol 2021; 12:656103. [PMID: 33995078 PMCID: PMC8113769 DOI: 10.3389/fphar.2021.656103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The outbreak of the pandemic coronavirus disease 2019 (COVID-19) has now become a global pandemic spreading throughout the world. Unfortunately, due to the high infectiousness of the novel β-coronavirus, it is very likely to become an ordinary epidemic. The development of dietary supplements and functional foods might provide a strategy for the prevention and management of COVID-19. Scope and Approach: A great diversity of potential edible and medicinal plants and/or natural compounds showed potential benefits in managing SARS, which may also combat COVID-19. Moreover, many plants and compounds have currently been proposed to be protective against COVID-19. This information is based on data-driven approaches and computational chemical biology techniques. In this study, we review promising candidates of edible and medicinal plants for the prevention and management of COVID-19. We primarily focus on analyzing their underlying mechanisms. We aim to identify dietary supplements and functional foods that assist in managing this epidemic. Key findings and Conclusion: We infer that acetoside, glyasperin, isorhamnetin, and several flavonoid compounds may prevent and/or be effective in managing COVID-19 by targeting the viral infection, reducing the host cytokine storm, regulating the immune response, and providing organ protection. These bioactive dietary components (used either alone or in combination) might assist in the development of dietary supplements or functional foods for managing COVID-19.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chien-Shan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Barbosa JR, de Carvalho Junior RN. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends Food Sci Technol 2021; 108:223-235. [PMID: 33424125 PMCID: PMC7781518 DOI: 10.1016/j.tifs.2020.12.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The global crisis caused by the outbreak of severe acute respiratory syndrome caused by the SARS-CoV-2 virus, better known as COVID-19, brought the need to improve the population's immunity. The foods rich in polysaccharides with immunomodulation properties are among the most highly rated to be used as immune response modulators. Thus, the use of polysaccharides obtained from food offers an innovative strategy to prevent serious side effects of viral infections. SCOPE AND APPROACH This review revisits the current studies on the pathophysiology of SARS-CoV-2, its characteristics, target cell interactions, and the possibility of using polysaccharides from functional foods as activators of the immune response. Several natural foods are explored for the possibility of being used to obtain polysaccharides with immunomodulatory potential. And finally, we address expectations for the use of polysaccharides in the development of potential therapies and vaccines. KEY FINDINGS AND CONCLUSIONS The negative consequences of the SARS-CoV-2 pandemic across the world are unprecedented, thousands of lives lost, increasing inequalities, and incalculable economic losses. On the other hand, great scientific advances have been made regarding the understanding of the disease and forms of treatment. Polysaccharides, due to their characteristics, have the potential to be used as potential drugs with the ability to modulate the immune response. In addition, they can be used safely, as they have no toxic effects, are biocompatible and biodegradable. Finally, these biopolymers can still be used in the development of new therapies and vaccines.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900, Belém, PA, Brazil
- LABTECS (Supercritical Technology Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Para), Avenida Perimetral da Ciência km 01,Guamá, Belém, PA, 66075-750, Brazil
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900, Belém, PA, Brazil
- LABTECS (Supercritical Technology Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Para), Avenida Perimetral da Ciência km 01,Guamá, Belém, PA, 66075-750, Brazil
| |
Collapse
|
10
|
Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K, Zhang Y. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240:116346. [PMID: 32475597 PMCID: PMC7175912 DOI: 10.1016/j.carbpol.2020.116346] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023]
Abstract
The new coronavirus pneumonia, named COVID-19 by the World Health Organization, has become a pandemic. It is highly pathogenic and reproduces quickly. There are currently no specific drugs to prevent the reproduction and spread of COVID-19. Some traditional Chinese medicines, especially the Lung Cleansing and Detoxifying Decoction (Qing Fei Pai Du Tang), have shown therapeutic effects on mild and ordinary COVID-19 patients. Polysaccharides are important ingredients in this decoction. This review summarizes the potential pharmacological activities of polysaccharides isolated by hot water extraction from Lung Cleansing and Detoxifying Decoction, which is consistent with its production method, to provide the theoretical basis for ongoing research on its application.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Kaiping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| |
Collapse
|
11
|
Wu S, Zhang X, Liu J, Song J, Yu P, Chen P, Liao Z, Wu M, Tong H. Physicochemical characterization of Sargassum fusiforme fucoidan fractions and their antagonistic effect against P-selectin-mediated cell adhesion. Int J Biol Macromol 2019; 133:656-662. [PMID: 30930270 DOI: 10.1016/j.ijbiomac.2019.03.218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
P-selectin, mediated adhesion between endothelium and neutrophils, is a promising target for the therapeutics of acute inflammatory-related diseases. It is reported that brown algal fucoidans can antagonize P-selectin function. However, the fractionation and physicochemical characterization of Sargassum fusiforme fucoidan, and the screening of fucoidan fractions with P-selectin antagonistic capability have not been investigated. In this study, we isolated and fractionated systematically the S. fusiforme fucoidan by ion-exchange chromatography and size exclusion chromatography to obtain eight fucoidan fractions. Their physicochemical characterization was determined by chemical methods, HPLC and FT-IR. The inhibitory capacity of the fucoidan fractions in P-selectin-mediated leukocyte adhesion was evaluated by static adhesion assay and parallel-plate flow chamber. Results showed that fucoidan fractions possessed distinct physicochemical properties, including total carbohydrate, uronic acid and sulfate contents, molecular weight, and monosaccharide compositions. Among all the fucoidan fractions, SFF-32 and SFF-42 showed better blocking ability against P-selectin-mediated cell adhesion.
Collapse
Affiliation(s)
- Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin 132013, China
| | - Ping Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|