1
|
Priyadarshi N, Kaushal S, Garg P, Sagar P, Gupta R, Kaur J, Kumar A, Kumar S, Singhal NK. Advances in photothermal therapy for cancer and bacterial cells ablation using various nanomaterials. Adv Colloid Interface Sci 2025; 342:103541. [PMID: 40328073 DOI: 10.1016/j.cis.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Bacterial pathogens can cause severe infections leading to mortality and morbidity. The current method of treatment for bacteria is the use of multiple antibiotics. Due to the overuse of antibiotics, many bacteria have become antibiotic-resistant. An alternative and effective treatment for bacterial infection is needed, and photothermal therapy (PTT) has emerged as a new solution for treating bacterial infection. Similarly, one of the main challenges in cancer treatment is the overuse of drugs that have multiple side effects. In recent years, there have been significantly more research activities in alternative therapy for pathogenic bacteria and cancer cells. Recently, PTT has also been used to treat various medical conditions like cancer, bacterial infections, or bacterial biofilm. Different kinds of nanomaterials like gold nanoparticles (AuNPs), Graphene Oxide (GO), Carbon nanotubes (CNTs), etc. have been explored for this purpose. In this particular review, we will elaborate on different kinds of nanomaterials (metallic, non-metallic, polymeric) widely used for PTT applications for bacteria and cancer cells. These kinds of nanoparticles have strong absorption in the NIR region and can convert light energy into heat energy, leading to hyperthermia. Further different types of PTT will be elaborated on, along with challenges and future applications. The current review will pave a new way for the therapeutic potential of different nanomaterials for bacterial infection and cancer treatment.
Collapse
Affiliation(s)
- Nitesh Priyadarshi
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Shimayali Kaushal
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Priyanka Garg
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Poonam Sagar
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Ritika Gupta
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Jaspreet Kaur
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Aman Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Nitin Kumar Singhal
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
2
|
He X, Sheng X, Yao X, Wang Y, Zhang L, Wang H, Yuan L. The anti-biofilm effect of α-amylase/glycopolymer-decorated gold nanorods. Colloids Surf B Biointerfaces 2025; 246:114393. [PMID: 39579496 DOI: 10.1016/j.colsurfb.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The continuous evolution of bacteria and the formation of biofilm have exacerbated resistance issues, highlighting the urgent need for new antibacterial materials. In this study, L-fucose was polymerized to synthesize thiolated poly(2-(L-fucose) ethyl methacrylate) (PFEMA-SH), which was subsequently co-modified with α-amylase onto gold nanorods (GNR) to prepare the antibacterial nanoparticle composite, GNR-Amy-PFEMA (G-A-P). These nanomaterials exhibit both photothermal and enzymatic properties, enabling G-A-P to effectively sterilize and disperse biofilm. Under near-infrared light irradiation, the temperature of G-A-P composite increases significantly, leading to bacterial cell damage and biofilm disruption. The G-A-P composite demonstrated nearly 100 % eradication of planktonic bacteria after 5 min of irradiation and achieved a 70.9 % reduction in mature biofilm biomass, with a 3.37-log decrease in the number of bacteria within the biofilm. These composites display strong antimicrobial activity and hold great potential for the removal of Pseudomonas aeruginosa biofilm. Furthermore, the ability of G-A-P to reduce biofilm formation without the use of traditional antibiotics suggests that it may offer an antibiotic-free alternative for managing biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoli He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinran Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinrui Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanyan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liping Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
3
|
Cao J, Song Z, Du T, Du X. Antimicrobial materials based on photothermal action and their application in wound treatment. BURNS & TRAUMA 2024; 12:tkae046. [PMID: 39659560 PMCID: PMC11630079 DOI: 10.1093/burnst/tkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 12/12/2024]
Abstract
Considering the increasing abundance of antibiotic-resistant bacteria, novel antimicrobial approaches need to be investigated. Photothermal therapy (PTT), an innovative noninvasive therapeutic technique, has demonstrated significant potential in addressing drug-resistant bacteria and bacterial biofilms. However, when used in isolation, PTT requires higher-temperature conditions to effectively eradicate bacteria, thereby potentially harming healthy tissues and inducing new inflammation. This study aims to present a comprehensive review of nanomaterials with intrinsic antimicrobial properties, antimicrobial materials relying on photothermal action, and nanomaterials using drug delivery antimicrobial action, along with their applications in antimicrobials. Additionally, the synergistic mechanisms of these antimicrobial approaches are elucidated. The review provides a reference for developing multifunctional photothermal nanoplatforms for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| |
Collapse
|
4
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
5
|
Cheng C, Bao D, Sun S, Zhou Y, Tian L, Zhang B, Yu Y, Guo J, Zhang S. Chitosan/copper sulfide nanoparticles (CS/CuSNPs) hybrid fibers with improved mechanical and photo-thermal conversion properties via tuning CuSNPs' morphological structures. Int J Biol Macromol 2023; 253:127098. [PMID: 37769777 DOI: 10.1016/j.ijbiomac.2023.127098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Conventional textiles are inadequate for maintaining warmth in extremely cold conditions. Therefore, the development of photo-thermal fibers for personal thermal management textiles has emerged as an urgent need. Herein, novel chitosan/copper sulfide nanoparticles (CS/CuSNPs) hybrid fibers with photo-thermal function were fabricated successfully. Significantly, our study demonstrated that the tensile and photo-thermal conversation properties of the CS/CuSNPs hybrid fibers could be effectively regulated by altering the CuSNPs` morphological structures. Compared with other CuSNPs (tube-like, sphere-like, and flower-like), the plate-like CuSNPs with smooth surfaces and uniform nanometer size played a significant role by scattering incident light in the fibers as a secondary light source for CuSNPs absorbance. Thus, under IR light irradiation at a power density of 1.0 W/cm2, the surface temperature of CS/0.1 wt% plate-like CuSNPs hybrid fibers sharply increased by 27.6 °C, which was more than 4 times of the pure CS fibers. And the breaking strength and initial modulus of CS/0.1 wt% plate-like CuSNPs hybrid fibers increased by more than 18.37 and 6.88 % compared with the nascent CS fibers. This study develops a novel and effective strategy to tune the photo-thermal and tensile properties of CS hybrid fibers without incorporating more content or additives.
Collapse
Affiliation(s)
- Chen Cheng
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Shengnan Sun
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Yongchun Zhou
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Linna Tian
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Bing Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Yue Yu
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
6
|
Kaur S, Dadwal R, Nandanwar H, Soni S. Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112787. [PMID: 37738748 DOI: 10.1016/j.jphotobiol.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Currently, nanoparticles are being actively explored for antimicrobial applications involving variety of pathogens. Bacillus subtilis is a major concern considering its sporulation and biofilm formation capability which involves high bacteria loadings. Also, there is natural ability of B subtilis to adapt and develop resistance to the silver nanoparticles alone. So, this study reports the limits of antibacterial activity of triangular silver nanoplates (∆AgNPs) and further photothermal enhancement for B. subtilis ATCC 6051 for considerably high bacterial load of 2.5 × 107 to 5 × 108 CFU/ml. Triangular silver nanoplates were synthesized using one pot synthesis method and showed significant photothermal response i.e., ∼36 °C temperature rise on near infrared irradiation as well as photothermal stability. Triangular silver nanoplates alone showed absolute destruction for 2.5 × 107 CFU/ml initial B. subtilis load in 5 min. Whereas, for further higher bacterial loads, the antibacterial efficacy of ∆AgNPs is observed to be insignificant. For higher initial bacterial loads of 5 × 107 CFU/ml and 5 × 108 CFU/ml, photothermally enhanced triangular silver nanoplates resulted in complete destruction of bacteria in about 5 and 10 min, respectively. Antibacterial efficacy and mechanism of the destruction assessed via scanning electron microscopy and LIVE/DEAD assay confirmed morphological deformities. Further the generation of higher levels of reactive oxygen species is also confirmed due to photothermal activation of ∆AgNPs. The study concludes that ∆AgNPs alone are effective only up to bacterial load of 2.5 × 107 CFU/ml. Whereas, for higher bacterial loads of B. subtilis, photothermally activated ∆AgNPs lead to irreversible damage due to multiple targeting mechanisms leading to absolute elimination in short span of 5-10 min for the chosen irradiation conditions. Ultimately, this study demonstrates photothermally enhanced silver nanoplates as a potential antimicrobial agent for considerably high bacterial loads of B. subtilis. Overall, the broader window of considered high bacterial loadings and its irradiation by this technique shows the full-proof nature of photothermal applications for scenarios involving high cell density such as biofilms and wound infections etc. Further, the concept may be useful for sterilization or decontamination of samples, devices, etc. because B. subtilis and its spores are the challenges during sterilization.
Collapse
Affiliation(s)
- Sarabjot Kaur
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajneesh Dadwal
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023; 196:114778. [PMID: 36931347 DOI: 10.1016/j.addr.2023.114778] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Wound healing is characterized by complex, orchestrated, spatiotemporal dynamic processes. Recent findings demonstrated suitable local microenvironments were necessities for wound healing. Wound microenvironments include various biological, biochemical and physical factors, which are produced and regulated by endogenous biomediators, exogenous drugs, and external environment. Successful drug delivery to wound is complicated, and need to overcome the destroyed blood supply, persistent inflammation and enzymes, spatiotemporal requirements of special supplements, and easy deactivation of drugs. Triggered by various factors from wound microenvironment itself or external elements, stimuli-responsive biomaterials have tremendous advantages of precise drug delivery and release. Here, we discuss recent advances of stimuli-responsive biomaterials to regulate local microenvironments during wound healing, emphasizing on the design and application of different biomaterials which respond to wound biological/biochemical microenvironments (ROS, pH, enzymes, glucose and glutathione), physical microenvironments (mechanical force, temperature, light, ultrasound, magnetic and electric field), and the combination modes. Moreover, several novel promising drug carriers (microbiota, metal-organic frameworks and microneedles) are also discussed.
Collapse
Affiliation(s)
- Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Buying Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dalun Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu City, China; Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Wenhong Li
- Beijing Jayyalife Biological Technology Company, Beijing, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
8
|
Luo Y, Zhu X, Qian J, Yu Y, Li J, He Z, Duan S, Guo H, Shen X, Guo Q. Au Nanorods Coated with pH-Responsive Polymers for Photothermal Therapy Against Multidrug-Resistant Bacteria. ACS APPLIED NANO MATERIALS 2022; 5:16884-16895. [DOI: 10.1021/acsanm.2c03739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Xiaoping Zhu
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jun Qian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Yiyi Yu
- Department of Pediatrics, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jing Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Zhiyong He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Honglei Guo
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
- The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District 550025, Guizhou, China
| |
Collapse
|
9
|
Norizan MN, Shazleen SS, Alias AH, Sabaruddin FA, Asyraf MRM, Zainudin ES, Abdullah N, Samsudin MS, Kamarudin SH, Norrrahim MNF. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193483. [PMID: 36234612 PMCID: PMC9565736 DOI: 10.3390/nano12193483] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/31/2023]
Abstract
Nanocellulose has emerged in recent years as one of the most notable green materials available due to its numerous appealing factors, including its non-toxic nature, biodegradability, high aspect ratio, superior mechanical capabilities, remarkable optical properties, anisotropic shape, high mechanical strength, excellent biocompatibility and tailorable surface chemistry. It is proving to be a promising material in a range of applications pertinent to the material engineering to biomedical applications. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations. This review presents an overview of general concepts in nanocellulose-based nanocomposites for sustainable applications. Beginning with a brief introduction of cellulose, nanocellulose sources, structural characteristics and the extraction process for those new to the area, we go on to more in-depth content. Following that, the research on techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance, as well as their characteristics and functionalization strategies, were explained. The usage of nanocellulose in nanocomposites in versatile fields, as well as novel and foreseen markets of nanocellulose products, are also discussed. Finally, the difficulties, challenges and prospects of materials based on nanocellulose are then discussed in the last section for readers searching for future high-end eco-friendly functional materials.
Collapse
Affiliation(s)
- Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Shazra Shazleen
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aisyah Humaira Alias
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Fatimah Atiyah Sabaruddin
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Hasnah Kamarudin
- Department of Ecotechnology, School of Industrial Technology, Faculty of Applied Science, UiTM Shah Alam, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
10
|
Li C, Xian J, Hong J, Cao X, Zhang C, Deng Q, Qin Z, Chen M, Zheng X, Li M, Hou J, Zhou Y, Yin X. Dual photothermal nanocomposites for drug-resistant infectious wound management. NANOSCALE 2022; 14:11284-11297. [PMID: 35880632 DOI: 10.1039/d2nr01998a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Management of antibiotic-resistant bacteria-induced skin infections for rapid healing remains a critical clinical challenge. Photothermal therapy, which uses mediated hyperthermia to combat such problems, has recently been recognised as a promising approach to take. In this study, bacterial cellulose-based photothermal membranes were designed and developed to combat bacterial infections and promote rapid wound healing. Polydopamine was incorporated into gold nanoparticles to produce superior dual-photothermal behaviour. The in vitro antibacterial efficacy of the prepared composite membranes against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA) could reach 99% under near-infrared (NIR) irradiation. In addition, the synthesised nanocomposite exhibited good biocompatibility in vitro as demonstrated by a cell survival ratio of >85%. The effectiveness of the composite membranes on wound healing was further investigated in a murine model of MRSA-infected wounds, focusing on the effect of photothermal temperature. According to the detailed therapeutic mechanism study undertaken, the composite membranes cause bacterial killing initially and promote the transition from the inflammatory phase to proliferation by suppressing pro-inflammatory cytokine production, promoting collagen deposition, and stimulating angiogenesis. Considering their remarkable effectiveness and facile fabrication process, it is expected that these novel materials could serve as competitive multifunctional dressings in the management of infectious wounds and accelerate the regeneration of damaged tissues related to abnormal immune responses.
Collapse
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jiaru Xian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jixuan Hong
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaxin Cao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Changze Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Qiaoyuan Deng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Maohua Chen
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaofei Zheng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
- ZhongAo (Hainan) Biotechnology Research Institute, Haikou, Hainan 570000, P.R. China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD 4006, Australia.
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| |
Collapse
|
11
|
Yang Y, Zan J, Shuai Y, Yang L, Zhang L, Zhang H, Wang D, Peng S, Shuai C. In Situ Growth of a Metal-Organic Framework on Graphene Oxide for the Chemo-Photothermal Therapy of Bacterial Infection in Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21996-22005. [PMID: 35512272 DOI: 10.1021/acsami.2c04841] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection with high morbidity (>30%) seriously affects the defect's healing after bone transplantation. To this end, chemotherapy and photothermal therapy have been utilized for antibacterial treatment owing to their high selectivity and minimal toxicity. However, they also face several dilemmas. For example, bacterial biofilms prevented the penetration of antibacterial agents and local temperatures (over 70 °C) caused by the photothermal therapy damaged normal tissue. Herein, a co-dispersion nanosystem with chemo-photothermal function was constructed via the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on graphene oxide (GO) nanosheets. In this nanosystem, GO generates a local temperature (∼50 °C) to increase the permeability of a bacterial biofilm under near-infrared laser irradiation. Then, Zn ions released by ZIF-8 seized this chance to react with the bacterial membrane and inactivate it, thus realizing efficient sterilization in a low-temperature environment. This antibacterial system was incorporated into a poly-l-lactic acid scaffold for bone repair. Results showed that the scaffold showed a high antibacterial rate of 85% against both Escherichia coli and Staphylococcus aureus. In vitro cell tests showed that the scaffold promoted cell proliferation.
Collapse
Affiliation(s)
- Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liuyimei Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Lemin Zhang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Hanqing Zhang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Dongsheng Wang
- Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling 244000, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Jiang P, Huang L, Wang J, Li Q, Mu H. Carboxymethyl chitosan-based multifunctional hydrogels incorporated with photothermal therapy against drug-resistant bacterial wound infection. Int J Biol Macromol 2022; 209:452-463. [PMID: 35413314 DOI: 10.1016/j.ijbiomac.2022.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/30/2023]
Abstract
Wound infection especially that induced by drug resistant bacteria has been considered an increasing medical crisis. Herein a biocompatible wound dressing is conveniently constructed by incorporating (Sr0.6Bi0.305)2Bi2O7 (denoted as SBO) with excellent photothermal performance into a facile antibacterial hydrogel (gel) obtained from multiple physical crosslinks among Ag+, carboxymethyl chitosan and polyacrylic acid. The prepared SBO gel features excellent bactericidal activities, hemostasis, adequate mechanical properties, adhesiveness and adsorption capacities to bacterial cells and toxin. The gel can disperse SBO homogeneously in the network and SBO effectively convert visible light energy into localized heat for synergistic sterilization. In vitro assays confirm the potent broad-spectrum bactericidal activities of SBO gel to some common pathogens and drug resistant strains such as MRSA and CAPA. Mice model of MRSA-induced wound infections verified the practical efficacy of SBO gel in combating bacterial infections and accelerating wound healing. Moreover, this is the first report of SBO as a photothermal agent applied in anti-infection treatment. All of these results highlight the potential application of SBO gel in drug-resistant bacteria associated wound management.
Collapse
Affiliation(s)
- Peng Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijie Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjie Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiulei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022; 279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023]
Abstract
Due to the good biocompatibility and flexibility of cellulose and the excellent optical, electronic, as well as mechanical properties of carbon nanomaterials (CNMs), cellulose/CNM hybrid materials have been widely synthesized and used in energy storage, sensors, adsorption, biomedicine, and many other fields. In this review, we present recent advances (2016-current) in the design, structural design, functional tailoring and various applications of cellulose/CNM hybrid materials. For this aim, first the interactions between cellulose and CNMs for promoting the formation of cellulose/CNM materials are analyzed, and then the hybridization between cellulose with various CNMs for tailoring the structures and functions of hybrid materials is introduced. Further, abundant applications of cellulose/CNM hybrid materials in various fields are presented and discussed. This comprehensive review will be helpful for readers to understand the functional design and facile synthesis of cellulose-based nanocomposites, and to promote the high-performance utilization and sustainability of biomass materials in the future.
Collapse
Affiliation(s)
- Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
14
|
Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1606. [PMID: 35208145 PMCID: PMC8878601 DOI: 10.3390/ma15041606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Nikolai G. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Boris N. Khlebtsov
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Galina N. Maslyakova
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Nikita A. Navolokin
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
| |
Collapse
|
15
|
Xie X, Zhang M, Lei Y, Li Y, Sun J, Sattorov N, Makhmudov KB, Zhu MQ, Wang J. A one-pot synthesis of PEGylated plasmonic WO 3−x@Eugenol nanoflowers with NIR-controllable antioxidant activities for synergetically combating bacterial biofilm infection. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic diagram of dual treatment of bacterial infection.
Collapse
Affiliation(s)
- Xianghong Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingyu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulu Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Nosirjon Sattorov
- Institute of Problems of Biological Safety and Biotechnology, Tajik Academy of Agricultural Sciences, Dushanbe, Tajikistan
| | | | - Ming-Qiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
17
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
18
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
19
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
20
|
Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2020; 4:3937-3961. [DOI: 10.1021/acsabm.0c01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhijun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637549, Singapore
| |
Collapse
|
21
|
Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 2020; 328:251-262. [DOI: 10.1016/j.jconrel.2020.08.055] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
22
|
Zhao J, Huang S, Ravisankar P, Zhu H. Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS APPLIED BIO MATERIALS 2020; 3:8188-8210. [DOI: 10.1021/acsabm.0c00950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhao
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shuyi Huang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming Guangdong, 525000, P. R. China
| |
Collapse
|
23
|
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO 2-FeS 2 Nanocomposites. Int J Nanomedicine 2020; 15:8911-8920. [PMID: 33209024 PMCID: PMC7670305 DOI: 10.2147/ijn.s282689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. METHODS In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were successfully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. RESULTS In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 - and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. CONCLUSION TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yu-Cheng Hsiao
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | | | - Moh Alimansur
- Dharma Husada Nursing Academy, Kediri, East Java64114, Indonesia
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
24
|
Wei G, Yang G, Wang Y, Jiang H, Fu Y, Yue G, Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020; 10:12241-12262. [PMID: 33204340 PMCID: PMC7667673 DOI: 10.7150/thno.52729] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
The development of nanomedicine is expected to provide an innovative direction for addressing challenges associated with multidrug-resistant (MDR) bacteria. In the past decades, although nanotechnology-based phototherapy has been developed for antimicrobial treatment since it rarely causes bacterial resistance, the clinical application of single-mode phototherapy has been limited due to poor tissue penetration of light sources. Therefore, combinatorial strategies are being developed. In this review, we first summarized the current phototherapy agents, which were classified into two functional categories: organic phototherapy agents (e.g., small molecule photosensitizers, small molecule photosensitizer-loaded nanoparticles and polymer-based photosensitizers) and inorganic phototherapy agents (e.g., carbo-based nanomaterials, metal-based nanomaterials, composite nanomaterials and quantum dots). Then the development of emerging phototherapy-based combinatorial strategies, including combination with chemotherapy, combination with chemodynamic therapy, combination with gas therapy, and multiple combination therapy, are presented and future directions are further discussed. The purpose of this review is to highlight the potential of phototherapy to deal with bacterial infections and to propose that the combination therapy strategy is an effective way to solve the challenges of single-mode phototherapy.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiyong Fu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yue
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
25
|
Wang H, Ouyang W, Zhang X, Xue J, Lou X, Fan R, Zhao X, Shan L, Jiang T. Bacteria-induced aggregation of bioorthogonal gold nanoparticles for SERS imaging and enhanced photothermal ablation of Gram-positive bacteria. J Mater Chem B 2020; 7:4630-4637. [PMID: 31364668 DOI: 10.1039/c9tb00845d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenge in antimicrobial photothermal therapy (PTT) is to develop strategies for decreasing the damage to cells and increasing the antibacterial efficiency. Herein, we report a novel theranostic strategy based on bacteria-induced gold nanoparticle (GNP) aggregation, in which GNPs in situ aggregated on the bacterial surface via specific targeting of vancomycin and bioorthogonal cycloaddition. Plasmonic coupling between adjacent GNPs exhibited a strong "hot spot" effect, enabling effective surface enhanced Raman scattering (SERS) imaging of bacterial pathogens. More importantly, in situ aggregation of GNPs showed strong NIR adsorption and high photothermal conversion, allowing enhanced photokilling activity against Gram-positive bacteria. In the absence of bacterial strains, GNPs were dispersed and showed a very low photothermal effect, minimizing the side effects towards surrounding healthy tissues. Given the above advantages, the bioorthogonal theranostic strategy developed in this study may find potential applications in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Huijie Wang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Wenwen Ouyang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xuerui Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Jing Xue
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaoran Lou
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Ranran Fan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaonai Zhao
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Lianqi Shan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
26
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
27
|
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol 2020; 8:990. [PMID: 32903562 PMCID: PMC7438450 DOI: 10.3389/fbioe.2020.00990] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology has become a trending area in science and has made great advances with the development of functional, engineered nanoparticles. Various metal nanoparticles have been widely exploited for a wide range of medical applications. Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence and are highly remarkable. AuNPs, with their multiple, unique functional properties, and easy of synthesis, have attracted extensive attention. Their intrinsic features (optics, electronics, and physicochemical characteristics) can be altered by changing the characterization of the nanoparticles, such as shape, size and aspect ratio. They can be applied to a wide range of medical applications, including drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological activities. However, to the best of our knowledge, there is no comprehensive review that summarized the applications of AuNPs in the medical field. Therefore, in this article we systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of AuNPs, to provide a reference for future studies.
Collapse
Affiliation(s)
| | | | | | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | |
Collapse
|
28
|
Yun T, Cheng P, Qian F, Cheng Y, Lu J, Lv Y, Wang H. Balancing the decomposable behavior and wet tensile mechanical property of cellulose-based wet wipe substrates by the aqueous adhesive. Int J Biol Macromol 2020; 164:1898-1907. [PMID: 32800954 PMCID: PMC7422816 DOI: 10.1016/j.ijbiomac.2020.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
With the current global outbreak of novel coronaviruses, the fabrication of decomposable wet wipe with sufficient wet strength to meet daily use is promising but still challenging, especially when renewable cellulose was employed. In this work, a decomposable cellulose-based wet wipe substrate is demonstrated by introducing a synthetic N-vinyl pyrrolidone-glycidyl methacrylate (NVP-GMA) adhesive on the cellulose surface. Experimental results reveal that the NVP-GMA adhesive not only significantly facilitates the chemical bonding between cellulose fibers in the wet state, but also increase the surface wettability and water retention. The as-fabricated cellulose-based wet wipe substrate displays a superb water retention capacity of 1.9 times, an excellent water absorption capacity (completely wetted with 0° water contact angle), and a perfect wet tensile index of 3.32 N.m.g−1. It is far better than state-of-the-art wet toilet wipe on the market (non-woven). The prepared renewable and degradable cellulose-based substrate with excellent mechanical strength has potential application prospects in diverse commercially available products such as sanitary and medical wet wipes. A decomposable wet wipe substrate was prepared from the bio-based materials. Synthetic adhesive enhanced the wet strength of the cellulose sheet. Enhancement of cellulose-based material was achieved under aqueous conditions. As-prepared cellulose substrate balanced the dispersibility and wet strength.
Collapse
Affiliation(s)
- Tongtong Yun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Peng Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yanna Lv
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
29
|
Ahmed E, El-Gendy AO, Moniem Radi NA, Mohamed T. The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study. Lasers Med Sci 2020; 36:641-647. [PMID: 32725427 DOI: 10.1007/s10103-020-03104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
We investigated the influence of femtosecond laser irradiation on the growth of the two most common infectious bacterial pathogens in wounds; Staphylococcus aureus and Pseudomonas aeruginosa as an attempt to validate optimum parameters for a laser-based bactericidal modality to be used clinically. Bacterial cultures were exposed to femtosecond laser irradiation at different wavelengths, exposure times, and laser powers. The source of femtosecond laser was INSPIRE HF100 laser system, Spectra-Physics, which is pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP, Spectra-Physics. After irradiation, bacterial cells' survival was monitored by observing the clear zones of inhibition in cultured agar plates. Results for all strains indicated that the exposure to femtosecond laser irradiation with a wavelength ranging from ultraviolet (λ > 350 nm) to blue laser light (λ < 480 nm), for a period above 20 min and with a power density of ≈ 0.063 W/cm2, was enough to inhibit both bacterial pathogens with the results maintained for 1 week following irradiation.
Collapse
Affiliation(s)
- Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.,Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Naglaa A Moniem Radi
- Faculty of Medicine, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
30
|
Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. NANOMATERIALS 2020; 10:nano10040786. [PMID: 32325935 PMCID: PMC7221876 DOI: 10.3390/nano10040786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Currently there is a strong demand for novel protective materials with efficient antibacterial properties. Nanocomposite materials loaded with photo-thermally active nanoparticles can offer promising opportunities due to the local increase of temperature upon near-infrared (NIR) light exposure capable of eradicating bacteria. In this work, we fabricated antibacterial films obtained by spraying on glass slides aqueous solutions of polymers, containing highly photo-thermally active gold nanostars (GNS) or Prussian Blue (PB) nanoparticles. Under NIR light irradiation with low intensities (0.35 W/cm2) these films demonstrated a pronounced photo-thermal effect: ΔTmax up to 26.4 °C for the GNS-containing films and ΔTmax up to 45.8 °C for the PB-containing films. In the latter case, such a local temperature increase demonstrated a remarkable effect on a Gram-negative strain (P. aeruginosa) killing (84% of dead bacteria), and a promising effect on a Gram-positive strain (S. aureus) eradication (69% of dead bacteria). The fabricated films are promising prototypes for further development of lightweight surfaces with efficient antibacterial action that can be remotely activated on demand.
Collapse
|
31
|
Mutalik C, Wang DY, Krisnawati DI, Jazidie A, Yougbare S, Kuo TR. Light-Activated Heterostructured Nanomaterials for Antibacterial Applications. NANOMATERIALS 2020; 10:nano10040643. [PMID: 32235565 PMCID: PMC7222013 DOI: 10.3390/nano10040643] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022]
Abstract
An outbreak of a bacterial contagion is a critical threat for human health worldwide. Recently, light-activated heterostructured nanomaterials (LAHNs) have shown potential as antibacterial agents, owing to their unique structural and optical properties. Many investigations have revealed that heterostructured nanomaterials are potential antibacterial agents under light irradiation. In this review, we summarize recent developments of light-activated antibacterial agents using heterostructured nanomaterials and specifically categorized those agents based on their various light harvesters. The detailed antibacterial mechanisms are also addressed. With the achievements of LAHNs as antibacterial agents, we further discuss the challenges and opportunities for their future clinical applications.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
- Center for Science and Technology, Tunghai University, Taichung 40704, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
- University Nahdlatul Ulama Surabaya, Surabaya 60111, Indonesia
| | - Sibidou Yougbare
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (C.M.); (S.Y.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
32
|
|
33
|
Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. NANOMATERIALS 2020; 10:nano10020196. [PMID: 31979245 PMCID: PMC7074939 DOI: 10.3390/nano10020196] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.
Collapse
|
34
|
Borzenkov M, Pallavicini P, Taglietti A, D’Alfonso L, Collini M, Chirico G. Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1134-1146. [PMID: 32802716 PMCID: PMC7404213 DOI: 10.3762/bjnano.11.98] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 05/11/2023]
Abstract
Bacterial contamination is a severe issue that affects medical devices, hospital tools and surfaces. When microorganisms adhere to a surface (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local temperature increase. By using this approach new, protective, antibacterial surfaces and materials can be developed that can be remotely activated on demand. In this review, we summarize the state-of-the art regarding the application of various photothermally active nanoparticles and their corresponding nanocomposites for the light-triggered eradication of bacteria and biofilms.
Collapse
Affiliation(s)
- Mykola Borzenkov
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | | | - Angelo Taglietti
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Laura D’Alfonso
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Maddalena Collini
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Giuseppe Chirico
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| |
Collapse
|
35
|
Sunlight-Driven Photothermal Effect of Composite Eggshell Membrane Coated with Graphene Oxide and Gold Nanoparticles. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eggshell membrane (ESM), which consists of unique interwoven shell membrane fibers, provides a unique supporting platform for functional nanoparticles in catalysis and sensing. This work reports a novel strategy for fabricating sunlight-driven photothermal conversion composite membranes by loading graphene oxide (GO) and gold nanoparticles (AuNPs) on the three-dimension (3D) network structured eggshell membrane. Surface morphologies and chemical elements were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. High photothermal conversion under simulated sunlight irradiation, which may be caused by the synergistic effect of GO and AuNPs, was achieved by coating both GO and AuNPs onto ESM. The temperature of ESM modified with AuNPs, and then GO increased from 26.0 °C to 49.0 °C after 10 min of light irradiation. Furthermore, the nanoscaled GO and AuNPs could add benefit to the heating localization of the obtained composite membrane. It is expected this biocompatible ESM modified with GO and AuNPs would have great potential in drug release and photothermal therapy applications.
Collapse
|
36
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|
37
|
Manivasagan P, Khan F, Hoang G, Mondal S, Kim H, Hoang Minh Doan V, Kim YM, Oh J. Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydr Polym 2019; 225:115228. [PMID: 31521288 DOI: 10.1016/j.carbpol.2019.115228] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Developing new antibacterial nanomaterials and novel therapeutic strategies for the destruction of human pathogenic bacteria that cause infectious diseases is becoming more crucial, because infections caused by antibiotic-resistant bacteria are becoming more and more difficult to be effectively cured with commercially available antibiotics. In this study, we successfully developed new thiol chitosan-wrapped gold nanoshells (TC-AuNSs) as an antibacterial agent for the near-infrared (NIR) laser-triggered photothermal destruction of antibiotic-resistant pathogens, such as Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), owing to their high water solubility, biocompatibility, strong NIR absorption, and outstanding photothermal properties. More interestingly, TC-AuNSs (115 μg/mL) were capable of completely destroying S. aureus, P. aeruginosa, and E.coli within 5 min of NIR laser irradiation, and no bacterial growth was detected on the tryptic soy agar (TSA) plate after 48 h of laser irradiation, indicating that TC-AuNSs along with laser irradiation are highly efficient and can kill bacteria quickly and prevent bacterial regrowth. We believe that TC-AuNSs deserve much more attention as an antibacterial agent, to be used in effectively combating pathogenic bacteria associated with public health problems and monitoring of environmental pollution for hygiene and safety.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Giang Hoang
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
38
|
Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int J Biol Macromol 2019; 135:776-789. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
|
39
|
Xu JW, Yao K, Xu ZK. Nanomaterials with a photothermal effect for antibacterial activities: an overview. NANOSCALE 2019; 11:8680-8691. [PMID: 31012895 DOI: 10.1039/c9nr01833f] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanomaterials and nanotechnologies have been expected to provide innovative platforms for addressing antibacterial challenges, with potential to even deal with bacterial infections involving drug-resistance. The current review summarizes recent progress over the last 3 years in the field of antibacterial nanomaterials with a photothermal conversion effect. We classify these photothermal nanomaterials into four functional categories: carbon-based nanoconjugates of graphene derivatives or carbon nanotubes, noble metal nanomaterials mainly from gold and silver, metallic compound nanocomposites such as copper sulfide and molybdenum sulfide, and polymeric as well as other nanostructures. Different categories can be assembled with each other to enhance the photothermal effects and the antibacterial activities. The review describes their fabrication processes, unique properties, antibacterial modes, and potential healthcare applications.
Collapse
Affiliation(s)
- Jing-Wei Xu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | |
Collapse
|
40
|
Preparation and characterization of a novel spherical cellulose–copper(II) oxide composite particles: as a heterogeneous catalyst for the click reaction. Mol Divers 2019; 24:201-209. [DOI: 10.1007/s11030-019-09942-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
41
|
Functionalized nanographene oxide in biomedicine applications: bioinspired surface modifications, multidrug shielding, and site-specific trafficking. Drug Discov Today 2019; 24:749-762. [DOI: 10.1016/j.drudis.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
|