1
|
Yu Q, Wang C, Zhang X, Chen H, Wu MX, Lu M. Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections. ACS NANO 2024; 18:14085-14122. [PMID: 38775446 DOI: 10.1021/acsnano.3c12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Zhao Z, Wang J, Yuan H, Xu J, Gao H, Nie Y. Preparation of Antibacterial Biobased Fibers by Triaxial Microfluidic Spinning Technology Using Ionic Liquids as the Solvents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18063-18074. [PMID: 38537174 DOI: 10.1021/acsami.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.
Collapse
Affiliation(s)
- Zhimin Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanmeng Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xu
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| |
Collapse
|
3
|
Yao N, Li W, Hu L, Fang N. Do mould inhibitors alter the microbial community structure and antibiotic resistance gene profiles on textiles? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168808. [PMID: 38000736 DOI: 10.1016/j.scitotenv.2023.168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Mould inhibitors are closely associated with human health and have been extensively applied to textiles to prevent mould and insect infestations. However, the impact of these mould inhibitors on the microbial community structure on textiles and antibiotic resistance gene (ARG) profiles remains largely unexplored. In this study, testing techniques, including high-throughput quantitative PCR and Illumina sequencing, were employed to analyse the effects of three types of mould inhibitors -para-dichlorobenzene (PDCB), naphthalene, and natural camphor balls-on the composition of microbial communities and ARG profiles. The microbial mechanisms underlying these effects were also investigated. The experiments revealed that PDCB reduced the diversity of bacterial communities on textiles, whereas naphthalene and natural camphor balls exerted relatively minor effects. In contrast with bacterial diversity, PDCB enhanced the diversity of fungal communities on textiles, but significantly reduced their abundance. Naphthalene had the least impact on fungal communities; however, it notably increased the relative abundance of Basidiomycota. All three types of mould inhibitors substantially altered ARG profiles. Potential mechanisms responsible for the alterations in ARG profiles include microbial community succession and horizontal gene transfer mediated by mobile genetic elements. PDCB prominently increased the abundance of ARGs, mainly attributable to the relative enrichment of potential hosts (including certain γ-Proteobacteria and Bacillales) for specific ARGs. Thus, this study has important implications for the selection of mould inhibitors, as well as the assessment of microbial safety in textiles.
Collapse
Affiliation(s)
- Ningyuan Yao
- College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Wei Li
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Lanfang Hu
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Nan Fang
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
4
|
Mohammadipour-Nodoushan R, Shekarriz S, Shariatinia Z, Heydari A, Montazer M. Improved cotton fabrics properties using zinc oxide-based nanomaterials: A review. Int J Biol Macromol 2023; 242:124916. [PMID: 37276903 DOI: 10.1016/j.ijbiomac.2023.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have gained significant attention in the textile industry for their ability to enhance the physicochemical properties of fabrics. In recent years, there has been a growing focus on the development of ZnO-based nanomaterials and their applications for cotton and other fabrics. This review paper provides an overview of the synthesis and diverse applications of ZnO-based nanomaterials for textile fabrics, including protection against UV irradiation, bacteria, fungi, microwave, electromagnetic radiation, water, and fire. Furthermore, the study offers the potential of these materials in energy harvesting applications, such as wearable pressure sensors, piezoelectric nanogenerators, supercapacitors, and human energy harvesting. Additionally, we discuss the potential of ZnO-based nanomaterials for environmental cleaning, including water, oil, and solid cleaning. The current research in this area has focused on various materials used to prepare ZnO-based nanocomposites, such as metals/nonmetals, semiconductors, metal oxides, carbon materials, polymers, MXene, metal-organic frameworks, and layered double hydroxides. The findings of this review highlight the potential of ZnO-based nanomaterials to improve the performance of textile fabrics in a range of applications, and the importance of continued research in this field to further advance the development and use of ZnO-based nanomaterials in the textile industry.
Collapse
Affiliation(s)
- Roya Mohammadipour-Nodoushan
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Shahla Shekarriz
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| |
Collapse
|
5
|
Wang L, Ren X, Chen L, Mao H, Gao D, Zhou Y. Constructing recyclable photocatalytic BiOBr/Ag nanowires/cotton fabric for efficient dye degradation under visible light. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Review on Support Materials Used for Immobilization of Nano-Photocatalysts for Water Treatment Applications. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Puspasari V, Ridhova A, Hermawan A, Amal MI, Khan MM. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng 2022; 45:1421-1445. [PMID: 35608710 PMCID: PMC9127292 DOI: 10.1007/s00449-022-02733-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.
Collapse
Affiliation(s)
- Vinda Puspasari
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency, South Tangerang, Banten, 15315, Indonesia
| | - Muhamad Ikhlasul Amal
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
8
|
Zhang D, Li X, Liang T, Niu S, He Y, Song P, Wang R. Construction of antibacterial fabrics with polymer cationic broccolo‐shaped nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duoxin Zhang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Xuemei Li
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Tingyu Liang
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Shiquan Niu
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
9
|
Xu Q, Wang X, Wang P, Zhang Y, Wang Z. Durable antibacterial cotton fabric fabricated using a "self-created" mist polymerization device. Int J Biol Macromol 2022; 216:148-156. [PMID: 35788008 DOI: 10.1016/j.ijbiomac.2022.06.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
There are two major problems associated with the use of antibacterial cotton fabric. The durability of the fabric is poor, and the inherent properties of the fabric deteriorate following the execution of the finishing processes. These limit the application of antibacterial fabric. We first treated the cotton fabric with acryloyl chloride (AC) molecules to make the surface of the fabric rich in carbon‑carbon double (C=C) bonds. Following this, the [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (DMES) monomer was polymerized with the CC bonds on the fabric following the "grafting through" method. As a result, the cotton fabric was successfully grafted with the poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PDMES), exploiting covalent bonds. The finished fabric exhibited excellent antibacterial effects. The bacterial reduction (BR) rates of the finished fabric against E. coli and S. aureus were greater than 99.0 %. Even after 50 washing cycles, the BR rates of the finished fabric against E. coli and S. aureus were greater than 96.0 %. In addition, the use of the "self-created" mist polymerization technology ensured that the inherent properties of the finished fabric were retained to a large extent. Therefore, the antibacterial cotton fabric prepared following this method can be potentially used for the fabrication of industrial and household textiles.
Collapse
Affiliation(s)
- Qingbo Xu
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xinyu Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanyan Zhang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zongqian Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
10
|
Antibacterial and Antifungal Activity of Functionalized Cotton Fabric with Nanocomposite Based on Silver Nanoparticles and Carboxymethyl Chitosan. Processes (Basel) 2022. [DOI: 10.3390/pr10061088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cotton is the most widely used natural fiber for textiles; however, the capacity of cotton fibers to absorb large amounts of moisture, retain oxygen, and have a high specific surface area makes them more prone to microbial contamination, becoming an appropriate medium for the growth of bacteria and fungi. In recent years, the incorporation of silver nanoparticles in textile products has been widely used due to their broad-spectrum antibacterial activity and low toxicity towards mammalian cells. The aim of the current study is to continue the assessment of our developed nanocomposite and evaluate the antibacterial and antifungal activity of the nanocomposite based on silver nanoparticles and carboxymethyl chitosan (AgNPs-CMC) against Escherichia coli, Staphylococcus aureus, and Candida albicans, evaluated by the well diffusion method. The antibacterial activity against E. coli and S. aureus was also evaluated by the qualitative method of inhibition zone and the quantitative method of colony counting. Likewise, the antifungal activity of the functionalized fabric against Candida albicans and Aspergillus niger was determined by the inhibition zone method and the antifungal activity method GBT 24346-2009, respectively. The functionalized fabric showed 100% antibacterial activity against E. coli and S. aureus and good antifungal activity against C. albicans and A. niger. Our results indicate that the functionalized fabric could be used in garments for hospital use to reduce nosocomial infections.
Collapse
|
11
|
Cheng W, Liu W, Wang P, Zhou M, Cui L, Wang Q, Yu Y. Multifunctional coating of cotton fabric via the assembly of amino-quinone networks with polyamine biomacromolecules and dopamine quinone. Int J Biol Macromol 2022; 213:96-109. [PMID: 35636528 DOI: 10.1016/j.ijbiomac.2022.05.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
Abstract
Functional textiles with antibacterial properties and UV protection are essential for human health. However, the process of functional modification of textiles is usually done with the help of chemical cross-linking agents to improve the bonding fastness of functional finishing agents on textiles. The use of chemical cross-linking agents is not eco-friendly enough and is prone to chemical waste. In this study, some highly reactive polyamine biomolecules were combined with dopamine quinone, a super adhesive bionic material, to spontaneously construct amino-quinone networks (AQNs) coatings on the surface of cotton fabrics without the addition of chemical crosslinkers. The amino/quinone compounds (A/Q) self-crosslinking reaction is achieved by Michael addition and Schiff base reaction between the quinone group in dopamine quinone and the amino group in chitosan (CTS), chitooligosaccharide (COS) or ԑ-polylysine (ԑ-PL). The combination of polyamines and dopamine quinone during the cotton finishing process imparts antibacterial and UV protection to cotton fabric. The results showed that the AQNs coating modified fabrics had superb UV protection and antibacterial rates of over 96% against both E. coli and S. aureus. In addition, the AQNs coating modified fabrics had good resistance to washing and mechanical abrasion. This study proposes that self-assembled amino-quinone network multifunctional coatings of dopamine quinone and polyamine biomolecules are of guiding significance for the development of environmentally friendly bio-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Khan AU, Arooj A, Tahir K, Ibrahim MM, Jevtovic V, AL-Abdulkarim HA, Saleh EAM, Al-Shehri HS, Amin MA, Li B. Facile fabrication of novel Ag2S-ZnO/GO nanocomposite with its enhanced photocatalytic and biological applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Huang C, Cai Y, Chen X, Ke Y. Silver-based nanocomposite for fabricating high performance value-added cotton. CELLULOSE (LONDON, ENGLAND) 2021; 29:723-750. [PMID: 34848932 PMCID: PMC8612115 DOI: 10.1007/s10570-021-04257-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cotton is one of the most important cellulose fibers, but the absence of antimicrobial capacity along with the self-cleaning, UV protection and electric conductivity often frustrates its wider applications in many fields. Nanotechnology has provided new insights into the development of functional nanomaterials with unique chemical and physical properties. Silver has been effectively incorporated into the cotton fabrics as the antimicrobial agents due to the strong inhibitory and antimicrobial effects on a broad spectrum of bacteria, fungi and virus with low toxicity to human being. In this review, a variety of strategies have been summarized to load silver on cotton fabrics in situ or ex situ and to fabricate high performance value-added cotton fabrics with self-cleaning, UV protection, electric conductivity and antimicrobial capability depending on the synthesis of silver coating or silver-based nanocomposite coating.
Collapse
Affiliation(s)
- Chongjun Huang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yurou Cai
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| |
Collapse
|
14
|
Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. ADVANCED FIBER MATERIALS 2021; 4:119-128. [PMID: 35359822 PMCID: PMC8450708 DOI: 10.1007/s42765-021-00100-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/20/2021] [Indexed: 05/04/2023]
Abstract
Pathogenic bacteria can proliferate rapidly on porous fabrics to form bacterial plaques/biofilms, resulting in potential sources of cross-transmissions of diseases and increasing cross-infection in public environments. Many works on antibacterial modification of cotton fabrics have been reported, while very few works were reported to endow poly(ethylene terephthalate) (PET) fabrics with non-leaching antibacterial function without compromising their innate physicochemical properties though PET is the most widely used fabric. Therefore, it is urgent to impart the PET fabrics with non-leaching antibacterial activity. Herein, a novel N-halamine compound, 1-chloro-3-benzophenone-5,5-dimethylhydantoin (Cl-BPDMH), was developed to be covalently bonded onto PET fabrics, rendering non-leaching antibacterial activity while negligible cytotoxicity based on contact-killing principle. Bacterial was easily adhered to Cl-BPDMH finished PET fabrics, and then it was inactivated quickly within 10 s. Furthermore, the breaking strength, breaking elongation, tearing strength, water vapor permeability, air permeability and whiteness of Cl-BPDMH finished PET fabrics were improved obviously compared to raw PET fabrics. Hence, this work developed a facile approach to fabricate multifunctional synthetic textiles to render outstanding and rapid bactericidal activity without compromising their physicochemical properties and biocompatibility. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-021-00100-z.
Collapse
Affiliation(s)
- Shu Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - JianNa Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, 518060 People’s Republic of China
| | - Yihong Cao
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - JingWei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - YuanFeng Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - ShiGuo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
15
|
Su Y, Li P, Gao D, Lyu B, Ma J, Zhang J, Lyu L. High-efficiency antibacterial and anti-mildew properties under self-assembly: An environmentally friendly nanocomposite. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Kim T, Park C, Samuel EP, An S, Aldalbahi A, Alotaibi F, Yarin AL, Yoon SS. Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10013-10025. [PMID: 33595267 DOI: 10.1021/acsami.0c21372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wearable electronic textiles are used in sensors, energy-harvesting devices, healthcare monitoring, human-machine interfaces, and soft robotics to acquire real-time big data for machine learning and artificial intelligence. Wearability is essential while collecting data from a human, who should be able to wear the device with sufficient comfort. In this study, reduced graphene oxide (rGO) and silver nanowires (AgNWs) were supersonically sprayed onto a fabric to ensure good adhesiveness, resulting in a washable, stretchable, and wearable fabric without affecting the performance of the designed features. This rGO/AgNW-decorated fabric can be used to monitor external stimuli such as strain and temperature. In addition, it is used as a heater and as a supercapacitor and features an antibacterial hydrophobic surface that minimizes potential infection from external airborne viruses or virus-containing droplets. Herein, the wearability, stretchability, washability, mechanical durability, temperature-sensing capability, heating ability, wettability, and antibacterial features of this metallized fabric are explored. This multifunctionality is achieved in a single fabric coated with rGO/AgNWs via supersonic spraying.
Collapse
Affiliation(s)
- Taegun Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chanwoo Park
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Edmund P Samuel
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607-7022, United States
| | - Sam S Yoon
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Xiao Y, Wang Y, Zhu W, Yao J, Sun C, Militky J, Venkataraman M, Zhu G. Development of tree-like nanofibrous air filter with durable antibacterial property. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
19
|
Gao S, Su J, Wang W, Fu J, Wang H. Highly efficient and durable antibacterial cotton fabrics finished with zwitterionic polysulfobetaine by one-step eco-friendly strategy. CELLULOSE (LONDON, ENGLAND) 2021; 28:1139-1152. [PMID: 33191988 PMCID: PMC7653989 DOI: 10.1007/s10570-020-03542-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/15/2020] [Indexed: 05/15/2023]
Abstract
In this work, a novel formulation of polysulfobetaine, poly (sulfobetaine-acrylamide-allyl glycidyl ether) (PSPB-AM-AGE), was synthesized and grafted onto cotton. The synthesis of PSPB-AM-AGE and its grafting on the cotton fabrics were confirmed by FTIR, XPS and SEM. The PSPB-AM-AGE treated cotton fabrics exhibited a high level of antibacterial rate against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which are 95.18% and 98.74%, separately, as well as a good laundry durability. The mechanical tests showed that the essential cotton properties can be largely preserved in the treatment process. Moreover, the hydrophilicity, air and water permeability of the cotton were improved after treated with PSPB-AM-AGE, indicating a better wearing comfort performance. The whiteness of the cotton fabrics did not decrease significantly. The safety evaluation demonstrated that PSPB-AM-AGE had no cytotoxicity. The developed antibacterial finishing introduced a new method to apply polysulfobetaine interfaced on cellulose, providing great potential for biomedical fabric application.
Collapse
Affiliation(s)
- Simeng Gao
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi, China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi, China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Wencong Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi, China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi, China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi, China
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Chang L, Duan W, Chen A, Li J, Huang S, Tang H, Pan G, Deng Y, Zhao L, Li D, Zhao L. Preparation of polyacrylonitrile-based fibres with chelated Ag ions for antibacterial applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200324. [PMID: 32874631 PMCID: PMC7428276 DOI: 10.1098/rsos.200324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 06/01/2023]
Abstract
The need for an excellent antibacterial material that is sufficiently powerful to never develop bacterial resistance is urgent. In this study, a series of novel polyacrylonitrile-based fibres with chelated Ag ions (referred to as Ag-SH-PANF) were prepared by a two-step chemical modification process: grafting and chelating. The properties of the as-prepared Ag-SH-PANF were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The antibacterial activities of Ag-SH-PANF were examined against pathogenic bacteria, and an antibacterial mechanism was explicated based on the release of Ag ions from the fibres' surfaces. The results showed that, although chelation occurred between the Ag ions and the grafted amino, sulfhydryl and disulfide groups, Ag-SH-PANF retained its fine microstructure and thermal stability. Moreover, Ag-SH-PANF displayed excellent antibacterial ability against pathogenic bacteria as well as good washing durability. In terms of the antibacterial mechanism, Ag ions are the main bactericidal agents in the role of catalysts and are not consumed in the antibacterial process. Nonetheless, a relatively higher concentration of Ag ions can accelerate the bactericidal process.
Collapse
Affiliation(s)
- Li Chang
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Wenjie Duan
- Institute of Chemistry, Henan Academy of Sciences, 450003 Zhengzhou, Henan, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, 450000 Zhengzhou, Henan, People's Republic of China
| | - Anguo Chen
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Jianjun Li
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Siqi Huang
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Huijuan Tang
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Gen Pan
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Yong Deng
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Lining Zhao
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Defang Li
- Institute of Bast Fibre Crops, Chinese Academy of Agricultural Sciences, 410205 Changsha, Hunan, People's Republic of China
| | - Liang Zhao
- Institute of Chemistry, Henan Academy of Sciences, 450003 Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
21
|
Niu T, Wang X, Wu C, Sun D, Zhang X, Chen Z, Fang L. Chemical Modification of Cotton Fabrics by a Bifunctional Cationic Polymer for Salt-Free Reactive Dyeing. ACS OMEGA 2020; 5:15409-15416. [PMID: 32637815 PMCID: PMC7331042 DOI: 10.1021/acsomega.0c01530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/02/2020] [Indexed: 06/01/2023]
Abstract
Cotton modification exhibited great potential in the fabric dyeing industry. A bifunctional cationic polymer with a moderate cationic degree and low molecular weight was achieved via free radical polymerization between dimethyl diallyl ammonium chloride and allyl glycidyl ether. Then, it was further utilized for the modification of cotton fabrics. The formation of the cationic polymer was identified using Fourier transform infrared and nuclear magnetic resonance spectroscopies. The structure and properties of both treated and untreated cotton were analyzed by X-ray photoelectron spectroscopy and scanning electron microscopy. The modified cotton fabrics could be salt-free dyed with reactive dyes at low temperatures. While obtaining satisfactory color fastness and leveling properties, the dyeability of the modified cotton was improved significantly compared with the conventional dyeing of native cotton. Besides, the prepared cationic polymer has good flocculating properties to avoid secondary pollution, suggesting high potential for achieving an economical and eco-friendly dyeing process.
Collapse
Affiliation(s)
- Tianjie Niu
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Xuemei Wang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Chaohui Wu
- Shandong
Chonglong Clothing Co., Ltd., Qingdao 266071, China
| | - Deshuai Sun
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Xiaodong Zhang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Zhaojun Chen
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| | - Long Fang
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, China
| |
Collapse
|
22
|
Nie X, Wu S, Mensah A, Wang Q, Huang F, Li D, Wei Q. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. J Colloid Interface Sci 2020; 579:233-242. [PMID: 32592988 DOI: 10.1016/j.jcis.2020.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Development of ease-fabricated and effectively self-disinfecting textile materials for antimicrobial and infection prevention has been urgently desired by both consumers and industry. However, some nonresponsive antibacterial agents finished fabrics may be harmful to human. To address this issue, we developed a facile finishing method to endow woven cotton fabrics (WCF) with light-driven antibacterial property. Here in, porphyrinic metal-organic frameworks (PCN-224) were in situ synthesized on WCF (termed PCN-224/WCF) and PCN-224/WCF was proven to be used for antibacterial photodynamic inactivation (aPDI). aPDI studies indicated no difference in bacterial inactivation, the inactivation was 99.9999% of Gram-negative Escherichia coli 8099 and Pseudomonas aeruginosa CMCC (B) 10104 as well as Gram-positive Staphylococcus aureus ATCC-6538 and Bacillus subtilis CMCC (B) 63501 under visible light illumination (500 W, 15 cm vertical distance, λ ≥ 420 nm, 45 min). Cytotoxicity tests revealed PCN-224/WCF had low biological toxicity and good biocompatibility. Mechanism study revealed that singlet oxygen (1O2) was produced by PCN-224/WCF and caused severe damage to bacteria which was observed from the SEM images. This study provided a facile guideline to functionalize cotton fabrics with responsive bactericidal property which showed great potential for new generation of textiles with practical applications.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
23
|
Modified cotton fabrics with poly (3-(furan-2-carboamido) propionic acid) and poly (3-(furan-2-carboamido) propionic acid)/gelatin hydrogel for UV protection, antibacterial and electrical properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Yves K, Chen T, Aladejana JT, Wu Z, Xie Y. Preparation, Test, and Analysis of a Novel Aluminosilicate-Based Antimildew Agent Applied on the Microporous Structure of Wood. ACS OMEGA 2020; 5:8784-8793. [PMID: 32337440 PMCID: PMC7178768 DOI: 10.1021/acsomega.0c00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 05/17/2023]
Abstract
Fungi play a considerable role in the deterioration of lignocellulose materials, as their activities either affect the esthetic properties or lead to decay of the host materials. The new generation of organic-inorganic preservatives, which are copper-based but chrome- and arsenic-free, is a subject of many research works. Mildew fungus prevention, treatment of affected materials, and their successive conservation are essential to the woodworkers. To prevent degradation and prolong the service life of wood, a sol-gel organic-inorganic procedure was employed in this study. Aluminum sulfate (Al2(SO4)3), copper sulfate (CuSO4·5H2O), and boric acid (H3BO3) were introduced into phosphoric acid (H3PO4) and water glass as an antimildew agent, with different treatment concentrations (0.7, 1.4, and 2%). Wood was inoculated with Aspergillus niger and Trichoderma viride after new treatment based on the inorganic preservative. The changes in wood surface, structural chemistry, and the crystalline structure of the treated wood were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD), respectively. The growth of the two mildew fungi showed distribution, and evidence of mildew covering only the untreated wood surfaces and an increase in the crystallinity of wood was observed after the process. The study suggests that the two mildew fungi investigated herein could be prevented by sol-gel coating with a Si-Al-Cu-P antimildew agent.
Collapse
Affiliation(s)
- Kouomo
Guelifack Yves
- College
of Material Engineering, Fujian Agriculture
and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, P.
R. China
| | - Tingjie Chen
- Key
Laboratory of Polymer Materials
and Products of Universities in Fujian, College of Materials Science
and Engineering, Fujian University of Technology, Fuzhou, Fujian 350002, P. R. China
| | - John Tosin Aladejana
- College
of Material Engineering, Fujian Agriculture
and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, P.
R. China
| | - Zhenzheng Wu
- College
of Material Engineering, Fujian Agriculture
and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, P.
R. China
| | - Yongqun Xie
- College
of Material Engineering, Fujian Agriculture
and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, P.
R. China
| |
Collapse
|
25
|
Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO-TiO 2 nanorods template. Heliyon 2020; 6:e03710. [PMID: 32274436 PMCID: PMC7132160 DOI: 10.1016/j.heliyon.2020.e03710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
An alternative method of synthesizing ZnO–TiO2 nanorods is through route precipitation and sintering at 600 °C. In this study, the introduction of Ti into Zn in the molar ratio Ti:Zn (1:3) produced a composite ZnO-Low TiO2 (ZnO-LTiO2) while 1:1 produced ZnO-High TiO2 (ZnO–HTiO2). The effect of the Ti introduced on the anti-bacterial properties of ZnO–TiO2 nanorods was investigated with the product structure characterized by XRD and the optimal intensity at 2θ: 31.72°, 34.37°, 36.19° showed a Wurzite structure and a crystal size of 35.8–41.5 nm. The average pore diameters for ZnO-LTiO2 and ZnO–HTiO2 were around 5.159 nm and 6.828 nm while the surface areas were 15.692 m2/g and 15.421 m2/g respectively. The anti-bacterial textile fiber construction was prepared using dip-spin coating with the application of an adipic acid crosslinker for 6 h and stable coating up to 10 times washing. The improvement of Pseudomonasaeruginosa (Pa) antibacterial properties in the textiles with coating had an inhibition zone of 20.5–25.0 mm and 16.2 mm without the coating. The elements of the cotton fiber construction include C at 54.60%, O at 40.89%, Ti at 0.81% and Zn at 2.60% while the TG-DTA analysis conducted showed an increase in the heat stability of the textile fibers to a temperature of 400°C, after which the textiles were modified by coating ZnO–TiO2 nanorods. The findings of this research could be successfully applied to improve the antibacterial properties of textiles.
Collapse
|
26
|
Antibacterial Activity and Biodegradation of Cellulose Fiber Blends with Incorporated ZnO. MATERIALS 2019; 12:ma12203399. [PMID: 31627362 PMCID: PMC6829227 DOI: 10.3390/ma12203399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
Abstract
This research aimed to study the influence of lyocell with incorporated ZnO (CLY) for antibacterial activity and biodegradation of fiber blends composed of viscose (CV), flax (LI), and CLY. Fiber blended samples with an increased weight fraction of CLY fibers were composed, and single CLY, CV and LI fibers were also used for comparison. Antibacterial activity was determined for the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus bacteria. The biodegradation of fiber blends was investigated by the soil burial test. The results show that the single CLY fibers exhibited high antimicrobial activity against both E. coli and S. aureus bacteria and that the presence of LI fibers in the blended samples did not significantly affect antibacterial activity against E. coli, but drastically decreased the antibacterial activity against S. aureus. LI fibers strongly promoted the growth of S. aureus and, consequently, impaired the antimicrobial performance of ZnO against this bacterium. The presence of CLY fibers slowed down, but did not prevent, the biodegradation process of the fiber blends, even at the highest ZnO concentration. The soil that was in contact with the fiber blended samples during their burial was not contaminated to such an extent as to affect the growth of sprouts, confirming the sustainability of the fiber blends.
Collapse
|
27
|
Abstract
The use of ZnO for the functionalization of textile substrates is growing rapidly, since it can provide unique multifunctional properties, such as photocatalytic self-cleaning, antimicrobial activity, UV protection, flame retardancy, thermal insulation and moisture management, hydrophobicity, and electrical conductivity. This paper aims to review the recent progress in the fabrication of ZnO-functionalized textiles, with an emphasis on understanding the specificity and mechanisms of ZnO action that impart individual properties to the textile fibers. The most common synthesis and application processes of ZnO to textile substrates are summarized. The influence of ZnO concentration, particle size and shape on ZnO functionality is presented. The importance of doping and coupling procedures to enhance ZnO performance is highlighted. The need to use binding and seeding agents to increase the durability of ZnO coatings is expressed. In addition to functional properties, the cytotoxicity of ZnO coatings is also discussed. Future directions in the use of ZnO for textile functionalization are identified as well.
Collapse
|
28
|
Xu J, Zhao H, Xie Z, Ruppel S, Zhou X, Chen S, Liang JF, Wang X. Stereochemical Strategy Advances Microbially Antiadhesive Cotton Textile in Safeguarding Skin Flora. Adv Healthc Mater 2019; 8:e1900232. [PMID: 31183997 PMCID: PMC8754253 DOI: 10.1002/adhm.201900232] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Microbial contamination on cotton textiles (CT) negatively affects people's health as well as the textile itself during use and storage. Using antimicrobial CT in a body-safe manner is currently still a challenge because it is difficult to balance killing microbes and protecting skin flora. Herein, a borneol-decorated CT (BDCT) through coupling of borneol 4-formylbenzoate molecules onto the amino-modified CT is reported. This BDCT shows strong and broad-spectrum microbially antiadhesive activities against gram-positive bacteria (Staphylococcus aureus and S. epidermidis), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Aspergillus niger, Mucor racemosus, and Candida albicans). Because of its unique stereochemical microbial antiadhesion mechanism, BDCT is harmless to skin flora. In addition, BDCT exhibits prominent durability of microbially antiadhesive capability by bearing 50 times of accelerated laundering. Therefore, this stereochemical BDCT strategy shows great potential for applications in the new generation of textiles, food packaging, and medical protection.
Collapse
Affiliation(s)
- Jiangqi Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongjuan Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zixu Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Scott Ruppel
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Shuang Chen
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Jun F. Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Xing Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| |
Collapse
|
29
|
Yang Y, Ji H, Duan H, Fu Y, Xia S, Lü C. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications. Polym Chem 2019. [DOI: 10.1039/c9py00846b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Size-controlled CFR microspheres and their silver-based nanohybrids were constructed and the nanohybrids display high catalytic reduction activity and antibacterial properties.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Haixun Ji
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Haichao Duan
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yuqin Fu
- College of Life Sciences
- Jilin Agricultural University
- Changchun 130118
- P. R. China
| | - Siwen Xia
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|