1
|
Yin X, Geng X, Li W, Che T, Yan L, Yuan B, Qin S. Advance of the application of seaweed polysaccharides on antitumor drug delivery systems. Int J Pharm 2025; 675:125502. [PMID: 40147698 DOI: 10.1016/j.ijpharm.2025.125502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the morbidity and death rate of patients with tumors have been continuously increasing. How to administer radiotherapy, chemotherapy, and other methods for reducing damage to normal tissue cells and accurately targeting the tumor is one of the key issues in solving the problem of cancer. Using nanocarriers is a feasible approach into targeted control on the release of medicine to increase patient compliance. Nowadays, many researchers are gradually focusing on the application of drug delivery systems with natural ingredients as carriers in tumor therapy. At the same time, natural active ingredients may have better biocompatibility and fewer side effects. Especially, a variety of polysaccharides from algae has exhibited antitumor activity, providing greater possibilities for their use as drug delivery carriers. To facilitate the advancement and clinical translation of algae-derived polysaccharides in medical applications, we summarized the structural features of a range of polysaccharides extracted from macroalgae, their physical properties suitable for use as carriers, and the ways they are utilized in delivering medicines in oncology therapy (particularly in combination with novel oncology therapies, such as immunotherapy and photothermal therapy).
Collapse
Affiliation(s)
- Xiaofei Yin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China
| | - Tuanjie Che
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong 2640035, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China
| | - Libo Yan
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong 2640035, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, China.
| |
Collapse
|
2
|
El Asri S, Ben Mrid R, Zouaoui Z, Roussi Z, Ennoury A, Nhiri M, Chibi F. Advances in structural modification of fucoidans, ulvans, and carrageenans to improve their biological functions for potential therapeutic application. Carbohydr Res 2025; 549:109358. [PMID: 39718272 DOI: 10.1016/j.carres.2024.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Marine sulfated polysaccharides constitute a class of bioactive polymers commonly found in cell walls of macroalgae. Among these macromolecular substances, fucoidans, ulvans, and carrageenans have attracted considerable attention providing interesting therapeutic properties affected by a combination of various structural factors, such as sulfation pattern, molecular weight, monosaccharide composition, and glycosidic linkages. Remarkably, chemical modification, enzymatic hydrolysis and crosslinking are promising approaches for developing the application of these polysaccharides through enhancement and/or addition of new biological properties. This paper reviews the recent advances on these structure modification methods on fucoidans, ulvans, and carrageenans. The physical, chemical and biological properties influenced by the addition of functional groups are also discussed. In addition, an overview of specific enzymes selectively producing oligosaccharides with improved bioactivities as well as ionic and covalent cross-linking strategies are provided. These targeted methods have the potential to develop novel compounds with outstanding biodegradability and biocompatibility, along with low toxicity suitable for diverse applications in biomedical fields, including drug delivery.
Collapse
Affiliation(s)
- Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco; Institute of Biological Sciences (ISSB-P), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P) , Ben-Guerir, 43150, Morocco.
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| | - Fatiha Chibi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, 90000, Tetouan, Morocco
| |
Collapse
|
3
|
Priyamvada P, Ashok G, Mathpal S, Anbarasu A, Ramaiah S. Marine Compound-Carpatamide D as a Potential Inhibitor Against TOP2A and Its Mutant D1021Y in Colorectal Cancer: Insights from DFT, MEP and Molecular Dynamics Simulation. Mol Biotechnol 2024:10.1007/s12033-024-01265-9. [PMID: 39264528 DOI: 10.1007/s12033-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yang S, Li D, Liu W, Chen X. Polysaccharides from marine biological resources and their anticancer activity on breast cancer. RSC Med Chem 2023; 14:1049-1059. [PMID: 37360387 PMCID: PMC10285744 DOI: 10.1039/d3md00035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
In recent decades, natural products from marine organisms have been widely studied for the treatment of various breast cancers. Among them, polysaccharides have been favored by researchers because of their good effects and safety. In this review, polysaccharides from marine algae including macroalgae and microalgae, chitosan, microorganisms such as marine bacteria and fungi, and starfish are addressed. Their anticancer activities on different breast cancers and action mechanisms are discussed in detail. In general, polysaccharides from marine organisms are potential sources of low side-effect and high efficiency anticancer drugs for development. However, further research on animals and clinical research are needed.
Collapse
Affiliation(s)
- Shengfeng Yang
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital China
| | - Dacheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Weili Liu
- Department of Nuclear Medicine, Affiliated Hospital of Qingdao University China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences China
| |
Collapse
|
7
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
8
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Kicha AA, Ivanchina NV, Ermakova SP. Combined Radiomodifying Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Pacificusoside D from the Starfish Solaster pacificus in the Model of 3D Melanoma Cells. Biomolecules 2023; 13:419. [PMID: 36979354 PMCID: PMC10046073 DOI: 10.3390/biom13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is one of the main causes of human mortality worldwide. Despite the advances in the diagnostics, surgery, radiotherapy, and chemotherapy, the search for more effective treatment regimens and drug combinations are relevant. This work aimed to assess the radiomodifying effect and molecular mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and product of its autohydrolysis (ScF_AH) in combination with pacificusoside D from the starfish Solaster pacificus (SpD) on the model of viability and invasion of three-dimension (3D) human melanoma cells SK-MEL-2. The cytotoxicity of ScF (IC50 JB6 Cl41 > 800 µg/mL; IC50 SK-MEL-2 = 685.7 µg/mL), ScF_AH (IC50 JB6 Cl41/SK-MEL-2 > 800 µg/mL), SpD (IC50 JB6 Cl41 = 22 µM; IC50 SK-MEL-2 = 5.5 µM), and X-ray (ID50 JB6 Cl41 = 11.7 Gy; ID50 SK-MEL-2 = 6.7 Gy) was determined using MTS assay. The efficiency of two-component treatment of 3D SK-MEL-2 cells was revealed for ScF in combination with SpD or X-ray but not for the combination of fucoidan derivative ScF_AH with SpD or X-ray. The pre-treatment of spheroids with ScF, followed by cell irradiation with X-ray and treatment with SpD (three-component treatment) at low non-toxic concentrations, led to significant inhibition of the spheroids' viability and invasion and appeared to be the most effective therapeutic scheme for SK-MEL-2 cells. The molecular mechanism of radiomodifying effect of ScF with SpD was associated with the activation of the initiator and effector caspases, which in turn caused the DNA degradation in SK-MEL-2 cells as determined by the Western blotting and DNA comet assays. Thus, the combination of fucoidan from brown algae and triterpene glycoside from starfish with radiotherapy might contribute to the development of highly effective method for melanoma therapy.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| | | | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| |
Collapse
|
9
|
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022; 27:molecules27186032. [PMID: 36144768 PMCID: PMC9506145 DOI: 10.3390/molecules27186032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.
Collapse
|
10
|
Structural characteristics of native and chemically sulfated polysaccharides from seaweed and their antimelanoma effects. Carbohydr Polym 2022; 289:119436. [DOI: 10.1016/j.carbpol.2022.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
|
11
|
Natural Marine Products: Anti-Colorectal Cancer In Vitro and In Vivo. Mar Drugs 2022; 20:md20060349. [PMID: 35736152 PMCID: PMC9229715 DOI: 10.3390/md20060349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer, a malignant tumor with high mortality, has a poor prognosis due to drug resistance and toxicity in clinical surgery and chemotherapy. Thus, finding safer and more efficient drugs for clinical trials is vital and urgent. Natural marine compounds, with rich resources and original chemical structures, are applied widely in anticancer treatments. We provide a systematic overview of recently reported marine compounds such as alkaloids, peptides, terpenoids, polysaccharides, and carotenoids from in vitro, in vivo, and clinical studies. The in vitro studies summarized the marine origins and pharmacological mechanisms, including anti-proliferation, anti-angiogenesis, anti-migration, anti-invasion, the acceleration of cycle arrest, and the promotion of tumor apoptosis, of various compounds. The in vivo studies outlined the antitumor effects of marine compounds on colorectal cancer model mice and evaluated their efficacy in terms of tumor inhibition, hepatotoxicity, and nephrotoxicity. The clinical studies summarized the major chemical classifications and targets of action of the clinical drugs that have entered clinical approval and completed approval for marine anticancer. In summary, we present the current situation regarding the application of natural anti-colorectal cancer marine compounds and prospects for their clinical application.
Collapse
|
12
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, Besednova NN, Ivanushko LA, Ermakova SP. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym 2021; 273:118551. [PMID: 34560963 DOI: 10.1016/j.carbpol.2021.118551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Fucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect. We classified fucoidans according to their composition and structure, examined the structure of fucoidans of individual representatives of algae, summarized the available data on changes in the yields and compositions of fucoidans during algae development, and focused on information about underexplored radioprotective effect of these polysaccharides. Based on the presented in the review data, it is possible to select algae, which are the sources of fucoidans of desired structures and to determine the best time to harvest them. The use of high purified polysaccharides with established structures increase the value of studies of their biological effects and the determination of the dependence "structure - biological effect".
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia N Besednova
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Lyudmila A Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
13
|
Usoltseva RV, Malyarenko OS, Anastyuk SD, Shevchenko NM, Silchenko AS, Zvyagintseva TN, Isakov VV, Thinh PD, Khanh HHN, Hang CTT, Trung DT, Ermakova SP. The structure of fucoidan from Sargassum oligocystum and radiosensitizing activity of galactofucans from some algae of genus Sargassum. Int J Biol Macromol 2021; 183:1427-1435. [PMID: 34023368 DOI: 10.1016/j.ijbiomac.2021.05.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to establish the fine structure of fucoidan from Sargassum oligocystum and to study the radiosensitizing effect of fucoidans from three algae of genus Sargassum (S. oligocystum, S. duplicatum, and S. feldmannii) with different structures. The fucoidan SoF2 from S. oligocystum was sulfated (32%) galactofucan (Fuc:Gal = 2:1), with a Mw of 183 kDa (Mw/Mn = 2.0). Its supposed structure was found to be predominantly 1,3-linked fucose as the main chain, with branching points at C2 and C4. The branches could be single galactose and/or fucose short chains with terminal galactose residues. Sulfate groups were found at positions C3, C2, and/or C4 of fucose residues and at C2 and/or C4 of galactose residues. The radiosensitizing effect of galactofucans from S. oligocystum, S. duplicatum, and S. feldmannii against human melanoma SK-MEL-28, colon HT-29, and breast MDA-MB-231 cancer cells was investigated. The influence of all investigated polysaccharides treatments with/without X-ray radiation on colony formation of human melanoma cells SK-MEL-28 was weak. Fucoidan from S. feldmannii has been shown to be the most promising radiosensitizing compound against human colon HT-29 and breast MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Pham Duc Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Huynh Hoang Nhu Khanh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Cao Thi Thuy Hang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Dinh Thanh Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang, Viet Nam
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
14
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Anastyuk SD, Isakov VV, Zvyagintsev NV, Krupnova TN, Zadorozhny PA, Ermakova SP. Composition of polysaccharides and radiosensitizing activity of native and sulfated laminarans from the Tаuуа basicrassa Kloczc. et Krupn. Carbohydr Polym 2020; 250:116921. [PMID: 33049835 DOI: 10.1016/j.carbpol.2020.116921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Polysaccharide fractions of alginate, laminarans and fucoidans were obtained from the brown alga Tauya basicrassa. Yields of alginate and laminarans were large (19.7 % and 5.62 %, respectively), whereas the content of fucoidans (0.52 %) was not significant. Alginate and laminarans had typical structures for those substances. Fucoidans were low- and medium-sulfated heterogeneous polysaccharides. The fucoidan fraction 1TbF1 was sulfated fucogalactan containing a backbone from 1,6-linked residues of β-d-galactopyranose with branches at C3 and C4, terminal fucose and galactose residues and fragments from 1,3-; 1,4-; and 1,2-fucose residues. Sulfate groups were found at positions 2 and 4 of fucose, and positions 2, 3 and 4 of galactose residues. Laminaran 2TbL was subjected to a sulfation to obtain the derivative 2TbLS with partial sulfation (46 %) at C2, C4 and C6. It was shown that 2TbL and 2TbLS inhibited colony formation of sensitize-tested colon cancer cells HT-29 and HCT-116 to X-ray radiation.
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Stanislav D Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Vladimir V Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Nikolai V Zvyagintsev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Tatiana N Krupnova
- Pacific Branch of VNIRO (TINRO), 4, Shevchenko Alley, 690950, Vladivostok, Russian Federation
| | - Pavel A Zadorozhny
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159D 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Laboratory of Enzyme Chemistry, 159 100-Let Vladivostoku Ave., 690022, Vladivostok, Russian Federation
| |
Collapse
|
16
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Ermakova SP. Aminated laminaran from brown alga Saccharina cichorioides: Synthesis, structure, anticancer, and radiosensitizing potential in vitro. Carbohydr Polym 2020; 250:117007. [PMID: 33049875 DOI: 10.1016/j.carbpol.2020.117007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Laminarans are currently the focus of attention in regard to the selection of prospective agents for the prevention and treatment of cancer. Laminaran from Saccharina cichorioides was aminated to heighten anticancer and radiosensitizing activities and elucidate its molecular mode of action. Aminated laminaran, ScLNH2, was identified as 1,3-β-d-glucan with -CH2-CH(OH)-CH2-NH2 group at the C6 of branches. ScLNH2 selectively inhibited the viability and colony formation in the MDA-MB-231 cell line of triple negative breast cancer cells. ScLNH2 possessed synergism with radiation, resulting in a decreased number of colonies of MDA-MB-231 cells. The mechanism underling the radiosensitizing effect of ScLNH2 was associated with apoptosis induction via regulation of caspases 9 and 3 and PARP enzyme, preventing the repair of DNA damage in irradiated cells. These findings confirmed that combination therapy by aminated laminaran and radiation might play a role in the optimization of therapy for an aggressive form of human breast cancer.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Roza V Usoltseva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Artem S Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| |
Collapse
|
17
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
18
|
Rasin AB, Silchenko AS, Kusaykin MI, Malyarenko OS, Zueva AO, Kalinovsky AI, Airong J, Surits VV, Ermakova SP. Enzymatic transformation and anti-tumor activity of Sargassum horneri fucoidan. Carbohydr Polym 2020; 246:116635. [PMID: 32747270 DOI: 10.1016/j.carbpol.2020.116635] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Structure of the fucoidan from Sargassum horneri and products of its enzymatic transformation with molecular weight over 20 kDa were investigated. Fucoidan was hydrolyzed by recombinant fucoidanase FFA1 and its fraction of higher molecular weight was fractionated using anion-exchange chromatography, resulting in three sulphated polysaccharides of various molecular weight (63-138 kDa). Their structures were analyzed using NMR spectroscopy, showing the fucoidan (ShF) to be a branched polysaccharide with the backbone consisting of the repeating →3-α-l-Fucp(2SO3-)-1→4-α-l-Fucp(2,3SO3-)-1→ fragment and side chains including the α-l-Fucp-1→2-α-l-Fucp-1→ or α-l-Fucp-1→3-α-l-Fucp(4SO3-)-1→ fragments attached to the main chain at C4. The fragment F3 differing by molecular weight and side chain from other fucoidans fragments possessed the most significant anticancer and radiosensitizing activities.
Collapse
Affiliation(s)
- Anton B Rasin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia
| | - Artem S Silchenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia.
| | - Mikhail I Kusaykin
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia.
| | - Olesya S Malyarenko
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia
| | - Anastasiya O Zueva
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia; School of Natural Sciences, Far-Eastern Federal University, 8, Sukhanova, St., 690091, Vladivostok, Russia
| | - Anatoly I Kalinovsky
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia
| | - Jia Airong
- Biology Institute of Shandong Academy of Sciences, 250014, Jinan, 19 Keyuan Road, PR China
| | - Valeriy V Surits
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia; School of Natural Sciences, Far-Eastern Federal University, 8, Sukhanova, St., 690091, Vladivostok, Russia
| | - Svetlana P Ermakova
- Laboratory of Enzyme Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, 159, Prospect 100-let Vladivostoku, Russia
| |
Collapse
|
19
|
Malyarenko OS, Ivanushko LA, Chaikina EL, Kusaykin MI, Silchenko AS, Avilov SA, Kalinin VI, Ermakova SP. In Vitro and In Vivo Effects of Holotoxin A1 From the Sea Cucumber Apostichopus japonicus During Ionizing Radiation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20932033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiation therapy is one of the most important approaches to cancer therapy, but radiotoxicity to normal tissue is a serious limitation of this treatment. Compounds which are able to either sensitize cancer cells or protect normal cells to radiation are of great interest. The cytotoxicity of holotoxin A1 and the effects of radiation against DLD-1 and HT-29 cells were measured by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The effect of the combination of holotoxin A1 with X-ray on colony formation of cancer cells was determined by the soft agar assay. The effect of holotoxin A1 on the recovery of peripheral blood leukocyte number, mass, and cellularity of the lymphoid organs of irradiated mice, as well as on growth of murine Ehrlich solid carcinoma was studied. Holotoxin A1 enhanced the sensitivity of colorectal carcinoma cells to radiation in vitro. Injection of holotoxin A1 to mice led to an increase in the spleen endogenous colony number and peripheral blood leukocyte number, as well as the weight and cellularity of the lymphoid organs of the irradiated mice. Holotoxin A1 in combination with X-ray radiation effectively inhibited the growth of Ehrlich solid carcinoma in vivo. Holotoxin A1 is suggested to be a promising agent for improving the efficiency of radiotherapy.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Lyudmila A. Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Elena L. Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail I. Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
20
|
Tran PHL, Tran TTD. Current Designs and Developments of Fucoidan-based Formulations for Cancer Therapy. Curr Drug Metab 2020; 20:933-941. [PMID: 31589118 DOI: 10.2174/1389200220666191007154723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Natural nanostructure materials have been involved in antitumor drug delivery systems due to their biocompatibility, biodegradation, and bioactive properties. METHODS These materials have contributed to advanced drug delivery systems in the roles of both bioactive compounds and delivery nanocarriers. Fucoidan, a valuable ocean material used in drug delivery systems, has been exploited in research on cancer and a variety of other diseases. RESULTS Although the uniqueness, structure, properties, and health benefits of fucoidan have been mentioned in various prominent reviews, current developments and designs of fucoidan-based formulations still need to be assessed to further develop an effective anticancer therapy. In this review, current important formulations using fucoidan as a functional material and as an anticancer agent will be discussed. This article will also provide a brief principle of the methods that incorporate functional nanostructure materials in formulations exploiting fucoidan. CONCLUSION Current research and future perspectives on the use of fucoidan in anticancer therapy will advance innovative and important products for clinical uses.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
22
|
Torres M, Flórez-Fernández N, Simón-Vázquez R, Giménez-Abián J, Díaz J, González-Fernández Á, Domínguez H. Fucoidans: The importance of processing on their anti-tumoral properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from Fucoidan: New Developments. Mar Drugs 2019; 17:E571. [PMID: 31601041 PMCID: PMC6836154 DOI: 10.3390/md17100571] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Since our last review in 2015, the study and use of fucoidan has extended in several research areas. Clinical use of fucoidan for the treatment of renal disease has become available and human safety studies have been undertaken on radiolabeled fucoidan for the purpose of imaging thrombi. Fucoidan has been incorporated into an increasing number of commercially available supplements and topical treatments. In addition, new measuring techniques are now available to assess the biologically relevant uptake of fucoidans and to assist in production. Microbiome modulation and anti-pathogenic effects are increasingly promising applications for fucoidans, due to the need for alternative approaches to antibiotic use in the food chain. This review outlines promising new developments in fucoidan research, including potential future therapeutic use.
Collapse
Affiliation(s)
- Helen J Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien S Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Ah Young Park
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Samuel N Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| |
Collapse
|
24
|
Malyarenko OS, Malyarenko TV, Kicha AA, Ivanchina NV, Ermakova SP. Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells. Molecules 2019; 24:molecules24173154. [PMID: 31470638 PMCID: PMC6749381 DOI: 10.3390/molecules24173154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in the understanding, prevention, and treatment of cancer, the disease continues to affect millions of people worldwide. Chemoradiation therapy is a rational approach that has already proven beneficial for several malignancies. However, the existence of toxicity to normal tissue is a serious limitation of this treatment modality. The aim of the present study is to investigate the ability of polar steroids from starfish Patiria (=Asterina) pectinifera to enhance the efficacy of radiation therapy in colorectal carcinoma cells. The cytotoxic activity of polar steroids and X-ray radiation against DLD-1, HCT 116, and HT-29 cells was determined by an MTS assay. The effect of compounds, X-ray, and their combination on colony formation was studied using the soft agar method. The molecular mechanism of the radiosensitizing activity of asterosaponin P1 was elucidated by western blotting and the DNA comet assay. Polar steroids inhibited colony formation in the tested cells, and to a greater extent in HT-29 cells. Asterosaponin P1 enhanced the efficacy of radiation and, as a result, reduced the number and size of the colonies of colorectal cancer cells. The radiosensitizing activity of asterosaponin P1 was realized by apoptosis induction through the regulation of anti- and pro-apoptotic protein expression followed by caspase activation and DNA degradation.
Collapse
Affiliation(s)
- Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia.
| | - Timofey V Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
- Department of Bioorganic chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova str. 8, 690000 Vladivostok, Russia
| | - Alla A Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia
| |
Collapse
|