1
|
Zhu X, Qiang Y, Wang X, Fan M, Lv Z, Zhou Y, He B. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis. Int J Biol Macromol 2024; 273:132928. [PMID: 38897510 DOI: 10.1016/j.ijbiomac.2024.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Immobilized enzymes are one of the most common tools used in enzyme engineering, as they can substantially reduce the cost of enzyme isolation and use. However, efficient catalysis of solid substrates using immobilized enzymes is challenging, hydrolysis of insoluble cellulose by immobilized cellulases is a typical example of this problem. In this study, inspired by bees and honeycombs, we prepared gelatin-modified cellulase (BEE) and gelatin hydrogels (HONEYCOMB) to achieve reversible recycling versus release of cellulase through temperature-responsive changes in the triple-stranded helix-like interactions between BEE and HONEYCOMB. At elevated temperatures, BEE was released from HONEYCOMB and participated in hydrolytic saccharification. After 24 h, the glucose yields of both the free enzyme and BEE reached the same level. When the temperature was decreased, BEE recombined with HONEYCOMB to facilitate the effective separation and recycling of BEE from the system. The enzymatic system retained >70 % activity after four reuse cycles. In addition, this system showed good biocompatibility and environmental safety. This method increases the mass transfer capacity and enables easy recovery of immobilized cellulase, thereby serving as a valuable strategy for the immobilization of other enzymes.
Collapse
Affiliation(s)
- Xing Zhu
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuanyuan Qiang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Mingliang Fan
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zuoyuan Lv
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yi Zhou
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bin He
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Lima AR, Cristofoli NL, Rosa da Costa AM, Saraiva JA, Vieira MC. Comparative study of the production of cellulose nanofibers from agro-industrial waste streams of Salicornia ramosissima by acid and enzymatic treatment. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Dutta S, Bhat NS. Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview. RSC Adv 2022; 12:4891-4912. [PMID: 35425469 PMCID: PMC8981328 DOI: 10.1039/d1ra09196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| | - Navya Subray Bhat
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| |
Collapse
|
4
|
Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 2020; 164:2477-2496. [DOI: 10.1016/j.ijbiomac.2020.08.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
5
|
Michelin M, Gomes DG, Romaní A, Polizeli MDLTM, Teixeira JA. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules 2020; 25:E3411. [PMID: 32731405 PMCID: PMC7436152 DOI: 10.3390/molecules25153411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Increasing environmental and sustainability concerns, caused by current population growth, has promoted a raising utilization of renewable bio-resources for the production of materials and energy. Recently, nanocellulose (NC) has been receiving great attention due to its many attractive features such as non-toxic nature, biocompatibility, and biodegradability, associated with its mechanical properties and those related to its nanoscale, emerging as a promising material in many sectors, namely packaging, regenerative medicine, and electronics, among others. Nanofibers and nanocrystals, derived from cellulose sources, have been mainly produced by mechanical and chemical treatments; however, the use of cellulases to obtain NC attracted much attention due to their environmentally friendly character. This review presents an overview of general concepts in NC production. Especial emphasis is given to enzymatic hydrolysis processes using cellulases and the utilization of pulp and paper industry residues. Integrated process for the production of NC and other high-value products through enzymatic hydrolysis is also approached. Major challenges found in this context are discussed along with its properties, potential application, and future perspectives of the use of enzymatic hydrolysis as a pretreatment in the scale-up of NC production.
Collapse
Affiliation(s)
- Michele Michelin
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Daniel G. Gomes
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Aloia Romaní
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| | - Maria de Lourdes T. M. Polizeli
- Department of Biology, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal; (M.M.); (A.R.); (J.A.T.)
| |
Collapse
|
6
|
Facile Construction of Synergistic β-Glucosidase and Cellulase Sequential Co-immobilization System for Enhanced Biomass Conversion. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2437-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Agave Leaves as a Substrate for the Production of Cellulases by Penicillium sp . and the Obtainment of Reducing Sugars. J CHEM-NY 2020. [DOI: 10.1155/2020/6092165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lignocellulosic biomass can be used to obtain fermentable sugars by enzymatic hydrolysis, and also it serves as a carbon source to produce cellulases by solid-state fermentation. In this study, we propose the use of leaves of Agave salmiana as a carbon source to produce cellulases by the fungus Penicillium sp., isolated from the same plant. The crude enzymatic extract was used to obtain sugars from the hydrolysis of the parenchymal cells of the leaves. The enzymes produced were characterized (endoglucanase 14.4 U/g; exoglucanase 3.5 U/g; β-glucosidase 4.14 U/g). The enzymes showed activities at elevated temperatures: 50°C for endoglucanase and exoglucanase and 70°C for β-glucosidase. Furthermore, the crude enzymatic extract obtained was able to hydrolyze the parenchyma in 51.6% in 48 h. The evidence presented in this paper shows the potential of the agave leaves as a source of carbon in the production of enzymes by fermentation with the consequent production of reducing sugars. In addition, the enzymes produced by Penicillium sp. could be used in the production of bioethanol, since they work at high temperatures.
Collapse
|
8
|
Wang X, Yuan T, Guo Z, Han H, Lei Z, Shimizu K, Zhang Z, Lee DJ. Enhanced hydrolysis and acidification of cellulose at high loading for methane production via anaerobic digestion supplemented with high mobility nanobubble water. BIORESOURCE TECHNOLOGY 2020; 297:122499. [PMID: 31835146 DOI: 10.1016/j.biortech.2019.122499] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
In this study, CH4 production from anaerobic digestion (AD) of refractory cellulose was investigated at a high loading of 3.5 (VScellulose/VSinoculum) under nanobubble water (NBW) addition. A longer proton spin-spin relaxation time (2611-2906 ms) of NBW during 35 days' storage reflected its high mobility and diffusion of water molecules. Higher volatile fatty acids were yielded at the hydrolysis-acidification stage under NBW addition. Methanogenesis tests showed that Air-NBW and CO2-NBW supplementation accelerated the utilization of crystalline cellulose, achieving methane yields of 264 and 246 mL CH4/g-VSreduced, increasing by 18% and 10% compared to deionized water addition (the control), respectively. In addition, under NBW addition the cellulose crystallinity reduction was enhanced by 14-20% with microbial community being enriched with hydrolytic and methanogenic bacteria. Results from this work suggest that NBW environment with no chemical addition and relatively low energy consumption is advantageous for enhanced AD process of cellulosic biomass.
Collapse
Affiliation(s)
- Xuezhi Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zitao Guo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hanlin Han
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|