1
|
Fernandez-Prior A, Barrera-Chamorro L, Marquez-Paradas E, López-de-Dicastillo C, Millan-Linares MC, Villanueva-Lazo A, Montserrat-de la Paz S. Thermal extraction and characterization of pectin from semi-solid by-products of the olive oil industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40298173 DOI: 10.1002/jsfa.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The valorization of agro-industrial by-products is crucial for promoting sustainability and circular economy. Olive mill semi-solid by-products (OMSbP), also known as alperujo, contain valuable bioactive compounds, including pectin, which can be extracted and used in food applications. However, the structural properties an antioxidant potential of these pectin require further characterization to assess their potential as functional ingredients. RESULTS In the present study, pectin was extracted from OMSbP using a citric acid-based thermal extraction process. The yield varied depending on the olive variety and ripeness degree, with higher extraction efficiency in more mature samples (48.2 g kg-1). Structural analysis by attenuated total reflectance/Fourier transform-infrared spectroscopy confirmed a high homogalacturonan content (~500 g kg-1) and a degree of methyl esterification of approximately 60%. The monosaccharide profile indicated enrichment in arabinose, rhamnose, galactose and mannose. Antioxidant activity, assessed through DPPH (i.e. 2,2-diphenyl-1-picrylhydrazyl) radical scavenging, showed a strong correlation with mannose content (r = -0.9967). Additionally, pectin-based films demonstrated thermal stability comparable to commercial pectin used in food packaging. CONCLUSION This study highlights the potential of OMSbP-derived pectin as a biofunctional ingredient with antioxidant activity and thermal stability. The extraction method ensures a sustainable approach for utilizing olive industry by-products. Future research should explore its bioavailability and application in edible films and coatings. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Africa Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Carol López-de-Dicastillo
- Packaging Group, Instituto de Agroquimica y Tecnologia de los Alimentos, Spanish National Research Council (IATA-CSIC), Paterna, Spain
| | - Maria C Millan-Linares
- Department of Food & Health, Instituto de la Grasa, Spanish National Research Council (IG-CSIC), Seville, Spain
| | - Alvaro Villanueva-Lazo
- Department of Food & Health, Instituto de la Grasa, Spanish National Research Council (IG-CSIC), Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Duggal M, Singh DP, Singh S, Khubber S, Garg M, Krishania M. Microwave-assisted acid extraction of high-methoxyl kinnow ( Citrus reticulata) peels pectin: Process, techno-functionality, characterization and life cycle assessment. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100213. [PMID: 39157717 PMCID: PMC11326923 DOI: 10.1016/j.fochms.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
The present study assessed the efficacy of kinnow peel pectin-acetic acid extraction using microwave heating at 110 °C, pH 2.2 for 10 min with a 1:2 ratio supernatant to ethanol for higher yield. The kinnow peel was freeze dried and grinded to fine powder for pectin extraction. The microwave extracted (ME) kinnow pectin showed 833 mg equivalent weight, 7.44 % methoxyl content, 66.67 % degree of esterification, 63.15 % galacturonic acid content and evinced higher purity than commercial citrus pectin. ME kinnow pectin exhibited shear thinning behaviour while higher apparent viscosity (Pa. s) at 20 % concentration. The ME kinnow pectin showed characteristic functional groups and a less crystalline structure as deduced from FT-IR, SEM and XRD respectively, and a higher thermal decomposition analysed from TGA. Further, life cycle assessment (LCA) predicted that the ethanol and acetic acid were major contributors toward climate change in this study. ME kinnow pectin has the potential to be used as a commercial pectin in various food applications.
Collapse
Affiliation(s)
- Muskaan Duggal
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140306, Punjab, India
| | - Devendra Pratap Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140306, Punjab, India
| | - Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140306, Punjab, India
| | - Sucheta Khubber
- Food Science and Technology, School of Biotechnology and Bioinformatics, DY Patil Deemed to be University, Navi Mumbai 400614, India
| | - Monika Garg
- National Agri-food Biotech Institute (NABI), Sector-81, Mohali 140306, Punjab, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
3
|
Anoraga SB, Shamsudin R, Hamzah MH, Sharif S, Saputro AD, Basri MSM. Optimization of subcritical water extraction for pectin extraction from cocoa pod husks using the response surface methodology. Food Chem 2024; 459:140355. [PMID: 38986202 DOI: 10.1016/j.foodchem.2024.140355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
This study optimized subcritical water extraction (SWE) conditions to maximize pectin yield from cocoa pod husk (CPH) and compared the characteristics of CPH pectin extracted through SWE with those of CPH pectin obtained through conventional extraction (CE) with citric acid. The Box-Behnken experimental design was employed to optimize SWE and examine the influence of process parameters, including temperature (100 °C-120 °C), extraction time (10-30 min), and solid:liquid ratio (SLR) (1:30-2:30 g/mL), on pectin yield. The maximum pectin yield of 6.58% was obtained under the optimal extraction conditions of 120 °C for 10 min with 1:15 g/mL SLR and closely corresponded with the predicted value of 7.29%. Compared with CE, SWE generated a higher yield and resulted in a higher degree of esterification, methoxyl content, and anhydrouronic acid value but a lower equivalent weight. The extracted pectin was pure, had low-methoxyl content, and similar melting and degradation temperatures.
Collapse
Affiliation(s)
- Satria Bhirawa Anoraga
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Institute of Plantations Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Muhammad Hazwan Hamzah
- SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suzannah Sharif
- Cocoa Innovation and Technology Centre, Malaysian Cocoa Board, Lot 12621, Nilai Industrial Area, Nilai 71800, Negeri Sembilan, Malaysia
| | - Arifin Dwi Saputro
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Xiang T, Yang R, Li L, Lin H, Kai G. Research progress and application of pectin: A review. J Food Sci 2024; 89:6985-7007. [PMID: 39394044 DOI: 10.1111/1750-3841.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Pectin, an acidic polysaccharide, is naturally present primarily in the cell walls and inner layers of higher plants. Pectin is extensively used in food, pharmaceutical, cosmetic, and other industries owing to its exceptional attributes encompassing superior gelation, emulsification, antioxidant activity, stability, biocompatibility, and nontoxicity. Due to the increasing demand for pectin, there is a short supply in the domestic pectin market. Currently, the domestic production of pectin is heavily reliant on imports, thus emphasizing the urgent need to enhance its local manufacturing capabilities. Due to the diverse sources of pectin and variations in extraction and purification methods, its content, physicochemical properties, and biological activity are influenced, consequently impacting the market application of pectin. Therefore, this paper comprehensively reviews the extraction and purification process of pectin, in vivo metabolism, and biological activities (including antitumor, immunomodulatory, anti-inflammatory, antioxidant, hypoglycemic and hypolipidemic effects, antimicrobial properties, accelerated wound healing potential, promotion of gastrointestinal peristalsis, and alleviation of constipation as well as cholesterol-lowering effect). Furthermore, it explores the diverse applications of pectin in food science, biomedicine, and other interdisciplinary fields. This review serves as a valuable resource for enhancing the efficiency of pectin content improvement and exploring the potential value and application of pectin in a more scholarly and scientifically rigorous manner.
Collapse
Affiliation(s)
- Tingting Xiang
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, Department of Food Science and Engineering, College of Food Science, College of Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, Institute of Chinese Medicine Resource Innovation and Quality Evaluation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Anoraga SB, Shamsudin R, Hamzah MH, Sharif S, Saputro AD. Cocoa by-products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon 2024; 10:e35537. [PMID: 39220910 PMCID: PMC11365323 DOI: 10.1016/j.heliyon.2024.e35537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Cocoa is considered to be one of the most significant agricultural commodities globally, alongside Palm Oil and Rubber. Cocoa is the primary ingredient in the manufacturing of chocolate, a globally popular food product. Approximately 30 % of cocoa, specifically cocoa nibs, are used as the primary constituent in chocolate production., while the other portion is either discarded in landfills as compost or repurposed as animal feed. Cocoa by-products consist of cocoa pod husk (CPH), cocoa shell, and pulp, of which about 70 % of the fruit is composed of CPH. CPH is a renewable resource rich in dietary fiber, lignin, and bioactive antioxidants like polyphenols that are being underutilized. CPH has the potential to be used as a source of pectin, dietary fibre, antibacterial properties, encapsulation material, xylitol as a sugar substitute, a fragrance compound, and in skin care applications. Several methods can be used to manage CPH waste using green technology and then transformed into valuable commodities, including pectin sources. Innovations in extraction procedures for the production of functional compounds can be utilized to increase yields and enhance existing uses. This review focuses on the physicochemical of CPH, its potential use, waste management, and green technology of cocoa by-products, particularly CPH pectin, in order to provide information for its development.
Collapse
Affiliation(s)
- Satria Bhirawa Anoraga
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rosnah Shamsudin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Institute of Plantations Studies, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Muhammad Hazwan Hamzah
- SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Suzannah Sharif
- Cocoa Innovation and Technology Centre, Malaysian Cocoa Board, Lot 12621, Nilai Industrial Area, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Arifin Dwi Saputro
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Zhang Y, Sun X, Yang B, Li F, Yu G, Zhao J, Li Q. Comprehensive Assessment of Polysaccharides Extracted from Squash by Subcritical Water under Different Conditions. Foods 2024; 13:1211. [PMID: 38672884 PMCID: PMC11049192 DOI: 10.3390/foods13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of subcritical water microenvironment on the physiochemical properties, antioxidant activity and in vitro digestion of polysaccharides (SWESPs) from squash were investigated. After single-factor experiments, twenty samples were successfully prepared at different extraction temperatures (110, 130, 150, 170 and 190 °C) and extraction times (4, 8, 12 and 16 min). Under a low temperature environment, the whole process was mainly based on the extraction of SWESP. At this time, the color of SWESP was white or light gray and the molecular mass was high. When the temperature was 150 °C, since the extraction and degradation of SWESP reached equilibrium, the maximum extraction rate (18.67%) was reached at 150 °C (12 min). Compared with traditional methods, the yield of squash SWESP extracted by subcritical water was 3-4 times higher and less time consuming. Under high temperature conditions, SWESPs were degraded and their antioxidant capacity and viscosity were reduced. Meanwhile, Maillard and caramelization reactions turned the SWESPs yellow-brown and produced harmful substances. In addition, different SWESPs had different effects on in vitro digestion. In brief, SWESPs prepared under different conditions have different structures and physicochemical properties, allowing the obtainment of the required polysaccharide. Our results show that squash polysaccharides prepared in different subcritical water states had good development potential and application in the food industry.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China;
| | - Guoyong Yu
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
7
|
Liu L, Sui Y, Wang T, Li X, Chen L, Shi M. Physicochemical and antioxidant properties of pectin from Actinidia arguta Sieb.et Zucc ( A. arguta) extracted by ultrasonic. Front Nutr 2024; 11:1349162. [PMID: 38660064 PMCID: PMC11041822 DOI: 10.3389/fnut.2024.1349162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Pectin was extracted from Actinidia arguta Sieb. et Zucc (A.arguta) using the ultrasound-assisted acid method and the single acid method. The physicochemical properties, structure, and antioxidant properties of two different pectins were investigated. The results showed that the extraction yield of the ultrasound-assisted acid method is higher than that of the single acid method. The molecular structure of A. arguta pectin extracted by the ultrasound-assisted acid method belongs to a mixed structure of RG-I and HG-type domains. Through structural feature analysis, the ultrasound-assisted extraction pectin (UAP) has a more branched structure than the single acid-extracted pectin (SAP). The SAP has a higher degree of esterification than the UAP. The physical property results show that the viscosity, solubility, and water-holding capacity of the UAP are better than those of the SAP. The antioxidant test results show that the hydroxyl radical scavenging and reducing powers of the UAP are superior to those of the SAP. This study shows the composition, physicochemical properties, and antioxidant activity of A. arguta pectin extracted by the ultrasonic-assisted extraction method to provide a theoretical basis for its application as an antioxidant and other food additives in the food industry.
Collapse
Affiliation(s)
- Liqi Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yuhan Sui
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Tienan Wang
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Xiang Li
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Lina Chen
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Mao Shi
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| |
Collapse
|
8
|
Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM. Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 2024; 263:130230. [PMID: 38373564 DOI: 10.1016/j.ijbiomac.2024.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - José Juan Pablo Pizaña-Aranda
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda A Flores-Contreras
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico.
| |
Collapse
|
9
|
Pereira DTV, Méndez-Albiñana P, Mendiola JA, Villamiel M, Cifuentes A, Martínez J, Ibáñez E. An eco-friendly extraction method to obtain pectin from passion fruit rinds (Passiflora edulis sp.) using subcritical water and pressurized natural deep eutectic solvents. Carbohydr Polym 2024; 326:121578. [PMID: 38142064 DOI: 10.1016/j.carbpol.2023.121578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/25/2023]
Abstract
This work evaluated the efficiency of Subcritical Water Extraction (SWE) and Pressurized Natural Deep Eutectic Solvents (P-NaDESs) under different temperatures (100, 120, 140 and 160 °C) in obtaining pectin from Passion Fruit Rinds (PFR) and its residual biomass (PFR - UAPLE), and compare the results with those of Conventional Extraction (CE). The highest pectin yields, 19.1 and 27.6 %, were achieved using P-NaDES (Citric Acid:Glucose:Water) at 120 °C for PFR and its PFR-UAPLE, respectively. Regarding the Degree of Esterification (DE), pectin obtained with SWE and CE had DE below 50 %, while with P-NaDES (Citric Acid: Glucose:Water), DE was above 50 %. Higher Molecular Weights (MW) (98 and 81 kDa) were obtained with SWE and P-NaDES from PFR compared to PFR-UAPLE and CE. Galacturonic acid was the most abundant (74 to 78 %) monosaccharide obtained by SWE. In terms of morphology, water extraction provided pectin with more uniform textures, whereas extraction with acidified mixtures led to more heterogeneous surfaces. Overall, comparing SWE and P-NaDES, the obtained pectins differed in terms of monomeric composition, MW and DE. These results indicate that pectins obtained by both methods can have different applications depending on their structural characteristics.
Collapse
Affiliation(s)
- Débora Tamires Vitor Pereira
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil; Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Julian Martínez
- State University of Campinas (Unicamp), School of Food Engineering, Department of Engineering and Food Technology, Laboratory of High Pressure in Food Engineering, Campinas, SP 13083 - 862, Brazil
| | - Elena Ibáñez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Liu Y, Yan S, Li B, Li J. Analysis of pectin-cellulose interaction in cell wall of lotus rhizome with assistance of ball-milling and galactosidase. Int J Biol Macromol 2023; 246:125615. [PMID: 37391001 DOI: 10.1016/j.ijbiomac.2023.125615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The current study sought to depict the structural feature of polysaccharides extracted from Na2CO3 unextractable fraction (LUN) of lotus rhizome using galactosidase with assistance of ball milling. The extracted polysaccharides were a complex of cellulose microfibrils and the RG-I structural domain of pectin, and the top three monosaccharides were glucose, galactose and galactose uronic acid, which allowed to tune the properties of the enzyme-hydrolyzed polysaccharide from LUN after 15 and 45 min of ball milling. The data of XRD revealed that pectin has a masking effect on the diffraction peaks of cellulose components. The removing of the polysaccharides could increase the degree of crystallinity and the pectin-cellulose interaction mainly occured through the galactan side chain was speculated. Textural characterization by SEM exhibited a cross-linked rod-like structure, which is similar to the structure of cellulose microfibrils. The morphological analysis of AFM revealed that L15-P (enzyme-hydrolyzed polysaccharide from LUN after 15 min of ball milling) contained relatively ordered and uniform network structures. Overall, the present study provides an important insight into cell wall of lotus rhizome matrix polysaccharide.
Collapse
Affiliation(s)
- Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Aquatic vegetable Preservation & Processing Engineering Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
11
|
Xie J, Zhang Y, Klomklao S, Simpson BK. Pectin from plantain peels: Green recovery for transformation into reinforced packaging films. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:225-233. [PMID: 36898246 DOI: 10.1016/j.wasman.2023.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Plantain peels as agro-waste are generated in the millions of tons per year with no profitable management strategies. On the other hand, the excessive use of plastic packaging threatens the environment and human health. This research aimed to address both problems via a green approach. High-quality pectin was recovered from plantain peels via an enzyme-assisted and ethanol-recycling process. The yield and galacturonic acid (GalA) content of the recovered low methoxy pectin was 12.43% and 25.0%, respectively, when cellulase was added at 50 U per 5 g peel powder, with a significantly higher recovery rate and purity than the pectin products extracted with no cellulase (P ≤ 0.05). The recovered pectin was further integrated and reinforced with beeswax solid-lipid nanoparticles (BSLNs) to fabricate films as a potential alternative packaging material to single-use plastics. The reinforced pectin films showed improved light barrier, water resistance, mechanical, conformational, and morphological properties. This study presents a sustainable strategy to transform plantain peels into pectin products and pectin-based packaging films with broad applications.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand.
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
12
|
Food and fruit waste valorisation for pectin recovery: Recent process technologies and future prospects. Int J Biol Macromol 2023; 235:123929. [PMID: 36882142 DOI: 10.1016/j.ijbiomac.2023.123929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Pectin possesses a dual property of resistance and flexibility and thus has diverse commercial value which has generated research interest on this versatile biopolymer. Formulated products using pectin could be useful in food, pharma, foam, plasticiser and paper substitute industries. Pectin is structurally tailor-made for greater bioactivity and diverse applications. Sustainable biorefinery leaves greener footprints while producing high-value bioproducts like pectin. The essential oils and polyphenols obtained as byproducts from a pectin-based biorefinery are useful in cosmetics, toiletries and fragrance industries. Pectin can be extracted from organic sources following eco-friendly strategies, and the extraction techniques, structural alterations and the applications are continually being upgraded and standardized. Pectin has great applications in diverse areas, and its green synthesis is a welcome development. In future, growing industrial application of pectin is anticipated as research orients on biopolymers, biotechnologies and renewable source-based processes. As the world is gradually adopting greener strategies in sync with the global sustainable development goal, active involvement of policy makers and public participation are prime. Governance and policy framing are essential in the transition of the world economy towards circularity since green circular bioeconomy is ill-understood among the public in general and within the administrative circles in particular. Concerted efforts by researchers, investors, innovators, and policy and decision makers to integrate biorefinery technologies as loops within loop of biological structures and bioprocesses is suggested. The review focusses on generation of the different nature of food wastes including fruits and vegetables with cauterization of their components. It discusses the innovative extraction and biotransformation approaches for these waste conversions into value-added products at cost-effective and eco-friendly way. This article compiles numerous effective and efficient and green way pectin extraction techniques with their advantages with varying success in an integrated manner.
Collapse
|
13
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
14
|
Sun R, Niu Y, Li M, Liu Y, Wang K, Gao Z, Wang Z, Yue T, Yuan Y. Emerging trends in pectin functional processing and its fortification for synbiotics: A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
15
|
Liang Y, Yang Y, Zheng L, Zheng X, Xiao D, Wang S, Ai B, Sheng Z. Extraction of Pectin from Passion Fruit Peel: Composition, Structural Characterization and Emulsion Stability. Foods 2022; 11:foods11243995. [PMID: 36553737 PMCID: PMC9777908 DOI: 10.3390/foods11243995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Extraction methods directly affect pectin extraction yield and physicochemical and structural characteristics. The effects of acid extraction (AE), ultrasonic-assisted acid extraction (UA), steam explosion pretreatment combined with acid extraction (SEA) and ultrasonic-assisted SEA (USEA) on the yield, structure, and properties of passion fruit pectin were studied. The pectin yield of UA was 6.5%, equivalent to that of AE at 60 min (5.3%), but the emulsion stability of UA pectin was poor. The pectin obtained by USEA improved emulsion stability. Compared with UA, it had higher protein content (0.62%), rhamnogalacturonan I (18.44%) and lower molecular weight (0.72 × 105 Da). In addition, SEA and USEA had high pectin extraction yields (9.9% and 10.7%) and the pectin obtained from them had lower degrees of esterification (59.3% and 68.5%), but poor thermal stability. The results showed that ultrasonic-assisted steam explosion pretreatment combined with acid extraction is a high-efficiency and high-yield method. This method obtains pectin with good emulsifying stability from passion fruit peel.
Collapse
Affiliation(s)
- Yonglun Liang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
- Correspondence:
| |
Collapse
|
16
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Basak S, Annapure US. The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Res Int 2022; 161:111849. [DOI: 10.1016/j.foodres.2022.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
|
18
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Barrios‐Rodríguez YF, Salas‐Calderón KT, Orozco‐Blanco DA, Gentile P, Girón‐Hernández J. Cocoa Pod Husk: A High‐Pectin Source with Applications in the Food and Biomedical Fields. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Karen Tatiana Salas‐Calderón
- Universidad Surcolombiana Departamento de Ingeniería Agrícola Av. Pastrana Borrero Carrera 1a 410001 Neiva Huila Colombia
| | - Dayana Alejandra Orozco‐Blanco
- Universidad Surcolombiana Departamento de Ingeniería Agrícola Av. Pastrana Borrero Carrera 1a 410001 Neiva Huila Colombia
| | - Piergiorgio Gentile
- Newcastle University School of Engineering Claremont Road NE17RU Newcastle upon Tyne United Kingdom
| | - Joel Girón‐Hernández
- Universidad Surcolombiana Departamento de Ingeniería Agrícola Av. Pastrana Borrero Carrera 1a 410001 Neiva Huila Colombia
- Northumbria University Department of Applied Sciences Ellison Pl NE18ST Newcastle upon Tyne United Kingdom
| |
Collapse
|
20
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
21
|
|
22
|
Das I, Arora A. One stage hydrothermal treatment: A green strategy for simultaneous extraction of food hydrocolloid and co-products from sweet lime (Citrus Limetta) peels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
24
|
The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers (Basel) 2022; 14:polym14071378. [PMID: 35406252 PMCID: PMC9002691 DOI: 10.3390/polym14071378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Grape pomace is one of the most abundant by-products generated from the wine industry. This by-product is a complex substrate consisted of polysaccharides, proanthocyanidins, acid pectic substances, structural proteins, lignin, and polyphenols. In an effort to valorize this material, the present study focused on the influence of extraction conditions on the yield and physico-chemical parameters of pectin. The following conditions, such as grape pomace variety (Fetească Neagră and Rară Neagră), acid type (citric, sulfuric, and nitric), particle size intervals (<125 µm, ≥125−<200 µm and ≥200−<300 µm), temperature (70, 80 and 90 °C), pH (1, 2 and 3), and extraction time (1, 2, and 3 h) were established in order to optimize the extraction of pectin. The results showed that acid type, particle size intervals, temperature, time, and pH had a significant influence on the yield and physico-chemical parameters of pectin extracted from grape pomace. According to the obtained results, the highest yield, galacturonic acid content, degree of esterification, methoxyl content, molecular, and equivalent weight of pectin were acquired for the extraction with citric acid at pH 2, particle size interval of ≥125−<200 µm, and temperature of 90 °C for 3 h. FT-IR analysis confirmed the presence of functional groups in the fingerprint region of identification for polysaccharide in the extracted pectin.
Collapse
|
25
|
Belwal T, Cravotto C, Ramola S, Thakur M, Chemat F, Cravotto G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods 2022; 11:foods11060798. [PMID: 35327221 PMCID: PMC8947495 DOI: 10.3390/foods11060798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Cocoa husk is considered a waste product after cocoa processing and creates environmental issues. These waste products are rich in polyphenols, methylxanthine, dietary fibers, and phytosterols, which can be extracted and utilized in various food and health products. Cocoa beans represent only 32–34% of fruit weight. Various extraction methods were implemented for the preparation of extracts and/or the recovery of bioactive compounds. Besides conventional extraction methods, various studies have been conducted using advanced extraction methods, including microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE). To include cocoa husk waste products or extracts in different food products, various functional foods such as bakery products, jam, chocolate, beverage, and sausage were prepared. This review mainly focused on the composition and functional characteristics of cocoa husk waste products and their utilization in different food products. Moreover, recommendations were made for the complete utilization of these waste products and their involvement in the circular economy.
Collapse
Affiliation(s)
- Tarun Belwal
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Sudipta Ramola
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida 201303, India;
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France; (C.C.); (F.C.)
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence: ; Tel.: +39-011-670-7183; Fax: +39-011-670-7162
| |
Collapse
|
26
|
Kley Valladares-Diestra K, Porto de Souza Vandenberghe L, Ricardo Soccol C. A biorefinery approach for pectin extraction and second-generation bioethanol production from cocoa pod husk. BIORESOURCE TECHNOLOGY 2022; 346:126635. [PMID: 34971781 DOI: 10.1016/j.biortech.2021.126635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
A biorefinery approach was applied for pectin extraction, xylooligosaccharides' (XOs) and bioethanol production from cocoa pod husk (CPH) using citric acid-assisted hydrothermal pretreatment. Under optimal conditions at 120° C, 10 min and 2% w.v-1 of citric acid a high pectin recovery (19.5%) with high content of uronic acids (41.9%) was obtained. In addition, the liquid fraction presented a XOs concentration of 50.4 mg.g-1 and 69.7 mg.g-1 of fermentable sugars. Enzymatic hydrolysis of solid fraction showed glucan conversion of 60%. Finally, the hydrothermal and enzymatic hydrolysates of CPH were used in bioethanol production by Candida tropicalis and Saccharomyces cerevisiae, reaching 30.9 g and 45.2 g of bioethanol per kg of CPH, respectively. An environmentally friendly and rapid pretreatment method was development for pectin extraction, XOS and second-generation bioethanol production from CPH with great perspectives for the application of these biomolecules in food and bioenergy industry.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil.
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR, 81531-980, Brazil
| |
Collapse
|
27
|
Pectin polysaccharide from Flos Magnoliae (Xin Yi, Magnolia biondii Pamp. flower buds): Hot-compressed water extraction, purification and partial structural characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Porto de Souza Vandenberghe L, Kley Valladares-Diestra K, Amaro Bittencourt G, Fátima Murawski de Mello A, Sarmiento Vásquez Z, Zwiercheczewski de Oliveira P, Vinícius de Melo Pereira G, Ricardo Soccol C. Added-value biomolecules' production from cocoa pod husks: A review. BIORESOURCE TECHNOLOGY 2022; 344:126252. [PMID: 34728361 DOI: 10.1016/j.biortech.2021.126252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Cocoa beans are produced through on-farm processing where residual biomass is discarded, including cocoa pod husks (CPH), cocoa bean shells and cocoa sweatings. CPH represents about 80% of these residues that are generated during the initial cocoa bean processing steps and their disposal occupies large areas, causing social and environmental concerns. In the last decades, the lignocellulosic composition of CPH has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of CPH in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the exploitation of CPH, including pre-treatment methods for the production of different biomolecules. Great perspectives and innovations were found concerning CPH exploitation and valorisation, but still more efforts are needed to valorise this potential feedstock and give support to producers in-development countries.
Collapse
Affiliation(s)
- Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Gustavo Amaro Bittencourt
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Zulma Sarmiento Vásquez
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Gilberto Vinícius de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
29
|
Valladares-Diestra KK, Porto de Souza Vandenberghe L, Zevallos Torres LA, Zandoná Filho A, Lorenci Woiciechowski A, Ricardo Soccol C. Citric acid assisted hydrothermal pretreatment for the extraction of pectin and xylooligosaccharides production from cocoa pod husks. BIORESOURCE TECHNOLOGY 2022; 343:126074. [PMID: 34606920 DOI: 10.1016/j.biortech.2021.126074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The main purpose of this work was the development of a new citric acid assisted hydrothermal pretreatment of cocoa pod husks (CPH), which has not yet been exploited for pectin recovery. CPH́s pectin recovery was improved with concomitant production of xylooligosaccharides (XOS) through efficient enzymatic hydrolysis of the solid fraction. A central composite experimental design was planned to analyze the effect of pretreatment conditions. Under optimal conditions at 120 °C, 10 min and 2% w.v-1, the recovery of pectin accounted for 19.3% of the biomass submitted to pretreatment with 52.2% of methyl esterification degree. Additionally, 51.9 mg.g-1 of XOS were also produced. The enzymatic conversion efficiency of the cellulosic fraction was 58.9%, leading to a production of 92.4 kg of glucose per ton of CPH. Great perspectives were observed in the implementation of CPH hydrothermal pretreatment for the production of value-added biomolecules under a biorefinery concept.
Collapse
Affiliation(s)
- Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil.
| | - Luis Alberto Zevallos Torres
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Arion Zandoná Filho
- Department of Chemical Engineering, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Brazil, Centro Politécnico, CP 19011, Curitiba-PR 81531-908, Brazil
| |
Collapse
|
30
|
Kumar M, Potkule J, Tomar M, Punia S, Singh S, Patil S, Singh S, Ilakiya T, Kaur C, Kennedy JF. Jackfruit seed slimy sheath, a novel source of pectin: Studies on antioxidant activity, functional group, and structural morphology. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R. Advances in development of biodegradable food packaging material from agricultural and
agro‐industry
waste. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Nitin Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Anil Panghal
- AICRP on Post Harvest Engineering & Technology (Hisar Centre), Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Priyanka Rohilla
- Centre of Food Science and Technology, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| | - Ravi Kumar
- Department of Processing and Food Engineering College of Agricultural Engineering and Technology, CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
33
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Li F, Lei H, Xu H. Influences of subcritical water extraction on the characterization and biological properties of polysaccharides from
Morchella sextelata. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Feng Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Hongjie Lei
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Huaide Xu
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
35
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
38
|
PROMANCOA Modular Technology for the Valorization of Mango (Mangifera indica L.) and Cocoa (Theobroma cacao L.) Agricultural Biowastes. Processes (Basel) 2021. [DOI: 10.3390/pr9081312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PROMANCOA modular technology (PMT) aims at the development of modular agricultural biowaste valorization of mango (Mangifera indica L.) and cocoa (Theobroma cacao L.) cultivars within the concept of circular economy in agriculture management. The modular design includes four modules: (1) green raw material (GRM) selection and collection, (2) GRM processing, (3) GRM extraction, in order to obtain bioactive green extracts (BGE) and bioactive green ingredients (BGI), and (4) quality control, which lead to formula components for food, feed, nutraceutical and/or cosmeceutical products. PMT was applied to mango stem bark and tree branches, and cocoa pod husk and bean shells, from cultivars of mango and cocoa in provinces of the Dominican Republic (DR). PMT might be applied to other agricultural biowastes, where a potential of value-added BGE/BGI may be present. Alongside the market potential of these bioactive ingredients, the reduction of carbon dioxide and methane emissions of agricultural biowastes would be a significant contribution in order to reduce the greenhouse effect of these residuals.
Collapse
|
39
|
Khubber S, Kazemi M, Amiri Samani S, Lorenzo JM, Simal-Gandara J, Barba FJ. Structural-functional Variability in Pectin and Effect of Innovative Extraction Methods: An Integrated Analysis for Tailored Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1952422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sucheta Khubber
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Sara Amiri Samani
- Department of Food Science and Technology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jose M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Avd. Parque Tecnológico De Galicia, San Cibrao Das Viñas, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Francisco J. Barba
- Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Universitat De València, Burjassot, València, Spain
| |
Collapse
|
40
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
41
|
Muñoz-Almagro N, Ruiz-Torralba A, Méndez-Albiñana P, Guerra-Hernández E, García-Villanova B, Moreno R, Villamiel M, Montilla A. Berry fruits as source of pectin: Conventional and non-conventional extraction techniques. Int J Biol Macromol 2021; 186:962-974. [PMID: 34237373 DOI: 10.1016/j.ijbiomac.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Three non-conventional extraction techniques (enzyme-assisted with cellulase, citric acid ultrasound-assisted and enzyme-ultrasound-assisted treatment) and conventional citric acid extraction were applied to obtain pectin from raspberry, blueberry, strawberry and redcurrant, and were compared in terms of extraction yields and physicochemical properties of the extracted pectins. Except for pectin from raspberry, conventional citric acid extraction led to the highest extraction yield (~8%) and, for the same berries, the lowest pectin recovery was found for the extraction with cellulase (~4%). Regarding the structural characteristics of pectins, enzymatically extracted pectins from redcurrant and strawberry exhibited the highest levels of galacturonic acid (≥73%) whereas, in general, this monosaccharide was found from 51 to 69% in the rest of samples. Although, ultrasound-assisted extraction did not improve pectin yield, it minimized the levels of "non-pectic" components leading to the obtainment of purer pectin. The different monomeric composition and the wide range of molecular weight of the obtained pectins pointed out their usefulness in different potential food applications (e.g., thickening, gelling ingredients) and biological activities. This has been evidenced by the differences found in their physicochemical and techno-functional characteristics. Finally, it can be considered that the berries here studied are efficient sources of pectin.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Arancha Ruiz-Torralba
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Guerra-Hernández
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Belén García-Villanova
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Rodrigo Moreno
- Instituto de Cerámica y Vidrio (ICV), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Antonia Montilla
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
42
|
Cheng Y, Xue F, Yu S, Du S, Yang Y. Subcritical Water Extraction of Natural Products. Molecules 2021; 26:4004. [PMID: 34209151 PMCID: PMC8271798 DOI: 10.3390/molecules26134004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subcritical water refers to high-temperature and high-pressure water. A unique and useful characteristic of subcritical water is that its polarity can be dramatically decreased with increasing temperature. Therefore, subcritical water can behave similar to methanol or ethanol. This makes subcritical water a green extraction fluid used for a variety of organic species. This review focuses on the subcritical water extraction (SBWE) of natural products. The extracted materials include medicinal and seasoning herbs, vegetables, fruits, food by-products, algae, shrubs, tea leaves, grains, and seeds. A wide range of natural products such as alkaloids, carbohydrates, essential oil, flavonoids, glycosides, lignans, organic acids, polyphenolics, quinones, steroids, and terpenes have been extracted using subcritical water. Various SBWE systems and their advantages and drawbacks have also been discussed in this review. In addition, we have reviewed co-solvents including ethanol, methanol, salts, and ionic liquids used to assist SBWE. Other extraction techniques such as microwave and sonication combined with SBWE are also covered in this review. It is very clear that temperature has the most significant effect on SBWE efficiency, and thus, it can be optimized. The optimal temperature ranges from 130 to 240 °C for extracting the natural products mentioned above. This review can help readers learn more about the SBWE technology, especially for readers with an interest in the field of green extraction of natural products. The major advantage of SBWE of natural products is that water is nontoxic, and therefore, it is more suitable for the extraction of herbs, vegetables, and fruits. Another advantage is that no liquid waste disposal is required after SBWE. Compared with organic solvents, subcritical water not only has advantages in ecology, economy, and safety, but also its density, ion product, and dielectric constant can be adjusted by temperature. These tunable properties allow subcritical water to carry out class selective extractions such as extracting polar compounds at lower temperatures and less polar ingredients at higher temperatures. SBWE can mimic the traditional herbal decoction for preparing herbal medication and with higher extraction efficiency. Since SBWE employs high-temperature and high-pressure, great caution is needed for safe operation. Another challenge for application of SBWE is potential organic degradation under high temperature conditions. We highly recommend conducting analyte stability checks when carrying out SBWE. For analytes with poor SBWE efficiency, a small number of organic modifiers such as ethanol, surfactants, or ionic liquids may be added.
Collapse
Affiliation(s)
- Yan Cheng
- School of Pharmaceutical Sciences, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China; (Y.C.); (F.X.); (S.Y.); (S.D.)
- Shandong Analysis and Test Centre, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Fumin Xue
- School of Pharmaceutical Sciences, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China; (Y.C.); (F.X.); (S.Y.); (S.D.)
- Shandong Analysis and Test Centre, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China
| | - Shuai Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China; (Y.C.); (F.X.); (S.Y.); (S.D.)
- Shandong Analysis and Test Centre, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China
| | - Shichao Du
- School of Pharmaceutical Sciences, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China; (Y.C.); (F.X.); (S.Y.); (S.D.)
- Shandong Analysis and Test Centre, Qilu University of Technology (Former Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
43
|
Delgado-Ospina J, Martuscelli M, Grande-Tovar CD, Lucas-González R, Molina-Hernandez JB, Viuda-Martos M, Fernández-López J, Pérez-Álvarez JÁ, Chaves-López C. Cacao Pod Husk Flour as an Ingredient for Reformulating Frankfurters: Effects on Quality Properties. Foods 2021; 10:foods10061243. [PMID: 34070789 PMCID: PMC8229612 DOI: 10.3390/foods10061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
The cocoa pod husk is considered a source of dietary fiber with a high content of water-soluble pectins, bioactive compounds which should be viewed as a by-product with the potential to be incorporated into food. This study aimed to investigate the effect of adding different cocoa pod husk flour (CPHF) levels as a starch replacement for reformulating frankfurters. Results showed that the addition of 1.5 and 3.0% pod husk proportionally increased the frankfurter’s fiber content by 0.49 ± 0.08 and 0.96 ± 0.19 g/100 g, which is acceptable for a product that does not contain fiber. Textural properties and sensory characteristics were affected when substituting the starch with CPHF, either totally or partially, although these samples had higher water content, hardness, and adhesiveness while springiness decreased. Non-adverse effects of nitrite on polyphenolic compounds content were evidenced in samples enriched with CPHF. The incorporation of CPHF did not significantly affect the color parameters (ΔE < 3). Finally, the panelists indicated a sensation of the unsalted sausage, suggesting that CPHF may have natural mucoadhesion properties. In conclusion, in formulated meat products such as sausages, plant co-products such as cacao pod husks could be a valid new ingredient to improve technological parameters, functional characteristics, and stability.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Maria Martuscelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 # 8-49, Puerto Colombia 081008, Colombia
| | - Raquel Lucas-González
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
- Faculty of Science, King Abdelaziz University, Jedda 21589, Saudi Arabia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- IPOA Research Group, Centro de investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO), Miguel Hernández University, Orihuela, CYTED-Healthy Meat. 119RT0568 "Productos Cárnicos más Saludables", 03312 Alicante, Spain
| |
Collapse
|
44
|
Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
45
|
Pedraza-Guevara S, do Nascimento RF, Canteri MHG, Muñoz-Almagro N, Villamiel M, Fernández-Ponce MT, Cardoso LC, Mantell C, Martinez de la Ossa EJ, Ibañez E. Valorization of unripe papaya for pectin recovery by conventional extraction and compressed fluids. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Farion IA, Burdukovskii VF, Kholkhoev BC, Timashev PS. Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review. Carbohydr Polym 2021; 259:117735. [PMID: 33673996 DOI: 10.1016/j.carbpol.2021.117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
This review examines investigations into the functionalization of polysaccharides by substituents containing multiple (CC) bonds and thiol (SH) groups that are prone to (co)polymerization in the presence of thermal, redox and photoinitiators or Michael addition reactions. A comparative analysis of the approaches to grafting the mentioned substituents onto the polysaccharide macromolecules was conducted. The use of the modified polysaccharides for the design of the 3D structures, including for the development of the pore bearing matrixes of cells or scaffolds utilized in regenerative medicine was examined. These modified polymers were also examined toward the design of excipient matrixes in pharmacological compositions, including with controllable release of active pharmaceuticals, as wel as of antibacterial and antifungal agents and others. In addition, a few examples of the use of modified derivatives in other areas are given.
Collapse
Affiliation(s)
- Ivan A Farion
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Vitalii F Burdukovskii
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Bato Ch Kholkhoev
- Laboratory of Polymer Chemistry, Baikal Institute of Nature Management Siberian Branch of Russian Academy of Sciences, Sakhyanovoy str. 6, Ulan-Ude, 670047, Russian Federation.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Kosygin str. 4, Moscow, 119991, Russian Federation; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation.
| |
Collapse
|
47
|
Tsuru C, Umada A, Noma S, Demura M, Hayashi N. Extraction of Pectin from Satsuma Mandarin Orange Peels by Combining Pressurized Carbon Dioxide and Deionized Water: a Green Chemistry Method. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02644-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Delgado-Ospina J, Lucas-González R, Viuda-Martos M, Fernández-López J, Pérez-Álvarez JÁ, Martuscelli M, Chaves-López C. Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon 2021; 7:e06799. [PMID: 33898851 PMCID: PMC8060597 DOI: 10.1016/j.heliyon.2021.e06799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
The cacao shell (CS) and cacao pod husk (CPH), two of the most promising high-fiber co-products of the cacao agro-industrial chain, were evaluated to determine their potential incorporation into food products. This research determined bioactive compounds and techno-functional properties of CS and CPH, and was evaluated the enzymatic inactivation by thermal treatments in CPH. We found that CS is rich in protein, lipids, dietary fiber (48.1 ± 0.3 g 100 gdw -1), and antioxidant molecules such as epicatechin (1.10 ± 0.02 mg g-1) and isoquercetin (1.04 ± 0.09 mg g-1). Moreover, in CS a positive effect of hydration mechanism occur; in fact, it was observed a reduction of Lightness (L∗) value and a remarkable color difference (ΔE∗,18.8 ± 0.7) (CIEL∗a∗b∗ color space), between hydrated and dry CS samples; so, it could be used as a potential natural colorant in foods. CPH resulted equally rich in dietary fiber (35.3-37.4%) and flavonoids (2.9 ± 0.1 mg RE g-1); in this co-product, the rapid enzymatic inactivation by thermal treatments was essential to obtain the highest antioxidant activity and polyphenols content; regarding the techno-functional properties, it was found that CPH flour had high hydration capacity, so CPH can use it as a replacement for emulsifiers or water holding additives while incorporating the fiber and abundantly found antioxidants.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, 76001, Cali, Colombia
| | - Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, CYTED- Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables”, Orihuela, Alicante, Spain
| | - Maria Martuscelli
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Clemencia Chaves-López
- Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
49
|
Hennessey-Ramos L, Murillo-Arango W, Vasco-Correa J, Paz Astudillo IC. Enzymatic Extraction and Characterization of Pectin from Cocoa Pod Husks ( Theobroma cacao L.) Using Celluclast ® 1.5 L. Molecules 2021; 26:1473. [PMID: 33803082 PMCID: PMC7963153 DOI: 10.3390/molecules26051473] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Cocoa pod husks are a waste generated during the processing of cocoa beans. We aimed to explore the enzymatic extraction of pectin using cellulases. The extraction process was optimized using a central composite design (CCD) and analyzed by response surface methodology (RSM). The parameters optimized were feedstock concentration (%), enzyme dosage (µL/g), and time (h). Three dependent variables were studied: pectin yield (g/100 g dry husk) (R2 = 97.02), galacturonic acid content (g/100 g pectin) (R2 = 96.90), and galacturonic acid yield (g/100 g feedstock) (R2 = 95.35). The optimal parameters were 6.0% feedstock concentration, 40 µL g-1 of enzyme, and 18.54 h, conditions that produced experimentally a pectin yield of 10.20 g/100 g feedstock, 52.06 g galacturonic acid/100 g pectin, and a yield 5.31 g galacturonic acid/100 g feedstock. Using the chemical extraction method, a yield of 8.08 g pectin/100 g feedstock and a galacturonic acid content of 60.97 g/100 g pectin were obtained. Using assisted sonication, a pectin yield of 8.28 g/100 g feedstock and a galacturonic acid content of 42.77 g/100 g pectin were obtained. Enzymatically optimized pectin has rheological and physicochemical features typical of this biomaterial, which provides an interesting alternative for the valorization of cocoa husks.
Collapse
Affiliation(s)
- Licelander Hennessey-Ramos
- GIPRONUT, Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué 730006, Colombia
- Área de Agroindustria, Servicio Nacional de Aprendizaje—SENA, km 5, vía El Espinal—Ibagué, Dindalito 733527, Colombia
| | - Walter Murillo-Arango
- GIPRONUT, Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué 730006, Colombia
| | - Juliana Vasco-Correa
- Department of Agricultural and Biological Engineering, Penn State University, State College, PA 16802, USA;
| | | |
Collapse
|
50
|
Peighambardoust SH, Jafarzadeh-Moghaddam M, Pateiro M, Lorenzo JM, Domínguez R. Physicochemical, Thermal and Rheological Properties of Pectin Extracted from Sugar Beet Pulp Using Subcritical Water Extraction Process. Molecules 2021; 26:1413. [PMID: 33807800 PMCID: PMC7961787 DOI: 10.3390/molecules26051413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to characterize the properties of pectin extracted from sugar beet pulp using subcritical water (SWE) as compared to conventional extraction (CE). The research involved advanced modeling using response surface methodology and optimization of operational parameters. The optimal conditions for maximum yield of pectin for SWE and CE methods were determined by the central composite design. The optimum conditions of CE were the temperature of 90 °C, time of 240 min, pH of 1, and pectin recovery yield of 20.8%. The optimal SWE conditions were liquid-to-solid (L/S) ratio of 30% (v/w) at temperature of 130 °C for 20 min, which resulted in a comparable yield of 20.7%. The effect of obtained pectins on viscoamylograph pasting and DSC thermal parameters of corn starch was evaluated. The contents of galacturonic acid, degree of methylation, acetylation, and ferulic acid content were higher in the pectin extracted by SWE, while the molecular weight was lower. Similar chemical groups were characterized by FTIR in both SWE and CE pectins. Color attributes of both pectins were similar. Solutions of pectins at lower concentrations displayed nearly Newtonian behavior. The addition of both pectins to corn starch decreased pasting and DSC gelatinization parameters, but increased ΔH. The results offered a promising scalable approach to convert the beet waste to pectin as a value-added product using SWE with improved pectin properties.
Collapse
Affiliation(s)
| | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| |
Collapse
|