1
|
Zheng X, Wang Q, Li L, Liu C, Ma X. Recent advances in germinated cereal and pseudo-cereal starch: Properties and challenges in its modulation on quality of starchy foods. Food Chem 2024; 458:140221. [PMID: 38943963 DOI: 10.1016/j.foodchem.2024.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Germination is an environmentally friendly process with no use of additives, during which only water spraying is done to activate endogenous enzymes for modification. Furthermore, it could induce bioactive phenolics accumulation. Controlling endogenous enzymes' activity is essential to alleviate granular disruption, crystallinity loss, double helices' dissociation, and molecular degradation of cereal and pseudo-cereal starch. Post-treatments (e.g. thermal and high-pressure technology) make it possible for damaged starch to reassemble towards well-packed structure. These contribute to alleviated loss of solubility and pasting viscosity, improved swelling power, or enhanced resistant starch formation. Cereal or pseudo-cereal flour (except that with robust structure) modified by early germination is more applicable to produce products with desirable texture and taste. Besides shortening duration, germination under abiotic stress is promising to mitigate starch damage for better utilization in staple foods.
Collapse
Affiliation(s)
- Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Qingfa Wang
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Xiaoyan Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Yuekainan Street, Baoding, Hebei 071001, China
| |
Collapse
|
2
|
Mulargia LI, Lemmens E, Reyniers S, Gebruers K, Wouters AGB, Warren FJ, Goderis B, Delcour JA. Investigation of the link between first-order kinetic models of the in vitro digestion of native starches and the accompanying changes in their crystallinity and structure. Carbohydr Polym 2024; 343:122440. [PMID: 39174085 DOI: 10.1016/j.carbpol.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Starch is the main source of dietary energy for humans. In order to understand the mechanisms governing native starch in vitro digestion, digestion data for six starches [wheat, maize, (waxy) maize, rice, potato and pea] of different botanical sources were fitted with the most common first-order kinetic models, i.e. the single, sequential, parallel and combined models. Parallel and combined models provided the most accurate fits and showed that all starches studied except potato starch followed a biphasic in vitro digestion pattern. The biological relevance of the kinetic parameters was explored by determining changes in crystallinity and molecular structure of the undigested starch residues during in vitro digestion. While the crystallinity of the undigested potato starch residues did not change substantially, a respectively small and large decrease in their amylose content and chain length during in vitro digestion was observed, indicating that amylose was digested slightly preferentially over amylopectin in native starch. However, the molecular structure of the starch residues changed too slowly and/or only to an insufficient extent to relate it to the kinetic parameters of the digested fractions predicted by the models. Such parameters thus need to be interpreted with caution, as their biological relevance still needs to be proven.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Frederick J Warren
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.
| | - Bart Goderis
- Laboratory for Macromolecular Structural Chemistry, KU Leuven, Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
3
|
Ramanan M, Gielens DRS, de Schepper CF, Courtin CM, Diepenbrock C, Fox GP. Environment found to explain the largest variance in physical and compositional traits in malting barley grain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8780-8790. [PMID: 38963165 DOI: 10.1002/jsfa.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Starch is the most abundant constituent (dry weight) in the barley endosperm, followed by protein. Variability of compositional and potentially related physical traits due to genotype and environment can have important implications for the malting and brewing industry. This was the first study to assess the effects of genotype, environment, and their interaction (G × E) on endosperm texture, protein content, and starch traits corresponding to granule size, gelatinization, content, and composition, using a multi-environment variety trial in California, USA. RESULTS Overall, environment explained the largest variance for all traits (ranging from 23.2% to 76.5%), except the endosperm texture traits wherein the G × E term explained the largest variance (45.0-86.5%). Our unique method to quantify the proportion of fine and coarse milled barley particles using laser diffraction showed a binomial distribution of endosperm texture. The number of small starch granules varied significantly (P-value < 0.05) across genotypes and environments. We observed negative correlations between total protein content and each of enthalpy (-0.70), total starch content (-0.54), and difference between offset and onset gelatinization temperature (-0.52). Furthermore, amylose to amylopectin ratio was positively correlated to volume of small starch granules (0.36). CONCLUSION Our findings indicate that environment played a larger role in influencing the majority of starch-related physical and compositional traits. In contrast, variance in endosperm texture was largely explained by G × E. Maltsters would benefit from accounting for environmental contributions in addition to solely genotype when making sourcing decisions, especially with regards to total protein, total starch, enthalpy, and difference between offset and onset gelatinization temperature. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maany Ramanan
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Daan R S Gielens
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | - Charlotte F de Schepper
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | - Christophe M Courtin
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, Leuven, Belgium
| | | | - Glen Patrick Fox
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Mulargia LI, Lemmens E, Gebruers K, D Udekem D Acoz P, Wouters AGB, Delcour JA. The particle sizes of milled wheat fractions affect the in vitro starch digestibility and quality parameters of wire-cut cookies made thereof. Food Funct 2024; 15:7974-7987. [PMID: 38984454 DOI: 10.1039/d4fo01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Slow digestion of starch is linked to various health benefits. The impact of wheat particle size on in vitro starch digestibility and quality of wire-cut cookies was here evaluated by including four soft wheat fractions [i.e. flour (average diameter, 83 μm), fine farina (643 μm), coarse farina (999 μm) and bran (1036 μm)] in the recipe. The susceptibility of starch in these fractions to in vitro digestion decreased with increasing particle size, resulting in a 76% lower digestion rate for coarse farina than for flour as found with the single first-order kinetic model. Starch was protected from hydrolysis likely due to delayed diffusion of pancreatic α-amylase through the intact farina cell walls. When 20-65% starch in flour for the control cookie recipe was substituted with the same percentages in fine and coarse farina, the starch digestion rate decreased when substitution levels increased. A 62% lower digestion rate was found at 65% substitution with coarse farina. Cell wall intactness was largely preserved in the cookies and most of the starch appeared as ungelatinised granules. Further, the cookie spread ratio during baking was 48% and 33% higher and the cookies were 63% and 57% less hard than control cookies when made with 65% fine farina and 65% coarse farina, respectively. The relatively low specific surface area of large wheat particles resulted in low water absorption and less dense packing. In conclusion, encapsulation of starch by intact cell walls in coarse wheat fractions makes them promising ingredients when developing starchy food products for controlled energy release.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Pierre D Udekem D Acoz
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| |
Collapse
|
5
|
Gielens D, De Schepper C, Langenaeken N, Galant A, Courtin C. A global set of barley varieties shows a high diversity in starch structural properties and related gelatinisation characteristics. Heliyon 2024; 10:e29662. [PMID: 38694124 PMCID: PMC11058286 DOI: 10.1016/j.heliyon.2024.e29662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024] Open
Abstract
The gelatinisation temperature and bimodal granule size distribution of barley starch are important characteristics regarding resource efficiency and product quality in the brewing industry. In this work, the diversity in starch amylose content and granule proportions in a set of modern barley varieties (N = 23) was investigated and correlated with their starch gelatinisation behaviour. Milled barley samples had peak starch gelatinisation temperatures ranging from 60.1 to 66.5 °C. Upon separating the barley starch from the non-starch compounds, sample-dependent decreases in starch gelatinisation temperatures were observed, indicating the importance of differences in barley composition. The peak gelatinisation temperatures of milled barley and isolated barley starches were strongly correlated (r = 0.96), indicating that the behaviour of the starch population is strongly reflected in the measurements performed on milled barley. Therefore, we investigated whether amylose content or starch granule size distribution could predict the gelatinisation behaviour of the starches. Broad ranges in the small starch granule volumes (13.9-32.0 v/v%) and amylose contents (18.2-30.7 w/w%) of the barley starches were observed. For the barley samples collected in the north of the USA (N = 8), the small starch granule volumes correlated positively with the peak gelatinisation temperatures of barley starches (r = 0.90, p < 0.01). The considerable variation in starch properties described in this work highlights that, besides starch content, starch gelatinisation temperature or granule size distribution might provide brewers with useful information to optimise resource efficiency.
Collapse
Affiliation(s)
- D.R.S. Gielens
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - C.F. De Schepper
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - N.A. Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - A. Galant
- Anheuser-Busch InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium
| | - C.M. Courtin
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| |
Collapse
|
6
|
Li Y, Jiang Y, Cao D, Dang B, Yang X, Fan S, Shen Y, Li G, Liu B. Creating a zero amylose barley with high soluble sugar content by genome editing. PLANT MOLECULAR BIOLOGY 2024; 114:50. [PMID: 38656412 DOI: 10.1007/s11103-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and β-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and β-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.
Collapse
Affiliation(s)
- Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yanyan Jiang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Qinghai academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai, 810016, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
| | - Shiting Fan
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuhu Shen
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
7
|
Park J, Chung HJ, Park HY, Park HJ, Oh SK. Comparative analysis of malt quality and starch characteristics of three South Korean barley cultivars. Food Sci Biotechnol 2024; 33:1135-1145. [PMID: 38440675 PMCID: PMC10908982 DOI: 10.1007/s10068-023-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 03/06/2024] Open
Abstract
In this study, malt was produced in pilot-scale facilities and conditioned using three barley (Hordeum vulgare L.) cultivars in South Korea (Heugho, Hopum, and Kwangmaeg). Quality and starch characteristics were compared. The starch content was considerably reduced in all malts. Coleoptile elongation was higher in Heugho (HHM; 85.7% ± 12.6%) and Hopum (HPM; 83.9% ± 10.7%) than in Kwangmaeg (KMM; 78.1% ± 9.9%) malt. Malt yield ranged from 81.8 to 84.9%, with no significant difference. All samples presented type A crystallinity, and granules showed discoid shapes. After malting, the mono- and di-saccharide contents (not including sucrose) were increased. The fermentable sugar level was the highest in HHM, whereas non-fermentable sugar was the highest in KMM. These results suggest that HPM enables efficient scarification based on the rapid degradation of starch, while Heugho barley and HHM have a high potential for beer and malt production, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01419-6.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), 251 Chungyel-ro, Chuncheon, Gangwon 24219 Republic of Korea
| |
Collapse
|
8
|
Mulargia LI, Lemmens E, Korompokis K, Reyniers S, Gebruers K, Goos P, Gamboa Carlosama NA, Wouters AGB, Delcour JA. Tailoring the formulation of sugar-snap cookies to lower in vitro starch digestibility: A response surface modelling approach. Food Chem 2024; 435:137601. [PMID: 37776657 DOI: 10.1016/j.foodchem.2023.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
An I-optimal response surface experimental design revealed impacts of dough moisture content (DMC, 14-22%) and level of wheat flour substitution (10-50%) by wheat gluten and one of six different native starches [wheat, (waxy) maize, rice, potato, pea] on sugar-snap cookie starch thermal properties, in vitro starch digestion, dough and cookie hardness and spread ratio. Increasing DMCs from 14 to 22% increased the cookie starch digestion rate constants of each starch source used. A linear increase of the constant by 25-30% across the 14 to 22% DMC range for all starches was predicted and validated. That cookie spread and hardness were related to the water retention capacity of the native starches used suggested that they underwent limited changes during baking. For each starch examined, formulations were optimized to lower in vitro starch digestion rate and extent, and cookie hardness, while maximizing dough spread ratio.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Peter Goos
- Department of Biosystems, Division of Mechatronics, Biostatistics and Sensors (MeBioS), B-3001 Leuven, Belgium.
| | - Nicolas Andres Gamboa Carlosama
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
9
|
Park J, Park HY, Chung HJ, Oh SK. Starch Structure of Raw Materials with Different Amylose Contents and the Brewing Quality Characteristics of Korean Rice Beer. Foods 2023; 12:2544. [PMID: 37444283 DOI: 10.3390/foods12132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to explore suitable processing materials for rice beer (RB) production by analyzing the starch structure of the raw materials utilized for brewing beer and the quality characteristics of RB. We used malt, employing the Heugho cultivar as the main ingredient, and produced beer containing 30% rice. The regular amylose-containing cultivars Samgwang (SA) and Hangaru (HA) and the high-amylose-containing cultivar Dodamssal (DO) were used as adjuncts. Distribution of the short molecular chains of the starch amylopectin was the highest for SA and malt at 29.3% and 27.1%, respectively. Glucose content was the highest in the wort prepared with 100% malt and 30% SA + 70% malt. The alcohol content in SA RB and HA RB was higher than that in beer prepared with 100% malt. DO RB had the least bitterness and volatile components, such as acetaldehyde and ethyl acetate. The three rice cultivars tested in this study are suitable as starch adjuncts for RB production. The characteristics of RBs varied depending on the molecular structure of the ingredients, irrespective of their amylose contents. SA could be considered a craft beer with quality characteristics and rich flavor components, similar to 100% malt beer, compared to other RBs.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Chuncheon 24219, Republic of Korea
| |
Collapse
|
10
|
Intrinsic and extrinsic factors drive differences in the gelatinisation behaviour of barley and malt starch. Food Res Int 2023; 167:112653. [PMID: 37087242 DOI: 10.1016/j.foodres.2023.112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
We studied the impact of malting on barley starch gelatinisation properties and whether observed differences are due to changes in extrinsic or intrinsic factors. We isolated the total starch and large and small starch granules fractions from barley and malt samples and subjected them to DSC. The peak gelatinisation temperature for malt starch was, on average, 1.2 °C higher than for barley starch. The malting process and endosperm breakdown products were each responsible for half of this difference. The presence of water-extractable, non-starch components (sugars, minerals, protein and starch hydrolysis products,…) increased the intrinsic starch gelatinisation temperatures by 2.2-4.7 °C for barley and 3.6-5.3 °C for malt. The small starch granule fractions from barley had a 3.1 °C higher peak gelatinisation temperature than large granule fractions. No effect of malting was observed here. These findings indicate that matrix effects and starch granule size must be considered when addressing starch conversion during brewing.
Collapse
|
11
|
Thieme M, Hochmuth A, Ilse TE, Cuesta-Seijo JA, Stoma S, Meier R, Nørrelykke SF, Pedas PR, Braumann I, Zeeman SC. Detecting variation in starch granule size and morphology by high-throughput microscopy and flow cytometry. Carbohydr Polym 2023; 299:120169. [PMID: 36876784 DOI: 10.1016/j.carbpol.2022.120169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Starch forms semi-crystalline, water-insoluble granules, the size and morphology of which vary according to biological origin. These traits, together with polymer composition and structure, determine the physicochemical properties of starch. However, screening methods to identify differences in starch granule size and shape are lacking. Here, we present two approaches for high-throughput starch granule extraction and size determination using flow cytometry and automated, high-throughput light microscopy. We evaluated the practicality of both methods using starch from different species and tissues and demonstrated their effectiveness by screening for induced variation in starch extracted from over 10,000 barley lines, yielding four with heritable changes in the ratio of large A-granules to small B-granules. Analysis of Arabidopsis lines altered in starch biosynthesis further demonstrates the applicability of these approaches. Identifying variation in starch granule size and shape will enable identification of trait-controlling genes for developing crops with desired properties, and could help optimise starch processing.
Collapse
Affiliation(s)
- Mercedes Thieme
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Anton Hochmuth
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | | | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Roger Meier
- ScopeM, ETH Zurich, 8093 Zurich, Switzerland.
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
12
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
13
|
A kinetic study on the thermal inactivation of barley malt α-amylase and β-amylase during the mashing process. Food Res Int 2022; 157:111201. [DOI: 10.1016/j.foodres.2022.111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022]
|
14
|
De Schepper C, Courtin C. High mashing thickness negatively influences gelatinisation of small and large starch granules and starch conversion efficiency during barley malt brewing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
geng L, Li M, Zhang G, Ye L. Barley: a potential cereal for producing healthy and functional foods. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Barley is the fourth largest cereal crop in the world. It is mainly used for feeding, beer production and food. Barley is receiving more attention from both agricultural and food scientists because of its special chemical composition and health benefits. In comparison with other cereal crops, including wheat, rice and maize, barley grains are rich in dietary fiber (such as β-glucan) and tocols, which are beneficial to human health. It is well proved that diets rich in those chemicals can provide protection against hypertension, cardiovascular disease, and diabetes. Barley has been widely recognized to be great potential as a healthy or functional food. In this review, we present the information about the studies on physical structure of barley grain and the distribution of main chemical components, nutrient and functional composition of barley grain and their health benefits, and the approaches of improving and utilizing the nutrient and functional chemicals in barley grain. With the development of processing technologies, functional components in barley grains, especially β-glucan, can be efficiently extracted and concentrated. Moreover, nutrient and functional components in barley grains can be efficiently improved by precise breeding and agronomic approaches. The review highlights the great potential of barley used as healthy and functional foods, and may be instructive for better utilization of barley in food processing.
Collapse
Affiliation(s)
- La geng
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Mengdi Li
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
16
|
Zhao S, Jiao A, Yang Y, Liu Q, Wu W, Jin Z. Modification of physicochemical properties and degradation of barley flour upon enzymatic extrusion. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Yin Tan W, Li M, Devkota L, Attenborough E, Dhital S. Mashing performance as a function of malt particle size in beer production. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34937436 DOI: 10.1080/10408398.2021.2018673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Significant innovations have occurred over the past 50 years in the malting and brewing industries, focused on optimization of the beer mashing, boiling and fermentation processes. One of the challenges faced in beer brewing has been in the malting process to obtain the desired malt and wort quality to produce high-quality beer products. The hydrolytic enzymes produced during grain germination are mostly entrapped inside the cellular matrices of the grain. The intra-grain diffusion of enzymes for in-situ hydrolysis, as well as diffusion of enzymes to wort, depends upon the malt size and malt size fractions obtained after milling. This review investigates the relationship between varying barley grain particle size distribution and the efficiency of the malting and mashing processes. Recommended ideal particle size of barley grain before and after milling are proposed based on the review of existing literature. Each brewing batch of grains with a proportion of >80% plump grains (>2.5 mm in size) is suggested to be the optimal size before milling, whereas the optimum grain particle size after milling ranged between 0.25 and 0.5 mm. The current review will summarize the theoretical aspects for malt milling and the particle size characteristics for optimizing the brewing process.
Collapse
Affiliation(s)
- Wan Yin Tan
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS, Beijing, China.,Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Edward Attenborough
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| |
Collapse
|
18
|
De Schepper C, Gielens D, Courtin C. A new method to isolate and separate small and large starch granules from barley and malt. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Rani H, Bhardwaj RD. Quality attributes for barley malt: "The backbone of beer". J Food Sci 2021; 86:3322-3340. [PMID: 34287897 DOI: 10.1111/1750-3841.15858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Malting is the process of preparing barley for brewing through partial germination followed by drying. This process softens the grain cell wall and stimulates the production of diastatic enzymes, which convert starch into malt extract. The suitability of a barley grain for malt production depends upon a large number of quality parameters that are crucial for the identification and release of high-quality malt varieties. Maintaining tight control of these quality attributes is essential to ensure high processing efficiency and final product quality in brewery and malt house. Therefore, we have summarized the basic malting process and various physiological and biochemical quality parameters that are desirable for better malt quality. This study may provide an understanding of the process, problems faced, and opportunities to maltsters and researchers to improve the malt efficiency by altering the malting process or malt varieties.
Collapse
Affiliation(s)
- Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
21
|
Filipowska W, Jaskula‐Goiris B, Ditrych M, Bustillo Trueba P, De Rouck G, Aerts G, Powell C, Cook D, De Cooman L. On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: a review. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weronika Filipowska
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - Barbara Jaskula‐Goiris
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Maciej Ditrych
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Paula Bustillo Trueba
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Gert De Rouck
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Guido Aerts
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| | - Chris Powell
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - David Cook
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Sutton Bonington Leicestershire LE12 5RD UK
| | - Luc De Cooman
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology Technology Campus Ghent Gebroeders De Smetstraat 1 Ghent 9000 Belgium
| |
Collapse
|
22
|
Starch hydrolysis during mashing: A study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase. Carbohydr Polym 2021; 255:117494. [PMID: 33436252 DOI: 10.1016/j.carbpol.2020.117494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Hydrolysis of starch is key in several industrial processes, including brewing. Here, the activity and inactivation kinetics of amylases throughout barley malt mashing are investigated, as a prerequisite for rational optimisation of this process. Varietal differences were observed in the activity of α- and β-amylases as a function of temperature for six barley and malt varieties. These differences were not reflected in the resulting wort composition after mashing, using three isothermal phases of 30 min at 45 °C, 62 °C and 72 °C with intermediate heating by 1 °C/min. Thermal inactivation kinetics parameters determined for α- and β-amylases of an industrially relevant malt variety in a diluted system showed that enzymes were inactivated at lower temperatures than expected. The obtained kinetic parameters could predict α-amylase, but not β-amylase inactivation in real mashing conditions, suggesting that β-amylase stability is enhanced during mashing by components present or formed in the mash.
Collapse
|
23
|
Yu WW, Zhai HL, Xia GB, Tao KY, Li C, Yang XQ, Li LH. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|