1
|
Liu W, Yu W, Wang J, Gao J, Ding Y, Zhang S, Zheng Q. Enhanced mechanical and long-lasting antibacterial properties of starch/PBAT blown films via designing of reactive micro-crosslinked starch. Int J Biol Macromol 2024; 266:131366. [PMID: 38580020 DOI: 10.1016/j.ijbiomac.2024.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
A functional starch (TPS-E) was designed and constructed by incorporating epoxy soybean oil (ESO) and an antibacterial agent polyhexamethylene guanidine hydrochloride (PHMG), then the film was prepared by reaction extrusion and blow molding using TPS-E and poly(butylene adipate-co-terephthalate) (PBAT). The micro-crosslinking structure, forming through ring-opening reaction between the epoxy active site of TPS-E and the end group of PBAT, improved the compatibility of starch/PBAT blend and reduce the dispersed starch phase size, leading to significantly increase the tensile strength. Compared to starch/PBAT films, the tensile strength of TPS-E/PBAT in the longitudinal direction increase by 112% with the same starch content of 30%. Furthermore, these TPS-E/PBAT films demonstrated long-lasting antibacterial performance with a 98% inhibition ratio even after 10 cycles, without any observed leaching of the antibacterial agent, highlighting the high coupling efficiency of PHMG. TPS-E with the degradable ESO also promotes the degradation of PBAT. Thus, an important method of synergistic improving the mechanical, degradable and antibacterial properties of blown films through the design of reactive micro-crosslinked starch structures was established.
Collapse
Affiliation(s)
- Wenying Liu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China.
| | - Jiaqi Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jian Gao
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yi Ding
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Sitong Zhang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Qiang Zheng
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
3
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
4
|
Investigation on multifunctional modification of cotton fabrics for salt-free dyeing, resisting crease and inhibiting bacteria. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhu J, Yuan H, Zhang S, Hao X, Lan M. Construction of antifouling and antibacterial polyhexamethylguanidine/chondroitin sulfate coating on polyurethane surface based on polydopamine rapid deposition. J Appl Polym Sci 2022. [DOI: 10.1002/app.53009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaqian Zhu
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Huihui Yuan
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Shunqi Zhang
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Xiang Hao
- School of Physical Science and Technology Suzhou University of Science and Technology Suzhou China
| | - Minbo Lan
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
6
|
Liu M, Bauman L, Nogueira CL, Aucoin MG, Anderson WA, Zhao B. Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100395. [PMID: 35434438 PMCID: PMC8995198 DOI: 10.1016/j.cobme.2022.100395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial polymer composites have long been utilized in the healthcare field as part of the first line of defense. These composites are desirable in that they pose a minimal risk of developing contagions with antibiotic resistance. For this reason, the field of antimicrobial composites has seen steady growth over recent years and is becoming increasingly important during the current COVID-19 pandemic. In this article, we first review the need of the antimicrobial polymers in high tough surfaces, the antimicrobial mechanism, and then the recent advances in the development of antimicrobial polymer composite including the utilization of intrinsic antimicrobial polymers, the addition of antimicrobial additives, and new exploration of surface patterning. While there are many established and developing methods of imbuing a material with antimicrobial activity, there currently is no standard quantification method for these properties leading to difficulty comparing the efficacy of these materials within the literature. A discussion of the common antimicrobial characterization methods is provided along with highlights on the need of a standardized quantification of antiviral and antibacterial properties in testing to allow ease of comparison between generated libraries and to facilitate proper screening. We also discuss and comment on the current trends of the development of antimicrobial polymer composites with long-lasting and specific antimicrobial activities, nontoxic properties, and environmental friendliness against a broad-spectrum of microbes.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lukas Bauman
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | - Boxin Zhao
- Department of Chemical Engineering
- Waterloo Institute for Nanotechnology & Institute for Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
8
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
9
|
Valorization of starch nanoparticles on microstructural and physical properties of
PLA
‐starch nanocomposites. J Appl Polym Sci 2022. [DOI: 10.1002/app.51757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Preparation of Antimicrobial Coatings from Cross-Linked Copolymers Containing Quaternary Dodecyl-Ammonium Compounds. Int J Mol Sci 2021; 22:ijms222413236. [PMID: 34948032 PMCID: PMC8707885 DOI: 10.3390/ijms222413236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
One of the concerns today’s societies face is the development of resistant pathogenic microorganisms. The need to tackle this problem has driven the development of innovative antimicrobial materials capable of killing or inhibiting the growth of microorganisms. The present study investigates the dependence of the antimicrobial activity and solubility properties on the hydrophilicity/hydrophobicity ratio of antimicrobial coatings based on quaternary ammonium compounds. In this line, suitable hydrophilic and hydrophobic structural units were selected for synthesizing the antimicrobial copolymers poly(4-vinylbenzyl dimethyldodecylammonium chloride-co-acrylic acid), P(VBCDDA-co-AA20) and poly(dodecyltrimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC12-co-GMA20), bearing an alkyl chain of 12 carbons either through covalent bonding or through electrostatic interaction. The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends, obtained through solution casting after curing at various temperatures. The release of the final products in pure water and NaCl 1 M solutions (as analyzed by gravimetry and total organic carbon, TOC/total nitrogen, TN analyses), could be controlled by the coating composition. The cross-linked polymeric membranes of composition 60/40 w/w % ratios led to 97.8 and 99.7% mortality for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, whereas the coating 20/80 w/w % resulted in 96.6 and 99.8% cell reduction. Despite the decrease in hydrophobicity (from a 16- to a 12-carbon alkyl chain), the new materials maintained the killing efficacy, while at the same time resulting in increased release to the aqueous solution.
Collapse
|
11
|
Andersen C, Madsen J, Daugaard AE. A Synthetic Overview of Preparation Protocols of Nonmetallic, Contact-Active Antimicrobial Quaternary Surfaces on Polymer Substrates. Macromol Rapid Commun 2021; 42:e2100437. [PMID: 34491589 DOI: 10.1002/marc.202100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 11/07/2022]
Abstract
Antibacterial surfaces have been researched for more than 30 years and remain highly desirable. In particular, there is an interest in providing antimicrobial properties to commodity plastics, because these, in their native state, are excellent substrates for pathogens to adhere and proliferate on. Therefore, efficient strategies for converting surfaces of commodity plastics into contact-active antimicrobial surfaces are of significant interest. Many systems have been prepared and tested for their efficacy. Here, the synthetic approaches to such active surfaces are reviewed, with the restriction to only include systems with tested antibacterial properties. The review focuses on the synthetic approach to surface functionalization of the most common materials used and tested for biomedical applications, which effectively has limited the study to quaternary materials. For future developments in the field, it is evident that there is a need for development of simple methods that permit scalable production of active surfaces. Furthermore, in terms of efficacy, there is an outstanding concern of a lack of universal antimicrobial action as well as rapid deactivation of the antibacterial effect through surface fouling.
Collapse
Affiliation(s)
- Christian Andersen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark.,Coloplast A/S, Holtedam 1-3, Humlebaek, 3050, Denmark
| | - Jeppe Madsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark
| | - Anders E Daugaard
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
12
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123679] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Robust multiphase and multilayer starch/polymer (TPS/PBAT) film with simultaneous oxygen/moisture barrier properties. J Colloid Interface Sci 2021; 593:290-303. [PMID: 33744538 DOI: 10.1016/j.jcis.2021.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
The demands for bioplastics that provide good barrier properties against moisture and oxygen while simultaneously displaying good physical properties without compromising their biodegradability is ever-increasing. In this work, a multiphase and multilayer film assembly composed of thermoplastic starch (TPS) and its maleated counterpart (MTPS) with poly(butylene adipate-co-terephthalate) (PBAT) was constructed as a suitable barrier film with excellent mechanical properties. The bioplastic film assemblies were fabricated through reactive extrusion, compression molding, and dip-coating process. The incorporation of PBAT co-blend with TPS in the core layer enhanced the multilayer film's interfacial bond. The MTPS/PBAT film assembly provided 86.8% and 74.3% improvement in moisture barrier and oxygen barrier as compared to the baseline TPS and PBAT films, respectively. Overall, the multiphase and multilayer film assembly displayed good mechanical properties in conjuncture with excellent barrier properties indicating their potential as a biodegradable and cost effective alternative to conventional plastics used in the packaging industry.
Collapse
|
15
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|