1
|
Han J, Deng H, Li Y, Qiao L, Jia H, Zhang L, Wang L, Qu C. Nano-elemental selenium particle developed via supramolecular self-assembly of chondroitin sulfate A and Na 2SeO 3 to repair cartilage lesions. Carbohydr Polym 2023; 316:121047. [PMID: 37321739 DOI: 10.1016/j.carbpol.2023.121047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A‑selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.
Collapse
Affiliation(s)
- Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hongrui Jia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Linghang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Singh AK, Peng BY, Chien ST, Chan CH, Deng YH, Pai HY, Wei HJ, Wang MF, Wang SH, Wu CY, Deng WP. Anti-aging biomaterial sturgeon chondroitin sulfate upregulating anti-oxidant and SIRT-1/c-fos gene expression to reprogram stem cell senescence and prolong longevity. Biomater Sci 2023. [PMID: 37158091 DOI: 10.1039/d2bm01997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging involves tissue and cell potential dysfunction characterized by stem cell senescence and extracellular matrix microenvironment (ECM) alteration. Chondroitin sulfate (CS), found in the ECM of normal cells and tissues, aids in maintaining tissue homeostasis. Here, CS-derived biomaterial (CSDB) from sturgeon is extracted to investigate its antiaging effect in senescence-accelerated mouse prone-8 (SAMP8) mice and elucidate the underlying mechanism of its action. Although CSDB has been widely extracted from different sources and used as a scaffold, hydrogel, or drug carrier for the treatment of various pathological diseases, CSDB has not yet been used as a biomaterial for the amelioration of senescence and aging features. In this study, the extracted sturgeon CSDB showed a low molecular weight and comprised 59% 4-sulfated CS and 23% 6-sulfated CS. In an in vitro study, sturgeon CSDB promoted cell proliferation and reduced oxidative stress to inhibit stem cell senescence. In an ex vivo study, after oral CSDB treatment of SAMP8 mice, the stem cells were extracted to analyze the p16Ink4a and p19Arf gene-related pathways, which were inhibited and then SIRT-1 gene expression was upregulated to reprogram stem cells from a senescence state for retarding aging. In an in vivo study, CSDB also restored the aging-phenotype-related bone mineral density and skin morphology to prolong longevity. Thus, sturgeon CSDB may be useful for prolonging healthy longevity as an anti-aging drug.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shaw-Ting Chien
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| | - Hsiao-Yu Pai
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433303, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, Taipei 11030, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan.
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei 242062, Taiwan
| |
Collapse
|
3
|
Sang S, Mao X, Cao Y, Liu Z, Shen Z, Li M, Jia W, Guo Z, Wang Z, Xiang C, Sun L. 3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8895-8913. [PMID: 36779653 DOI: 10.1021/acsami.2c19058] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, inspired by the components of cartilage matrix, a photo-cross-linked extracellular matrix (ECM) bioink composed of modified proteins and polysaccharides was presented, including gelatin methacrylate, hyaluronic acid methacrylate, and chondroitin sulfate methacrylate. The systematic experiments were performed, including morphology, swelling, degradation, mechanical and rheological tests, printability analysis, biocompatibility and chondrogenic differentiation characterization, and RNA sequencing (RNA-seq). The results indicated that the photo-cross-linked ECM hydrogels possessed suitable degradation rate and excellent mechanical properties, and the three-dimensional (3D) bioprinted ECM scaffolds obtained favorable shape fidelity and improved the basic properties, biological properties, and chondrogenesis of synovium-derived MSCs (SMSCs). The strong stimulation of transforming growth factor-beta 1 (TGF-β1) enhanced the aggregation, proliferation, and differentiation of SMSCs, thereby enhancing chondrogenic ECM deposition. In vivo animal experiments and gait analysis further confirmed that the ECM scaffold combined with TGF-β1 could effectively promote cartilage regeneration and functional recovery of injured joints. To sum up, the photo-cross-linked ECM bioink for 3D printing of functional cartilage tissue may become an attractive strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanyan Cao
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Zijian Guo
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zehua Wang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chuan Xiang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
4
|
Monterrey DT, Benito-Arenas R, Revuelta J, García-Junceda E. Design of a biocatalytic cascade for the enzymatic sulfation of unsulfated chondroitin with in situ generation of PAPS. Front Bioeng Biotechnol 2023; 11:1099924. [PMID: 36726741 PMCID: PMC9885120 DOI: 10.3389/fbioe.2023.1099924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Sulfation of molecules in living organisms is a process that plays a key role in their functionality. In mammals, the sulfation of polysaccharides (glycosaminoglycans) that form the proteoglycans present in the extracellular matrix is particularly important. These polysaccharides, through their degree and sulfation pattern, are involved in a variety of biological events as signal modulators in communication processes between the cell and its environment. Because of this great biological importance, there is a growing interest in the development of efficient and sustainable sulfation processes, such as those based on the use of sulfotransferase enzymes. These enzymes have the disadvantage of being 3'-phosphoadenosine 5'-phosphosulfate (PAPS) dependent, which is expensive and difficult to obtain. In the present study, a modular multienzyme system was developed to allow the in situ synthesis of PAPS and its coupling to a chondroitin sulfation system. For this purpose, the bifunctional enzyme PAPS synthase 1 (PAPSS1) from Homo sapiens, which contains the ATP sulfurylase and APS kinase activities in a single protein, and the enzyme chondroitin 4-O-sulfotransferase (C4ST-1) from Rattus norvegicus were overexpressed in E. coli. The product formed after coupling of the PAPS generation system and the chondroitin sulfation module was analyzed by NMR.
Collapse
|
5
|
Maciej-Hulme ML, Melrose J, Farrugia BL. Arthritis and Duchenne muscular dystrophy: the role of chondroitin sulfate and its associated proteoglycans in disease pathology and as a diagnostic marker. Am J Physiol Cell Physiol 2023; 324:C142-C152. [PMID: 36409173 PMCID: PMC9829464 DOI: 10.1152/ajpcell.00103.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, New South Wales, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
7
|
Toropitsyn E, Pravda M, Rebenda D, Ščigalková I, Vrbka M, Velebný V. A composite device for viscosupplementation treatment resistant to degradation by reactive oxygen species and hyaluronidase. J Biomed Mater Res B Appl Biomater 2022; 110:2595-2611. [PMID: 35727166 DOI: 10.1002/jbm.b.35114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.
Collapse
Affiliation(s)
- Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Biocev, First Faculty of Medicine Charles University, Vestec, Czech Republic
| | | | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | |
Collapse
|
8
|
Cha MY, Hong YJ, Choi JE, Kwon TS, Kim IJ, Hong KW. Classification of early age facial growth pattern and identification of the genetic basis in two Korean populations. Sci Rep 2022; 12:13828. [PMID: 35970861 PMCID: PMC9378761 DOI: 10.1038/s41598-022-18127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Childhood to adolescence is an accelerated growth period, and genetic features can influence differences of individual growth patterns. In this study, we examined the genetic basis of early age facial growth (EAFG) patterns. Facial shape phenotypes were defined using facial landmark distances, identifying five growth patterns: continued-decrease, decrease-to-increase, constant, increase-to-decrease, and continued-increase. We conducted genome-wide association studies (GWAS) for 10 horizontal and 11 vertical phenotypes. The most significant association for horizontal phenotypes was rs610831 (TRIM29; β = 0.92, p-value = 1.9 × 10−9) and for vertical phenotypes was rs6898746 (ZSWIM6; β = 0.1103, p-value = 2.5 × 10−8). It is highly correlated with genes already reported for facial growth. This study is the first to classify and characterize facial growth patterns and related genetic polymorphisms.
Collapse
Affiliation(s)
- Mi-Yeon Cha
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Yu-Jin Hong
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Tae-Song Kwon
- Human ICT CO., Ltd., 111, Dogok-ro, Gangnam-gu, Seoul, 06253, Republic of Korea
| | - Ig-Jae Kim
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea.
| |
Collapse
|
9
|
Tseng KY, Tzeng ZH, Cheng TJR, Liang PH, Hung SC. Design and Synthesis of 1-O- and 6′-C-Modified Heparan Sulfate Trisaccharides as Human Endo-6-O-Sulfatase 1 Inhibitors. Front Chem 2022; 10:947475. [PMID: 35910734 PMCID: PMC9326219 DOI: 10.3389/fchem.2022.947475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The extracellular human endo-6-O-sulfatases (Sulf-1 and Sulf-2) are responsible for the endolytic cleavage of the 6-sulfate groups from the internal D-glucosamine residues in the highly sulfated subdomains of heparan sulfate proteoglycans. A trisaccharide sulfate, IdoA2OS-GlcNS6S-IdoA2OS, was identified as the minimal size of substrate for Sulf-1. In order to study the complex structure with Sulf-1 for developing potential drugs, two trisaccharide analogs, IdoA2OS-GlcNS6OSO2NH2-IdoA2OS-OMe and IdoA2OS-GlcNS6NS-IdoA2OS-OMe, were rationally designed and synthesized as the Sulf-1 inhibitors with IC50 values at 0.27 and 4.6 μM, respectively.
Collapse
Affiliation(s)
- Kuei-Yao Tseng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Pi-Hui Liang, ; Shang-Cheng Hung,
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Applied Science, National Taitung University, Taitung, Taiwan
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Pi-Hui Liang, ; Shang-Cheng Hung,
| |
Collapse
|
10
|
Assirelli E, Caravaggi P, Mazzotti A, Ursini F, Leardini A, Belvedere C, Neri S. Location-Dependent Human Osteoarthritis Cartilage Response to Realistic Cyclic Loading: Ex-Vivo Analysis on Different Knee Compartments. Front Bioeng Biotechnol 2022; 10:862254. [PMID: 35782520 PMCID: PMC9240619 DOI: 10.3389/fbioe.2022.862254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a multifactorial musculoskeletal disorder affecting mostly weight-bearing joints. Chondrocyte response to load is modulated by inflammatory mediators and factors involved in extracellular cartilage matrix (ECM) maintenance, but regulatory mechanisms are not fully clarified yet. By using a recently proposed experimental model combining biomechanical data with cartilage molecular information, basally and following ex-vivo load application, we aimed at improving the understanding of human cartilage response to cyclic mechanical compressive stimuli by including cartilage original anatomical position and OA degree as independent factors. Methods: 19 mono-compartmental Knee OA patients undergoing total knee replacement were recruited. Cartilage explants from four different femoral condyles zones and with different degeneration levels were collected. The response of cartilage samples, pooled according to OA score and anatomical position was tested ex-vivo in a bioreactor. Mechanical stimulation was obtained via a 3-MPa 1-Hz sinusoidal compressive load for 45-min to replicate average knee loading during normal walking. Samples were analysed for chondrocyte gene expression and ECM factor release. Results: Non parametric univariate and multivariate (generalized linear mixed model) analysis was performed to evaluate the effect of compression and IL-1β stimulation in relationship to the anatomical position, local disease severity and clinical parameters with a level of significance set at 0.05. We observed an anti-inflammatory effect of compression inducing a significant downmodulation of IL-6 and IL-8 levels correlated to the anatomical regions, but not to OA score. Moreover, ADAMTS5, PIICP, COMP and CS were upregulated by compression, whereas COL-2CAV was downmodulated, all in relationship to the anatomical position and to the OA degree. Conclusion: While unconfined compression testing may not be fully representative of the in-vivo biomechanical situation, this study demonstrates the importance to consider the original cartilage anatomical position for a reliable biomolecular analysis of knee OA metabolism following mechanical stimulation.
Collapse
Affiliation(s)
- Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Caravaggi
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Antonio Mazzotti
- I Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Ursini
- Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Science, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Bologna, Italy
| | - Alberto Leardini
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Simona Neri
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Juang YP, Liang PH. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020; 25:E4974. [PMID: 33121124 PMCID: PMC7663351 DOI: 10.3390/molecules25214974] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Saponins are amphiphilic molecules consisting of carbohydrate and either triterpenoid or steroid aglycone moieties and are noted for their multiple biological activities-Fungicidal, antimicrobial, antiviral, anti-inflammatory, anticancer, antioxidant and immunomodulatory effects have all been observed. Saponins from natural sources have long been used in herbal and traditional medicines; however, the isolation of complexed saponins from nature is difficult and laborious, due to the scarce amount and structure heterogeneity. Chemical synthesis is considered a powerful tool to expand the structural diversity of saponin, leading to the discovery of promising compounds. This review focuses on recent developments in the structure optimization and biological evaluation of synthetic triterpenoid and steroid saponin derivatives. By summarizing the structure-activity relationship (SAR) results, we hope to provide the direction for future development of saponin-based bioactive compounds.
Collapse
Affiliation(s)
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
13
|
Krasivina IG, Dolgova LN, Dolgov NV. Substantiation of strategic therapy of gonartrosis by chondroitin-containing drugs in diabetes mellitus patients. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2020:87-94. [DOI: 10.21518/2079-701x-2020-7-87-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction. Currently, there is a high prevalence of type 2 diabetes mellitus (DM2) and osteoarthritis (OA). DM2 worsens the prognosis of the results of arthroplasty for OA, and also becomes an additional insecurity factor in the administration of traditionally often used non-steroidal anti-inflammatory drugs (NSAIDs) and in local injections of glucocorticosteroids. It is considered safer to prescribe chondroitin sulfate.Objective. Identification of clinical, radiological and arthrosonographic features of the manifestations of gonarthrosis with concomitant DM2 and related differences in the strategic conservative therapy.Methods. The study included 386 women with OA of knee joints (mean age 61,3 + 7,8 years). Patients were divided into groups of euglycemic status (group “OA”, n = 224) and comorbid according to DM2 (group “OA + DM2”, n = 162). The amplitude of an active mobility of the knee joints (KJ), the severity of gonarthrosis using the Lequesnealgo-functional index (AFI_Lequesne) and the WOMAC questionnaire were assessed. Radiography and arthrosonography of the KJ were performed.Results. In patients in group “OA + DM2” AFI_Lequesne were less by 18,2% (p = 0,0001), the total WOMAC index were less by 15,6% (p = 0,0001) compared with the “OA” group. In the group “OA + DM2”, the first x-ray stage was 2,6 times less common, and the third was 2 times more likely than the group “OA” (χ2 = 25,5; p = 0,001). The arthrosonography in the group “OA + DM2” detected a more pronounced thinning of the articular cartilage and more severe osteophytosis. The masking effect of DM2 on the symptoms of OA led to a rarer use of slowly acting symptom-modifying agents containing chondroitin in patients with “OA + DM2” in 1,7 times as compared with “OA” patients.Conclusions. In patients with gonarthrosis, concomitant DM2 minimizes symptoms, but accelerates the degeneration of the knee joints tissues. There is no information on the deterioration of the carbohydrate metabolism with a prolonged use of chondroitin sulfate, which suggests the safety of such therapy for patients with OA and concomitant diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - L. N. Dolgova
- Yaroslavl State Medical University; Clinical Hospital RZD-Medicine of the city of Yaroslalv
| | | |
Collapse
|
14
|
Yu Y, Bruzdoski K, Kostousov V, Hensch L, Hui SK, Siddiqui F, Farooqui A, Kouta A, Zhang F, Fareed J, Teruya J, Linhardt RJ. Structural characterization of a clinically described heparin-like substance in plasma causing bleeding. Carbohydr Polym 2020; 244:116443. [PMID: 32536393 DOI: 10.1016/j.carbpol.2020.116443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023]
Abstract
Heparin-like substances (HLS) have been described in various clinical situations, including in settings of liver disease associated with infection, transplant, and metastasis. HLS are generally attributed to circulating glycosaminoglycans. Initial results for this patient showed coagulopathy due to liver disease without HLS. Two weeks after liver transplantation, a 10 year-old female with liver failure patient began to bleed from catheter insertion sites, mouth, and nares and HLS was suspected. The patient subsequently died and these clinical samples resulted in the isolation of a single heparan sulfate (HS) present at high concentrations in the plasma. Analysis of this HS showed it had an intermediate between heparin and HS with low antithrombin-mediated anticoagulant activity. We speculate that this 10-year old patient might have a platelet function defect influenced by this unusual HS. Endothelial defects not measurable by our methods might have also contributed to the observed bleeding complications.
Collapse
Affiliation(s)
- Yanlei Yu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Karen Bruzdoski
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Vadim Kostousov
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Lisa Hensch
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Shiu-Ki Hui
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Amber Farooqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ahmed Kouta
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jun Teruya
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Silva JC, Han X, Silva TP, Xia K, Mikael PE, Cabral JMS, Ferreira FC, Linhardt RJ. Glycosaminoglycan remodeling during chondrogenic differentiation of human bone marrow-/synovial-derived mesenchymal stem/stromal cells under normoxia and hypoxia. Glycoconj J 2020; 37:345-360. [PMID: 32086666 DOI: 10.1007/s10719-020-09911-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Teresa P Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Paiyz E Mikael
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA.
| |
Collapse
|