1
|
Liu Y, Guo W, Liu J, Tao H, Yang J, Shuai Q, Yamauchi Y, Yuliarto B, Asakura Y, Huang L. Bipyridine covalent organic framework aerogel for highly selective recovery of palladium in wastewater. Chem Sci 2025; 16:5745-5754. [PMID: 40046080 PMCID: PMC11878236 DOI: 10.1039/d4sc08674k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
Palladium (Pd), a rare and precious metal, is highly valued due to its non-renewable nature and significant cost. Therefore, recovering palladium from industrial wastewater is of great importance but remains a challenge. Herein, a composite aerogel adsorbent has been developed by linking a bipyridine covalent organic framework, termed TpBpy, with chitosan (CS) through robust covalent bonds. The resulting TpBpy/CS aerogel is employed for the selective separation and recovery of palladium at low concentrations in real wastewater. Experimental results reveal that the maximum adsorption capacity of the TpBpy/CS aerogel for Pd(ii) is 274.4 mg g-1 at pH 1. Additionally, even in the presence of other coexisting ions at concentrations 100 times higher than Pd(ii), the adsorption efficiency for Pd(ii) remains above 99%. Mechanistic investigations indicate that the adsorption of Pd(ii) by the TpBpy/CS aerogels primarily occurs through the coordination between pyridine N and Pd(ii), as well as the electrostatic interaction between protonated amino groups and Pd(ii). Moreover, the TpBpy/CS aerogel demonstrates exceptional reusability, maintaining an adsorption efficiency for Pd(ii) above 99% after nine adsorption-desorption cycles. Overall, the TpBpy/CS aerogel is a promising monolithic adsorbent for the efficient recovery of Pd(ii) from acidic industrial wastewater due to its exceptional adsorption capacity and selectivity, demonstrating substantial potential for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Weikang Guo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Jiale Liu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Haijuan Tao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone Wuhan 430205 Hubei Province PR China
| | - Qin Shuai
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Brian Yuliarto
- Faculty of Industrial Technology, Institut Teknologi Bandung Bandung 40132 Indonesia
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Lijin Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences No. 388, Lumo Road, Hongshan District Wuhan 430074 PR China
| |
Collapse
|
2
|
Zhang K, Li Z, Khan S, Shishir MRI, Zheng H, Gao L, Shi J, Huang X, Zou X. An intelligent aerogel composed of anthocyanins, natural fiber, carboxymethyl cellulose, and sodium alginate for monitoring fish freshness. Int J Biol Macromol 2025; 297:138198. [PMID: 39617239 DOI: 10.1016/j.ijbiomac.2024.138198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/28/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025]
Abstract
This study aimed to develop a natural colorimetric aerogel based on carboxymethyl cellulose (CMC), sodium alginate (SA), black goji anthocyanin (BGA), and various natural fibers such as cotton fiber (CF), silk fiber (SF), and down fiber (DF) via a combined approach of ionic gelation and freeze drying for monitoring fish freshness. Various colorimetric aerogels, (CMC/SA, CMC/SA/CF, CMC/SA/SF, and CMC/SA/DF) were developed and analyzed. Among them, CMC/SA aerogel showed higher density (0.054 g/cm3) with no surface pores, while CMC/SA/SF had a large surface area (18.6214 m2/g) with uniformly higher porosity (97.11 %) and a lower density (0.024 g/cm3). Moreover, the CMC/SA/SF aerogel exhibited greater mechanical properties and color sensitivity at various pH compared to other aerogels, which was then used as an indicator label for monitoring fish freshness during storage at 4 °C and 25 °C. The label aerogel became blue from purple, when the values of TVB-N, TVC, and pH reached 32.92 and 26.91 mg/100 g, 9.41 × 107 and 8.7 × 107 CFU/g, and 6.99 and 7.15 at 4 and 25 °C, respectively, exhibiting the level of fish deterioration. Taken together, the CMC/SA/SF colorimetric aerogel shows great potential for application as an intelligent package in monitoring the freshness of fish.
Collapse
Affiliation(s)
- Ke Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Suliman Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Huanhuan Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Liying Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Zhang J, Shi X, Zhao Z, Wang M, Deng H, Du Y. Hydrogel Films with Impact Resistance by Sacrificial Micelle-Assisted-Alignment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409287. [PMID: 39373696 PMCID: PMC11600213 DOI: 10.1002/advs.202409287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Various strategies are developed to engineer aligned hierarchical architectures in polymer hydrogels for enhanced mechanical performance. However, chain alignment remains impeded by the presence of hydrogen bonds between adjacent chains. Herein, a facile sacrificial micelle-assisted-alignment strategy is proposed, leading to well-aligned, strong and tough pure chitosan hydrogels. The sacrificial sodium dodecyl sulfate micelles electrostatically interact with the protonated chitosan chains, enabling chain sliding and alignment under uniaxial forces. Subsequently, sacrificial micelles can be easily removed via NaOH treatment, causing the reforming of H-bond in the chain networks. The strength of the pure chitosan hydrogels increases 140-fold, reaching 58.9 ± 3.4 MPa; the modulus increases 595-fold, reaching 226.4 ± 42.8 MPa. After drying-rehydration, the strength and modulus further rise to 70.3 ± 2.4 and 403.5 ± 76.3 MPa, marking a significant advancement in high-strength pure chitosan hydrogel films. Furthermore, the designed multiscale architectures involving enhanced crystallinity, well-aligned fibers, strong interfaces, robust multilayer Bouligand assembly contribute to the exact replica of lobster underbelly with impact resistance up to 6.8 ± 1.0 kJ m-1. This work presents a promising strategy for strong, tough, stiff and impact-resistant polymer hydrogels via well-aligned hierarchical design.
Collapse
Affiliation(s)
- Jingxian Zhang
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Xiaowen Shi
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Zhongtao Zhao
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Manya Wang
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Hongbing Deng
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| | - Yumin Du
- School of Resource and Environmental ScienceHubei Engineering Center of Natural Polymers‐Based Medical MaterialsHubei Biomass‐Resource Chemistry and Environmental Biotechnology Key LaboratoryHubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhan430079China
| |
Collapse
|
4
|
Chen L, Liu N, Zhang M, Li C, Wu K, Qin J, Zhao Q, Song J, Liu J, Ye Z. Preparation of chitosan resin by two-step crosslinking method and its adsorption for palladium in wastewater. Int J Biol Macromol 2024; 278:134766. [PMID: 39151858 DOI: 10.1016/j.ijbiomac.2024.134766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
To preserve the activity of amine groups on chitosan, chitosan resin (CR) was synthesized using the reversed-phase suspension two-step crosslinking method for the adsorption of palladium from wastewater. The effects of varying the amounts of chitosan, liquid paraffin, ethyl acetate, formaldehyde solution, and epichlorohydrin on the adsorption capacity of CR were investigated using both single-factor experiments and response surface methodology. The preparation conditions for the chitosan resin were optimized, and its adsorption properties were systematically evaluated. The results indicated that CR exhibited a high saturated adsorption capacity for palladium, reaching 195.22 mg·g-1. The adsorption kinetics followed the pseudo-second-order model, while the adsorption isotherms were well described by the Sips model. Thermodynamic analysis demonstrated that the adsorption process was spontaneous and endothermic. Furthermore, CR maintained exceptional stability, with a palladium removal efficiency exceeding 99.8 % even after eight adsorption-desorption cycles. The primary adsorption mechanism is attributed to the interaction between palladium ions and the protonated amino groups of the chitosan resin.
Collapse
Affiliation(s)
- Liuzhou Chen
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nengsheng Liu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Mohe Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; Ordnance Science and Research Academy of China, Beijing 100089, China
| | - Chenxi Li
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Kun Wu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jianwei Song
- Qingyang Chemical Industry Corporation, Liaoyang 111001, China
| | - Jinxin Liu
- Qingyang Chemical Industry Corporation, Liaoyang 111001, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
5
|
Debnath A, Sen R. Construction nanobiotechnology approach for performance enhancement of microbially induced biomineralization (MIB) using a biopolymer encapsulated spore-based system. Appl Environ Microbiol 2024; 90:e0140724. [PMID: 39194190 PMCID: PMC11409699 DOI: 10.1128/aem.01407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The integration of green construction practices within the built environment has been significantly advanced by biotechnological innovations, among which microbially induced biomineralization (MIB), predominantly facilitated by various strains of spore-forming bacilli, emerges as a pivotal mechanism for the self-healing of concrete. However, the practical deployment of this technology faces challenges, notably the compromised viability of bacterial spores due to germination triggered by severe shear stress during concrete mixing. To address this limitation, a water-insoluble polymer (extracellular polymeric substance) produced by Cellulomonas flavigena was utilized to encapsulate and protect the spores. The encapsulation process was rigorously verified through physicochemical methodologies, including X-ray diffraction (XRD) analysis, which revealed alterations in the interlayer spacings of the extracellular polymeric substance (EPS) structure during the encapsulation process, indicating successful EPS coating of the spores. Furthermore, a proof of concept for the enhanced biomineralization capacity of EPS-coated spores was demonstrated. Standard analytical techniques confirmed the precipitation of calcite and vaterite among other minerals, underscoring the effectiveness of this novel approach. This breakthrough paves the way for the development of innovative, sustainable bioconcrete applications, aligning with broader environmental objectives and advancing the field of green construction technology.IMPORTANCEDevelopment of bioconcrete with self-healing capability through MIB constitutes an important sustainable construction biotechnology approach for restoration and repair of built environment. Like every promising technology, MIB also suffers from certain shortcomings in terms of compromised viability of the microbial cells after premature germination of the spores on exposure to shear stress caused during concrete mixing. In this study, these challenges were adequately addressed by successfully providing a protective coating of indigenously extracted EPS to the bacterial spores and elucidating the interactive mechanisms between them. The results showed stable encapsulation of the spores while providing mechanistic insights of the encapsulation phenomenon. The data also showed enhanced rate of biomineralization by encapsulated microbes when subjected to stress conditions.
Collapse
Affiliation(s)
- Ankita Debnath
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
6
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
7
|
Abdollahi A, Aghayan HR, Mousivand Z, Motasadizadeh H, Maghsoudian S, Abdorashidi M, Ostad SN, Larijani B, Raoufi M, Javar HA. Chitosan based extruded nanofibrous bioscaffold for local delivery of mesenchymal stem cells to improve diabetic wound healing. Stem Cell Res Ther 2024; 15:262. [PMID: 39148112 PMCID: PMC11328517 DOI: 10.1186/s13287-024-03772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-based treatment strategy has shown promise in bolstering the healing process of chronic wounds in diabetic patients, who are at risk of amputation and mortality. To overcome the drawbacks of suboptimal cell retention and diminished cell viability at the injury site, a novel nanofibrous biomaterial-based scaffold was developed by using a controlled extrusion of a polymeric solution to deliver the cells (human adipose-derived MSCs (ADMSCs) and placenta-derived MSCs (PLMSCs)) locally to the animal model of diabetic ulcers. METHODS The physicochemical and biological properties of the nano-bioscaffold were characterized in terms of microscopic images, FTIR spectroscopy, tensile testing, degradation and swelling tests, contact angle measurements, MTT assay, and cell attachment evaluation. To evaluate the therapeutic efficacy, a study using an excisional wound model was conducted on diabetic rats. RESULTS The SEM and AFM images of scaffolds revealed a network of uniform nanofibers with narrow diameters between 100-130 nm and surface roughness less than 5 nm, respectively. ADMSCs and PLMSCs had a typical spindle-shaped or fibroblast-like morphology when attached to the scaffold. Desired characteristics in terms of swelling, hydrophilicity, biodegradation rate, and biocompatibility were achieved with the CS70 formulation. The wound healing process was accelerated according to wound closure rate assay upon treatment with MSCs loaded scaffold resulting in increased re-epithelialization, neovascularization, and less inflammatory reaction. Our findings unequivocally demonstrated that the cell-loaded nano-bioscaffold exhibited more efficacy compared with its acellular counterpart. In summation, our study underscores the potential of this innovative cellular scaffold as a viable solution for enhancing the healing of diabetic ulcers. CONCLUSION The utilization of MSCs in a nanofibrous biomaterial framework demonstrates significant promise, providing a novel avenue for advancing wound care and diabetic ulcer management.
Collapse
Affiliation(s)
- Alyeh Abdollahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mousivand
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmohsen Abdorashidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bittolo Bon S, Libera V, Ceccarini MR, Malaspina R, Codini M, Valentini L. Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells. Polymers (Basel) 2024; 16:2244. [PMID: 39204465 PMCID: PMC11359062 DOI: 10.3390/polym16162244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, we report the preparation and characterization of water-stable films with UV-shielding and good mechanical properties, exploiting the synergistic effect of regenerated silk fibroin and bamboo-derived cellulose. Silk fibroin (SF)/bamboo (B) hybrid films are achieved by solubilizing both silk and bamboo fibers in formic acid with added CaCl2. Infrared spectroscopy indicates that SF, when combined with bamboo, undergoes a conformational transition, providing evidence of an increase in SF crystallinity. Exploiting the intrinsic absorption of SF in the ultraviolet region, UV-Vis spectroscopy was used to assess the glass transition temperature (Tg) of SF/B films, showing a decrease in Tg by increasing the SF content. The addition of 10 wt% SF to the B matrix improved the elastic modulus by about 10% while conserving the strain at break with respect to the neat B films, increasing the UV shielding properties, while water absorption suggested the material's hydrophilic and swelling capacity even after one month. The hybrid films showed, under solar irradiation, a photoprotective behavior on keratinocyte human cells by increasing cellular viability. These findings may find potential applications in functional fabrics.
Collapse
Affiliation(s)
- Silvia Bittolo Bon
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (S.B.B.); (V.L.); (R.M.)
| | - Valeria Libera
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (S.B.B.); (V.L.); (R.M.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.)
- Civil and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, 05100 Terni, Italy
| | - Rocco Malaspina
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy; (S.B.B.); (V.L.); (R.M.)
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.)
| | - Luca Valentini
- Civil and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, 05100 Terni, Italy
| |
Collapse
|
9
|
Deng M, Pan J, Sun H, Zhang J, He H, Wang Z, Fu F, Liu X, Zhu G, Khabibulla P, Kayumov J. Utilization of deep eutectic solvent as a degumming protocol for raw silk: Towards performance and mechanism elucidation. Int J Biol Macromol 2024; 274:132770. [PMID: 38834121 DOI: 10.1016/j.ijbiomac.2024.132770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.
Collapse
Affiliation(s)
- Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haixun Sun
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Guocheng Zhu
- Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Parpiev Khabibulla
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| | - Juramirza Kayumov
- Department of Technology of Textile industry products, Namangan Institute of Engineering and Technology. 7, Kasansay Street, Namangan 160115, Uzbekistan
| |
Collapse
|
10
|
Schröder V, Gherghel D, Apetroaei MR, Gîjiu CL, Isopescu R, Dinculescu D, Apetroaei MM, Enache LE, Mihai CT, Rău I, Vochița G. α-Chitosan and β-Oligochitosan Mixtures-Based Formula for In Vitro Assessment of Melanocyte Cells Response. Int J Mol Sci 2024; 25:6768. [PMID: 38928474 PMCID: PMC11204147 DOI: 10.3390/ijms25126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or β-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/β-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that β-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the β conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. β-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.
Collapse
Affiliation(s)
- Verginica Schröder
- Departament of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capt. Aviator Al. Șerbănescu Street, Campus C, 900470 Constanta, Romania;
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| | - Manuela Rossemary Apetroaei
- Department of Marine Electric and Electronic Engineering, Faculty of Marine Engineering, Mircea cel Batran Naval Academy, 1 Fulgerului Street, 900218 Constanta, Romania;
| | - Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Laura Elena Enache
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | | | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (C.L.G.); (R.I.); (L.E.E.); (I.R.)
| | - Gabriela Vochița
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 47 Lascar Catargi, 700107 Iasi, Romania;
| |
Collapse
|
11
|
Chen L, Shao F, Chen K, Wu N, Sun B, Ge D, Wang G, Wang H, Yang Q. Organized assembly of chitosan into mechanically strong bio-composite by introducing a recombinant insect structural protein OfCPH-1. Carbohydr Polym 2024; 334:122044. [PMID: 38553240 DOI: 10.1016/j.carbpol.2024.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5 w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.
Collapse
Affiliation(s)
- Lei Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 97 Buxin Road, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Fei Shao
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Kaiwen Chen
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Nan Wu
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Bingbing Sun
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Dan Ge
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 97 Buxin Road, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Huanan Wang
- School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 97 Buxin Road, Shenzhen 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China; School of Bioengineering, School of Chemical Engineering and State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
12
|
Wu N, Lin Q, Shao F, Chen L, Zhang H, Chen K, Wu J, Wang G, Wang H, Yang Q. Insect cuticle-inspired design of sustainably sourced composite bioplastics with enhanced strength, toughness and stretch-strengthening behavior. Carbohydr Polym 2024; 333:121970. [PMID: 38494224 DOI: 10.1016/j.carbpol.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Insect cuticles that are mainly made of chitin, chitosan and proteins provide insects with rigid, stretchable and robust skins to defend harsh external environment. The insect cuticle therefore provides inspiration for engineering biomaterials with outstanding mechanical properties but also sustainability and biocompatibility. We herein propose a design of high-performance and sustainable bioplastics via introducing CPAP3-A1, a major structural protein in insect cuticles, to specifically bind to chitosan. Simply mixing 10w/w% bioengineered CPAP3-A1 protein with chitosan enables the formation of plastics-like, sustainably sourced chitosan/CPAP3-A1 composites with significantly enhanced strength (∼90 MPa) and toughness (∼20 MJ m -3), outperforming previous chitosan-based composites and most synthetic petroleum-based plastics. Remarkably, these bioplastics exhibit a stretch-strengthening behavior similar to the training living muscles. Mechanistic investigation reveals that the introduction of CPAP3-A1 induce chitosan chains to assemble into a more coarsened fibrous network with increased crystallinity and reinforcement effect, but also enable energy dissipation via reversible chitosan-protein interactions. Further uniaxial stretch facilitates network re-orientation and increases chitosan crystallinity and mechanical anisotropy, thereby resulting in stretch-strengthening behavior. In general, this study provides an insect-cuticle inspired design of high-performance bioplastics that may serve as sustainable and bio-friendly materials for a wide range of engineering and biomedical application potentials.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiaoxia Lin
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fei Shao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Haoyue Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
13
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Ghosh S, Pati F. Decellularized extracellular matrix and silk fibroin-based hybrid biomaterials: A comprehensive review on fabrication techniques and tissue-specific applications. Int J Biol Macromol 2023; 253:127410. [PMID: 37844823 DOI: 10.1016/j.ijbiomac.2023.127410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Biomaterials play a fundamental role in tissue engineering by providing biochemical and physical cues that influence cellular fate and matrix development. Decellularized extracellular matrix (dECM) as a biomaterial is distinguished by its abundant composition of matrix proteins, such as collagen, elastin, fibronectin, and laminin, as well as glycosaminoglycans and proteoglycans. However, the mechanical properties of only dECM-based constructs may not always meet tissue-specific requirements. Recent advancements address this challenge by utilizing hybrid biomaterials that harness the strengths of silk fibroin (SF), which contributes the necessary mechanical properties, while dECM provides essential cellular cues for in vitro studies and tissue regeneration. This review discusses emerging trends in developing such biopolymer blends, aiming to synergistically combine the advantages of SF and dECM through optimal concentrations and desired cross-linking density. We focus on different fabrication techniques and cross-linking methods that have been utilized to fabricate various tissue-engineered hybrid constructs. Furthermore, we survey recent applications of such biomaterials for the regeneration of various tissues, including bone, cartilage, trachea, bladder, vascular graft, heart, skin, liver, and other soft tissues. Finally, the trajectory and prospects of the constructs derived from this blend in the tissue engineering field have been summarized, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Soham Ghosh
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
15
|
Brooks AK, Ramsey RG, Zhang N, Yadavalli VK. Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomater Sci Eng 2023; 9:5793-5803. [PMID: 37698556 DOI: 10.1021/acsbiomaterials.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.
Collapse
|
16
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
17
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Han Y, Wang S, Cao Y, Singh GP, Loh SI, Cheerlavancha R, Ang MCY, Khong DT, Chua PWL, Ho P, Strano MS, Marelli B. Design of Biodegradable, Climate-Specific Packaging Materials That Sense Food Spoilage and Extend Shelf Life. ACS NANO 2023; 17:8333-8344. [PMID: 37104566 DOI: 10.1021/acsnano.2c12747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The AgriFood systems in tropical climates are under strain due to a rapid increase in human population and extreme environmental conditions that limit the efficacy of packaging technologies to extend food shelf life and guarantee food safety. To address these challenges, we rationally designed biodegradable packaging materials that sense spoilage and prevent molding. We nanofabricated the interface of 2D covalent organic frameworks (COFs) to reinforce silk fibroin (SF) and obtain biodegradable membranes with augmented mechanical properties and that displayed an immediate colorimetric response (within 1 s) to food spoilage, using packaged poultry as an example. Loading COF with antimicrobial hexanal also mitigated biotic spoilage in high-temperature and -humidity conditions, resulting in a four-order of magnitude decrease in the total amount of mold growth in soybeans packaged in silk-COF, when compared to cling film (i.e., polyethylene). Together, the integration of sensing, structural reinforcement, and antimicrobial agent delivery within a biodegradable nanocomposite framework defines climate-specific packaging materials that can decrease food waste and enhance food safety.
Collapse
Affiliation(s)
- Yangyang Han
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Raju Cheerlavancha
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Patrina Wei Lin Chua
- Antimicrobial Resistance Interdisciplinary Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benedetto Marelli
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Moreira VM, Leite JMDS, Medeiros KDA, Assis KMAD, Borges JC, Santana LMB, Moreira LMCDC, Alves LP, Oliveira TKBD, Silveira JWDSD, Silva DTCD, Damasceno BPGDL. Pentoxifylline/Chitosan Films on Wound Healing: In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15041122. [PMID: 37111607 PMCID: PMC10143649 DOI: 10.3390/pharmaceutics15041122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to develop films of chitosan (CSF) associated with pentoxifylline (PTX) for healing cutaneous wounds. These films were prepared at two concentrations, F1 (2.0 mg/mL) and F2 (4.0 mg/mL), and the interactions between the materials, structural characteristics, in vitro release, and morphometric aspects of skin wounds in vivo were evaluated. The formation of the CSF film with acetic acid modifies the polymeric structure, and the PTX demonstrates interaction with the CSF, in a semi-crystalline structure, for all concentrations. The release for all films was proportional to the concentration, with two phases: a fast one of ≤2 h and a slow one of >2 h, releasing 82.72 and 88.46% of the drug after 72 h, being governed by the Fickian diffusion mechanism. The wounds of the mice demonstrate a reduction of up to 60% in the area on day 2 for F2 when compared to CSF, F1, and positive control, and this characteristic of faster healing speed for F2 continues until the ninth day with wound reduction of 85%, 82%, and 90% for CSF, F1, and F2, respectively. Therefore, the combination of CSF and PTX is effective in their formation and incorporation, demonstrating that a higher concentration of PTX accelerates skin-wound reduction.
Collapse
Affiliation(s)
- Vandiara Martins Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joandra Maísa da Silva Leite
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Kaline de Araújo Medeiros
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Karoll Moangella Andrade de Assis
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joyce Cordeiro Borges
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lucas Matheus Barreto Santana
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Larissa Pereira Alves
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | | | - João Walter de Souza da Silveira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
20
|
Wang Y, Zhu L, Wei L, Zhou Y, Yang Y, Zhang L. A bio-orthogonally functionalized chitosan scaffold with esterase-activatable release for nerve regeneration. Int J Biol Macromol 2023; 229:146-157. [PMID: 36528149 DOI: 10.1016/j.ijbiomac.2022.12.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Developing nerve conduits with biological cues is a promising approach for repairing peripheral nerve injuries. Although most biological cues incorporated into conduits generally exert their biological functions at the surface, they could not be released into the on-demand regeneration sites under physiological conditions. Herein, we firstly report a bio-orthogonally functionalized chitosan scaffold with esterase-activatable release for peripheral nerve regeneration. In this study, biological cues are not only selectively conjugated into nerve conduits by bio-orthogonal reaction, but also precisely released in on-demand regeneration sites via esterase-activatable cleavage for peripheral nerve repair. Moreover, this nerve scaffold with esterase-activatable release could promote Schwann cells proliferation. In a rat sciatic nerve defect model, the bio-orthogonally functionalized scaffold with esterase-activatable release significantly increased sciatic nerve function recovery and improved target muscles weight. This strategy of incorporating esterase-activatable bioactive cues into peripheral nerve conduits offers great potential in preclinical studies.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Le Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
21
|
Yasunaga Y, Aso Y, Yamada K, Okahisa Y. Preparation of transparent fibroin nanofibril-reinforced chitosan films with high toughness and thermal resistance. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
22
|
Raza ZA, Mobeen A, Rehman MSU, Majeed MI. Synthesis of copper oxide nanoparticles embedded in porous chitosan membrane for photodegradation of organic dyes. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liang Y, Zou Y, Wu S, Song D, Xu W, Zhu K. Preparation and properties of chitin/silk fibroin biocompatible composite fibers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:860-874. [PMID: 36369874 DOI: 10.1080/09205063.2022.2147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present world chitin is used enormously in various fields, such as biopharmaceuticals, medical and clinical bioproducts, food packaging, etc. However, its development has been curbed by the impaired performance and cumbersome dissolution process when chitin materials are dissolved and regenerated by physical or chemical methods. To further obtain the regenerated chitin fiber material with improved performance, silk fibroin was introduced into the chitin matrix material, and chitin/silk fibroin biocompatible composite fibers were obtained by formic acid/calcium chloride/ethanol ternary system and top-down wet spinning technology. The produced composite fibers outperformed previously reported chitin-silk composites in terms of the tensile strength (160 MPa) and failure strain (25%). The fibers also performed good cell compatibility and strong cellular affinity for non-toxicity. The cell viabilities of the fibers were about 20% greater than those of silk fiber after three days of co-culture with NIH-3T3. Furthermore, no hemolysis occurs in the presence of chitin/silk fibers, demonstrating their superior hemocompatibility. The fibers had a hemolysis index as low as 1%, which is far lower than the acceptable level of 5%. The material offers prospective opportunities for biomaterial applications in anticoagulation, absorbable surgical sutures, etc.
Collapse
Affiliation(s)
- Yaoting Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
24
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 2022; 16:100381. [PMID: 36017107 PMCID: PMC9395666 DOI: 10.1016/j.mtbio.2022.100381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022]
Abstract
Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.
Collapse
|
26
|
Effect of glycerol, sunflower oil, and glucose on the physico-chemical and mechanical properties of chitosan/polyvinyl alcohol-based films. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhao J, Tang Q, Liu J, Liu T, Liu D. Chloride Anion Adsorption from Wastewater Using a Chitosan/β‐Cyclodextrin‐Based Composite. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Zhao
- Changchun University College of Food Science and Engineering No. 8326, Satellite Road 130022 Changchun People's Republic of China
| | - Qilong Tang
- Changchun University College of Food Science and Engineering No. 8326, Satellite Road 130022 Changchun People's Republic of China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute Changchun People's Republic of China
| | - Tong Liu
- Changchun University College of Food Science and Engineering No. 8326, Satellite Road 130022 Changchun People's Republic of China
| | - Duo Liu
- Changchun Normal University No. 677, Changji North Road 130032 Changchun People's Republic of China
| |
Collapse
|
28
|
Gong Q, Chen L, Wang J, Yuan F, Ma Z, Chen G, Huang Y, Miao Y, Liu T, Zhang XX, Yang Q, Yu J. Coassembly of a New Insect Cuticular Protein and Chitosan via Liquid-Liquid Phase Separation. Biomacromolecules 2022; 23:2562-2571. [PMID: 35561014 DOI: 10.1021/acs.biomac.2c00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced β-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.
Collapse
Affiliation(s)
- Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Fenghou Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoxin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Xing Zhang
- School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
29
|
Extraction and Characterization of Cellulose from Jerusalem Artichoke Residue and Its Application in Blueberry Preservation. Foods 2022; 11:foods11081065. [PMID: 35454652 PMCID: PMC9031470 DOI: 10.3390/foods11081065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
The utilization of industrial by-products is becoming more and more important for resource utilization. In this study, soluble dietary fiber (SDF) was extracted from Jerusalem artichoke residue, and a series of characterizations of SDF were carried out. The results showed that SDF had good properties. SDF (0%, 0.1%, 0.2%, 0.3%, and 0.4%) and chitosan (2%) were further used to prepare the coating that was used for the preservation of blueberry. The chemical structure of the film was obtained by FT-IR and XRD analysis. The microstructure of the film was analyzed by SEM, and the properties of the film were tested. The blueberry fresh-keeping test proved that the SDF-added film could effectively prolong the quality of blueberries in storage for 16 days. After 16 days of storage, compared with the control group, the decay rate of the coating group with 0.2% SDF decreased by 16.3%, the consumption of organic acids decreased by 43.7%, and the content of anthocyanin increased by 29.3%. SDF has a potential application in food preservation.
Collapse
|
30
|
Brooks AK, Imran M, Pradhan S, Broitman JM, Yadavalli VK. Facile fabrication and nanoscale assembly of polydopamine-functionalized, flexible chitosan films. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211046414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Substrates that are simultaneously thin, strong, optically transparent, and biocompatible have diverse applications in a range of fundamental and applied fields. While nature-derived materials offer advantages of sustainability and inherent biocompatibility compared to synthetic polymers, their brittleness and swelling, as well as surface charge and chemical functionalization non-conducive to cell growth, can hinder widespread application. In this work, we discuss the fabrication and systematic characterization of polydopamine-coated chitosan thin films. Chitosan is a widely used, partially deacetylated form of chitin, derived from crustaceans and arthropods. Polydopamine (PDA) is derived from chemistries mimicking mussel foot adhesive proteins. A facile dip-coating process of thin and flexible, uncrosslinked chitosan films in aqueous dopamine solutions leads to dramatic changes in physical and chemical properties. We show how the PDA forms time-dependent assemblies on the film surfaces, affecting surface roughness, hydrophilicity, and mechanical strength. Coating the surface for even a few seconds provides functional changes to the films. Our results shows that the optimal coating time is on the order of few hours, whereby the films are optically transparent with excellent extensibility and Young’s modulus, while further coating reduces the benefits of this surface coating. These materials are biocompatible, serving as substrates for cell adhesion and growth while maintaining good viability. Overall, these findings give insight to the effects of PDA assembly on surfaces, and illustrate how a simple, quick, and robust bioinspired coating process can prime substrates for biomedical applications such as tissue engineering, biosensing, and wound healing.
Collapse
Affiliation(s)
- Anne K Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Muhammad Imran
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Jacob M Broitman
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
The Influence of the Surface Topographical Cues of Biomaterials on Nerve Cells in Peripheral Nerve Regeneration: A Review. Stem Cells Int 2021; 2021:8124444. [PMID: 34349803 PMCID: PMC8328695 DOI: 10.1155/2021/8124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The surface topographies of artificial implants including surface roughness, surface groove size and orientation, and surface pore size and distribution have a great influence on the adhesion, migration, proliferation, and differentiation of nerve cells in the nerve regeneration process. Optimizing the surface topographies of biomaterials can be a key strategy for achieving excellent cell performance in various applications such as nerve tissue engineering. In this review, we offer a comprehensive summary of the surface topographies of nerve implants and their effects on nerve cell behavior. This review also emphasizes the latest work progress of the layered structure of the natural extracellular matrix that can be imitated by the material surface topology. Finally, the future development of surface topographies on nerve regeneration was prospectively remarked.
Collapse
|
32
|
Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly. ACS Biomater Sci Eng 2021; 7:2337-2345. [PMID: 33835795 DOI: 10.1021/acsbiomaterials.1c00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regenerated silk nanofibers are interesting as protein-based material building blocks due to their unique structure and biological origin. Here, a new strategy based on control of supramolecular assembly was developed to regulate interactions among silk nanofibers by changing the solvent, achieving tough mechanical features for silk films. Formic acid was used to replace water related to charge repulsion of silk nanofibers in solution, inducing interactions among the nanofibers. The films formed under these conditions had an elastic modulus of 3.4 ± 0.3 GPa, an ultimate tensile strength of 76.9 ± 1.6 MPa, and an elongation at break of 3.5 ± 0.1%, while the materials formed from aqueous solutions remained fragile. The mechanical performance of the formic acid-derived nanofiber films was further improved through post-stretching or via the addition of graphene. In addition, the silk nanofiber films could be functionalized with various bioactive ingredients such as curcumin. These new silk nanofiber films with a unique combination of mechanical properties and functions provide new biomaterials achieved using traditional solvents and processes through insight and control of their assembly mechanisms in solution.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
33
|
Akrami-Hasan-Kohal M, Eskandari M, Solouk A. Silk fibroin hydrogel/dexamethasone sodium phosphate loaded chitosan nanoparticles as a potential drug delivery system. Colloids Surf B Biointerfaces 2021; 205:111892. [PMID: 34107443 DOI: 10.1016/j.colsurfb.2021.111892] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
The application of nanoparticles-loaded hydrogel as a novel formulation has gotten much attention for a potential drug delivery method for desire drug controlling and targeting. This study prepared a sustained release formulation using dexamethasone sodium phosphate-loaded chitosan nanoparticles embedded in silk fibroin hydrogel. Dexamethasone sodium phosphate-loaded chitosan nanoparticles (DEX-CSNPs) was developed using the ionotropic-gelation technique and inserted in the silk fibroin hydrogel (SFH). Mean particle size, polydispersity index (PDI), and zeta potential of DEX-CSNPs were 488.05±38.69 nm, 0.15±0.07, 32.12±2.42 mV, respectively. The encapsulation efficiency (EE), drug loading capacity (LC), and the cumulative amount of released drug of DEX-loaded CSNPs, which detected in phosphate buffer saline (PBS) solution, were 67.6±6.7%, 15.7±5.7%, and 75.84%, respectively. The DEX-CSNPs were then mixed with silk fibroin (SF) solution and induced gelation by sonication to prepare a drug-releasing system. As a result, the scanning electron microscopy (SEM) image shows that the prepared drug delivery system had a properly interconnected porous structure. Smaller pore size, greater porosity, higher water uptake, and swelling ratio were achieved by incorporating CSNPs and DEX-loaded CSNPs. The cytotoxicity study was performed for the L929 fibroblast cell line. The drug release kinetics study was performed on a prepared drug delivery system. Finally, the release test results showed a suitable extended-release of DEX from the carrier over 16 days. Overall, the developed drug-releasing system can be a promising candidate for drug delivery applications.
Collapse
Affiliation(s)
- Mohammad Akrami-Hasan-Kohal
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| |
Collapse
|
34
|
Cavallaro G, Micciulla S, Chiappisi L, Lazzara G. Chitosan-based smart hybrid materials: a physico-chemical perspective. J Mater Chem B 2021; 9:594-611. [PMID: 33305783 DOI: 10.1039/d0tb01865a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-chemical properties of chitosan-based materials, including solubility, mechanical resistance, barrier properties, and thermal behaviour, and provide a link to the chemical peculiarities of chitosan, such as its intrinsic low solubility, high rigidity, large charge separation, and strong tendency to form intra- and inter-molecular hydrogen bonds.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
35
|
Xu J, Fu CY, Tsai YL, Wong CW, Hsu SH. Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application. Polymers (Basel) 2021; 13:326. [PMID: 33498347 PMCID: PMC7864029 DOI: 10.3390/polym13030326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023] Open
Abstract
Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction and ionic interaction from dialdehyde polyurethane, N-carboxyethyl chitosan, and double-bonded chitosan grafted polypyrrole. The thin films were air-dried under room temperature. These thin films showed hydrophilicity and conductivity (above 2.50 mS/cm) as well as responsiveness to the deformation. The tensile break strength (9.72 MPa to 15.07 MPa) and tensile elongation (5.76% to 12.77%) of conductive thin films were enhanced by heating them from 25 °C to 50 °C. In addition, neural stem cells cultured on the conductive thin films showed cell clustering, proliferation, and differentiation. The application of the materials as a conductive surface coating was verified by different coating strategies. The conductive thin films are potential candidates for surface modification and biocompatible polymer coating.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan; (J.X.); (C.-Y.F.); (Y.-L.T.); (C.-W.W.)
| | - Chih-Yu Fu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan; (J.X.); (C.-Y.F.); (Y.-L.T.); (C.-W.W.)
| | - Yu-Liang Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan; (J.X.); (C.-Y.F.); (Y.-L.T.); (C.-W.W.)
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan; (J.X.); (C.-Y.F.); (Y.-L.T.); (C.-W.W.)
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan; (J.X.); (C.-Y.F.); (Y.-L.T.); (C.-W.W.)
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli 35053, Taiwan
| |
Collapse
|
36
|
Sun X, Dong M, Guo Z, Zhang H, Wang J, Jia P, Bu T, Liu Y, Li L, Wang L. Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing. Int J Biol Macromol 2020; 167:10-22. [PMID: 33249153 DOI: 10.1016/j.ijbiomac.2020.11.153] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Antibacterial wound dressings can effectively avoid the residual of antibacterial nanomaterials for injection in vivo, reduce their biological toxicity to normal cells and tissues, making them be widely applied in biomedical field. Herein, an approach of combining ion-crosslinking, in-situ reduction and microwave-assisted methods was employed to prepare chitosan-copper-gallic acid nanocomposites (CS-Cu-GA NCs) with dual-functional nano-enzyme characteristics (oxidase- and peroxidase-like functions). The oxidase-like activity of CS-Cu-GA NCs can facilitate the production of hydrogen peroxide (H2O2) when it contacted with physiologically relevant antioxidants (AH2) in bacteria. Subsequently, H2O2 was catalyzed to generate hydroxyl radicals (OH) under the peroxidase-like activity of CS-Cu-GA NCs. Furthermore, CS-Cu-GA NCs integrate the inherent antibacterial properties of chitosan, Cu NPs and Cu2+. Animal experiments revealed that the antibacterial dressing incorporating CS-Cu-GA NCs exhibited its effective promotion of S. aureus-infected wounds healing, as well as no damage to normal tissues. Besides, the antibacterial dressing was prepared to a band aid with excellent water swelling and antibacterial properties, which was further fixed in a medical tape to construct a portable antibacterial product that can be applied to the surface of human skin and showed excellent waterproof performance, providing a new insight for the construction of clinical antibacterial wound healing products.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhirong Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
37
|
Li L, Yang H, Li X, Yan S, Xu A, You R, Zhang Q. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Carbohydr Polym 2020; 253:117214. [PMID: 33278979 DOI: 10.1016/j.carbpol.2020.117214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Nanofibrils derived from natural biopolymers have received extensive interest due to their exceptional mechanical properties and excellent biocompatibility. To fabricate biocompatible chitosan nanocomposites with high mechanical performance, silkworm silks were deconstructed into nanofibrils as structural and mechanical reinforcement of chitosan. After dispersing silk nanofibrils in chitosan solution, a set of nanocomposites, including film, porous scaffold, filament, and nanofibrous sponge, could be fabricated from the blended solutions. Silk nanofibrils could be uniformly dispersed in chitosan solution, and formed multi-dimensional nanocomposites. The nanocomposites exhibited enhanced mechanical strength and thermal stability, and provided a biomimetic nanofibrous structure for biomaterial applications. The enhancement in mechanical properties can be attributed to the interaction between the nanofibril phase and the chitosan matrix. As the polysaccharide/protein bionanocomposites derived from natural biopolymers, these materials offer new opportunities for biomaterial application by virtue of their biocompatibility and biodegradability, as well as enhanced mechanical properties and controllable mesoscopic structure.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Hui Yang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Xiufang Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Anchang Xu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
38
|
|
39
|
Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities. Processes (Basel) 2020. [DOI: 10.3390/pr8070834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, different amounts of cinnamomum essential oil (CEO) were encapsulated in chitosan nanoparticles (NPs) (CS-NPs) through oil-in-water emulsification and ionic gelation. An ultraviolet-visible spectrophotometer, Fourier-transform infrared spectroscopy, synchronous thermal analysis, and X-ray diffraction were employed to analyze the CEO encapsulation. As observed by field-emission scanning electron microscopy, NP size analysis and zeta potential, the prepared CS-NPs, containing CEO (CS-CEO), were spherical with uniformly distributed sizes (diameters: 190–340 nm). The ranges of encapsulation efficiency (EE) and loading capacity (LC) were 4.6–32.9% and 0.9–10.4%, with variations in the starting weight ratio of CEO to CS from 0.11 to 0.53 (w/w). It was also found that the antioxidant activity of the CS-NPs loaded with CEO increased as the EE increased. The active ingredients of the CEO were prevented from being volatilized, significantly improving the chemical stability. The antioxidant activity of CS-CEO was higher than that of the free CEO. These results indicate the promising potential of CS-CEO as an antioxidant for food processing, and packaging applications.
Collapse
|