1
|
Ma Z, Sheng Y, Liu X, Guo J, Wang P, Ren F, Wu L, Liang Y, Xu B, Liu S. Inhibitory effects of water-soluble hemicelluloses from corn bran with varying molecular weights on wheat starch digestibility. Food Chem 2025; 478:143649. [PMID: 40054209 DOI: 10.1016/j.foodchem.2025.143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/06/2025]
Abstract
This study examined effects of corn bran hemicellulose (CBH) with three molecular weight levels-CBH-H (Mw = 789 × 103), CBH-M (Mw = 15 × 103), and CBH-L (Mw = 1 × 103)-on wheat starch digestion and explored the underlying mechanism by investigating their interactions with starch and enzymatic activities. The results demonstrated that when heated at 100 °C and 130 °C, CBH-H exhibited the strongest inhibition on peak and setback viscosity, reducing them by 49.3 % and 44.0 %, respectively. CBH-H also inhibited retrogradation after 14 d, with its relative crystallinity decreasing the most, forming an orderly honeycomb-like structure. Fluorescence spectra revealed that CBH-H shifted emission peaks of α-amylase and amyloglucosidase, thereby reducing their activities to 71.2 % and 67.7 %, respectively. Furthermore, CBH-H showed the greatest inhibition against starch digestion in vitro and in vivo, achieving 31.1 % resistant starch content and reducing postprandial blood glucose levels by 47.5 %. These findings provide new insights into the application of CBH-H in functional starchy foods.
Collapse
Affiliation(s)
- Zhimin Ma
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yifan Sheng
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Xiaoxue Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiayue Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lida Wu
- Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China
| | - Yingchao Liang
- Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China
| | - Baocai Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; School of Food and Biological Engineering, Hefei University of Technology, Anhui, China
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yu W, Yu Y, Li J, Liang H, Li Y, Li B. Effects of deacetylated konjac glucomannan on the retrogradation properties of pea, mung bean and potato starches during the storage. Int J Biol Macromol 2025; 304:140922. [PMID: 39938828 DOI: 10.1016/j.ijbiomac.2025.140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
The retrogradation of natural starches often leads to quality deterioration of starchy foods during storage and limits their applications, while hydrocolloids can effectively improve the quality of retrogradation starches. Therefore, the effects of deacetylated konjac glucomannan (DKGM) on the retrogradation properties of pea starch (PS), mung bean starch (MBS) and potato starch (ST) during storage were investigated. The rheological properties, water flowability, structural properties and microstructure of the samples were comparatively analyzed. The results showed that DKGM could effectively improve the viscoelasticity and pseudoplasticity of the starch gels. With the increase in the proportion of DKGM, the hardness and water retention of the composite system were improved, and the microstructure of starch gels was also enhanced. In addition, the hydrogen bonds formed between DKGM and starch molecules restricted the cross-linking of amylose and the formation of starch double-helix structure, which reduced the crystallinity of starch. In summary, DKGM enhanced the network structure of starch gels and inhibited starch retrogradation, which lays the foundation for the study of the role of DKGM in the shelf life and organoleptic qualities of starchy foods.
Collapse
Affiliation(s)
- Wanxu Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yudie Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Xue H, Gao H, Fang S, Hao Z, Liao X, Tan J. Understanding the role of Radix Paeoniae Alba polysaccharide for corn starch gel amelioration: Physicochemical, structural, and digestive properties. Int J Biol Macromol 2025; 295:139564. [PMID: 39778828 DOI: 10.1016/j.ijbiomac.2025.139564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/15/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
To ameliorate the limitations of corn starch (CS) processing, Radix Paeoniae Alba polysaccharide (RPAP) was used to modulate the physicochemical and digestive properties of CS. The main purpose of this paper is to investigate the effects of RPAP on the pasting, rheological, thermal, structural, and digestive properties of CS. The results show that the addition of RPAP could increase the peak viscosity and final viscosity of CS gel, and RPAP could increase the apparent viscosity, storage modulus, loss modulus, hardness, and strength of CS gel, implying that RPAP can effectively improve the pasting and viscoelasticity properties of CS. Moreover, RPAP could be bound to CS through non-covalent interaction, and RPAP could improve the relative crystallinity and thermal stability, whereas decreased the spin relaxation time (T2) of CS from 312.16 to 203.25 ms. The microstructure of CS-RPAP gels showed a honeycomb-like porous structure, and RPAP could increase the pore size and thickness of CS-RPAP gels. Furthermore, RPAP could inhibit the digestibility of CS, while increased the resistant starch (RS) content. The findings can provide important references for expanding the application of starch-based products in various fields including food industry, pharmaceuticals, textiles, papermaking, and biodegradable materials.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
4
|
Zhang S, Zhang R, Hu Y, Chen H, Chen W, Zhang M, Liu H, Liu S, Pei J, Gao S. Structural and physicochemical properties of pea starch dual-treated with dry heating and galactomannans. Int J Biol Macromol 2025; 294:139374. [PMID: 39743102 DOI: 10.1016/j.ijbiomac.2024.139374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The research on the combination of starch and galactomannans (GM) with dry heat treatment (DHT) is currently insufficient, which hinders the starch application. In this study, the impacts of dry heat treatment and GM complex on the structural, gelatinization properties, and digestibility of pea starch (PS) were investigated. The gelatinization viscosity and gel hardness of dry heated-PS were decreased. Moreover, the relative crystallinity of PS was improved when individually treated by dry heating and GM complex, resulting in the decline of digestibility. Besides, the long molecular chains (DP ≥ 37) proportion and the semi-crystalline lamellae thickness of the PS-GM-DHT complex were increased, which was relevant to the ratio of galactose/mannose residues in galactomannan. In particular, PS was more prone to complex with locust bean gum following dry heat treatment, which has the highest mannose ratio. The present study provided the fundamental information to promote the starch application further.
Collapse
Affiliation(s)
- Si Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Rui Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yijing Hu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China
| | - Hang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Shuang Liu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.
| | - Shanshan Gao
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Wang Z, Xiao Z, Ye J, Li J, Zhang X, Li T, Wang L. Effect of Superheated Steam Treatment on Rice Quality, Structure, and Physicochemical Properties of Starch. Foods 2025; 14:626. [PMID: 40002069 PMCID: PMC11854516 DOI: 10.3390/foods14040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the effect of superheated steam treatment on the cooking and eating quality of rice, and further explore the effect of superheated steam treatment on the structure, gel properties, and rheological behavior of rice starch. After superheated steam treatment, the optimal cooking time of rice was effectively reduced by 26.9%, and the taste value of rice was significantly improved, from 78.45 to 84.20, when treated at 155 °C for 10 s. Superheated steam treatment significantly reduced the amylose and protein content, and increased the average particle size of rice starch. Compared with the control, the enthalpy change (ΔH) in the superheated steam treatment rice starch decreased notably from 6.53 to 5.28 after treatment, the relative crystallinity of the starch was significantly reduced from 21.20 to 10.89, and the short-term order of the starch was enhanced owing to the rearrangement of starch molecules after gelatinization. The starch structure was more compact and orderly after the superheated steam treatment, which significantly improved the hardness, viscoelasticity, and strength of the gel. These results indicate that superheated steam treatment improves the quality of rice by changing the structure of rice starch.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ziwei Xiao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Jing Ye
- Academy of Jiangsu Grain Science and Technology Innovation, Nanjing 210003, China
| | - Juan Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
6
|
Zhang L, Dong L, Zhang H, He Y, Ma X. Effects of yeast β-glucan on gelatinization, structure and digestibility of potato starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1952-1960. [PMID: 39440700 DOI: 10.1002/jsfa.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Potato starch (PS) is widely used in food, but its application is limited because of its poor heat resistance and easy aging. Therefore, it is necessary to adopt some modification methods to improve its performance and expand its application range. RESULTS To improve these shortcomings of PS, the effect of yeast β-glucan (YG) at different concentrations (0%, 1%, 2% and 3%, w/v) on the gelatinization, structure and in vitro digestive properties of PS were investigated. The interaction of YG with PS was different because of different molecular weights. The addition of YG reduced the peak viscosity and increased the final viscosity of PS. YG made the texture of PS gel softer, and the effect of low molecular weight YG was more obvious. YG enhanced the thermal stability of PS. Fourier transform infrared spectroscopy showed that YG and PS interacted through hydrogen bonds. In addition, YG reduced the digestibility of PS in vitro. CONCLUSION Collectively, the addition of β-glucan to PS can serve as a new approach to enhance the technological properties of PS in food applications. These results will provide theoretical basis for PS to develop into functional food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lin Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Hua Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
7
|
Luo Y, Zhou Y, Xiao N, Xie X, Li L. Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes. Food Res Int 2025; 202:115799. [PMID: 39967122 DOI: 10.1016/j.foodres.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Zhang R, Luo D, Yue C, Bai Z, Li P, Wang L, Han S. Effects of phosphorylation-modified long-chain inulin on wheat starch: Physicochemical properties and retrogradation behaviors. Food Chem X 2024; 24:101860. [PMID: 39974717 PMCID: PMC11838115 DOI: 10.1016/j.fochx.2024.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 02/21/2025] Open
Abstract
In this research, modification of long-chain inulin (FXL) through phosphorylation (PFXL) to enhance its application in wheat starch (WS) and starch-based products. The impacts of PFXL on the pasting, rheology, microstructure, and retrogradation characteristics of WS were researched. The findings revealed that PFXL significantly reduced both the breakdown and setback values of WS. Additionally, the incorporation of PFXL reduced the viscoelasticity of WS paste and improved its fluidity. Scanning electron microscopy indicated that higher PFXL levels (>5 %) produced small fragments that partially covered the three-dimensional honeycomb structure of WS paste, thereby reducing water loss during short-term storage. PFXL also altered water distribution in WS gels, depending on concentration and storage duration. X-ray diffraction and Fourier-transform infrared spectroscopy suggested that PFXL effectively inhibited amylopectin recrystallization. Compared to FXL, PFXL exhibited a more pronounced ability to inhibit the aging of WS in short- and long-term storage.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Chonghui Yue
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Libo Wang
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
- Henan Engineering Research Center of Food Material, Henan University of Science & Technology, 471023 Luoyang, Henan Province, China
| |
Collapse
|
9
|
Dai C, Zhao D, Zhang W, Guo L, Kang C, Chen Z, Cui X, Zhou T, Wang C, Xu T, Yang Y. Comparative analysis of antioxidant activity and structural changes of Gastrodiae Rhizoma polysaccharides between sulfur-fumigation and nonsulfur-fumigation. Front Nutr 2024; 11:1477689. [PMID: 39698250 PMCID: PMC11653586 DOI: 10.3389/fnut.2024.1477689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Gastrodiae Rhizoma (referred to Tianma in Chinese), the dried tuber of Gastrodia elata Bl. (Orchidaceae), is utilized as a medicine-food homology product. Sulfur fumigation is commonly employed in the processing of Gastrodiae Rhizoma (GR). Polysaccharides are a crucial active substance produced in GR, yet the impacts of sulfur fumigation on them remain unelucidated. Methods This study aimed to optimize the hot water extraction conditions of polysaccharides from sulfur-fumigated GR (SGCPs) and nonsulfur-fumigated GR (NGCPs). The research explored the effects of sulfur fumigation on the structure and antioxidant activity of GR polysaccharides. Results and discussion The results showed that the optimal extraction conditions for SGCPs and NGCPs were 67°C for 31 min with a liquid-to-material ratio of 15 mL/g and 64°C for 32 min with a liquid-to-material ratio of 17 mL/g, respectively. Compared with NGCPs, SGCPs exhibited significantly reduced DPPH radical, hydroxyl radical, ABTS+ radical scavenging activity, and Fe2+ chelating ability. Moreover, both NGCPs and SGCPs offered significant protective effects against H2O2 -induced oxidative damage in RAW264.7 cells, but the protective effect of SGCPs was significantly lower than that of NGCPs. NMR analyses revealed that the main chain connections of SGCP3 and NGCP3 were both →4)-α-D-Glcp-(1→, and sulfur fumigation increased the number of repeating unit structures →4)-D-Glcp-(1 → in GR polysaccharides. SGCP3 and NGCP3 had the same monosaccharides composition but different molar ratios, with molecular weights of 727,650 and 39,991 Da, respectively. In general, sulfur fumigation reduced the antioxidant activities of GR polysaccharides by altering their structure and composition.
Collapse
Affiliation(s)
- Chunyan Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
- Postdoctoral Fellow, Mobile Station of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Dan Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenping Zhang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
| | - Lanping Guo
- Chinese Medica Resources Center, China Academy of Chinese Medicinal Sciences, Beijing, China
| | - Chuanzhi Kang
- Chinese Medica Resources Center, China Academy of Chinese Medicinal Sciences, Beijing, China
| | - Zhuowen Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
| | - Tingting Xu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
- Kunming Medical University Haiyuan College, Kunming, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, China
| |
Collapse
|
10
|
Sun Z, Chen J, Dai T, Lv C, Liang R, Liu W, Liu C, Deng L. Effect of maturity on the drying characteristics of lotus seed and molecular structure, gelation and digestive properties of its starch. Carbohydr Polym 2024; 345:122589. [PMID: 39227113 DOI: 10.1016/j.carbpol.2024.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Maturity and drying treatment are important factors affecting the processing characteristics of lotus seeds and its starch. This study aimed to investigate the effect of maturity (from low to high-M-1, M-2, M-3, M-4) on far-infrared drying kinetics of lotus seeds, and on the variation of structure, gelation and digestive properties of lotus seed starch (LSS) before and after drying. As the maturity increased, the drying time reduced from 5.8 to 1.0 h. The reduction of drying time was correlated with the decrease of initial moisture content, the increase of water freedom and the destruction of tissue structure during ripening. The increased maturity and drying process altered the multiscale structure of LSS, including an increase in amylose content, disruption of the short-range structure, and a decrease in relative crystallinity and molecular weight. The viscosity, pasting temperature and enthalpy of LSS decreased during ripening, and drying treatment caused the further decrease. The digestibility of LSS increased during ripening and drying. Lotus seeds at M-4 would be optimal for obtaining shorter drying time, lower pasting temperature and enthalpy, and higher digestibility. This study provided theoretical guidance for achieving effective drying process and screening LSS with suitable processing properties through maturity sorting.
Collapse
Affiliation(s)
- Zhixia Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Chengliang Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China.
| |
Collapse
|
11
|
Pan W, Qi X, Huang Z, Shen M, Wen H, Xie J. Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel. Int J Biol Macromol 2024; 281:136267. [PMID: 39366626 DOI: 10.1016/j.ijbiomac.2024.136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm-1), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T2), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Zhang L, Zhao J, Li F, Jiao X, Yang B, Li Q. Effects of amylose and amylopectin fine structure on the thermal, mechanical and hydrophobic properties of starch films. Int J Biol Macromol 2024; 282:137018. [PMID: 39481712 DOI: 10.1016/j.ijbiomac.2024.137018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The fine structures of pumpkin, potato, wheat, cassava, and pea starches were determined, followed by an evaluation of how these structures affected the properties of starch films. The structures significantly influenced film properties. Starches with larger molecular weights exhibited greater thermal stability. The tensile strength of starch film was negatively associated with the amylose chain length (r = -0.88, p < 0.05). The chain length distributions of amylose and amylopectin affected the mechanical properties of starch films by influencing structure ordering, supported by the positive correlation between the double helix content and the tensile strength (r = 0.95, p < 0.05). The amylopectin B1, B2, and B3 chains increased film mechanical strength. Conversely, amylopectin A-chains reduced the mechanical strength. The water contact angle was negatively correlated with the B3 chain proportion (r = -0.93, p < 0.05). The pumpkin starch exhibited the highest tensile strength (14.29 MPa), while the wheat starch film showed the highest water contact angle (112°). This study offers valuable insights into the structure-function relationships of starch films, thereby facilitating the acquisition of starch films with enhanced strength and stability through screening or designing starch structures. Consequently, this will expand the application of starch films as packaging materials in various food products.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
13
|
Fei W, Rong L, Qi X, Chen X, Luo Y, Wen H, Xie J. Effects of Premna microphylla turcz polysaccharide on rheological, gelling, and structural properties of mung bean starch and their interactions. Food Res Int 2024; 189:114561. [PMID: 38876594 DOI: 10.1016/j.foodres.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to investigate the effects of Premna microphylla turcz polysaccharide (PMP) on the rheological, gelling, and structural properties of mung bean starch (MBS) and their potential interaction mechanism. Results showed that the addition of PMP significantly improved the pasting properties, rheological properties, water holding capacity, and thermostability of MBS. The texture tests showed a decrease in hardness, gumminess and chewiness, indicating the retrogradation of MBS was inhibited. Scanning electron microscopy (SEM) suggested the MBS-PMP composite gels expressed a denser microstructure with obvious folds and tears. Moreover, the results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and interaction force tests revealed the main forces between MBS and PMP were hydrogen bonds and hydrophobic interactions to form composite gels with great gelling properties. These results facilitate the practical application of MBS and PMP, and provide some references for understanding the interaction mechanism between starch and polysaccharide.
Collapse
Affiliation(s)
- Weiqi Fei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Kong J, Song J, Wen H, Yu Q, Chen Y, Xie J. A comparative study on the gel and structural characteristics of starch from three rice varieties when combined with Mesona chinensis polysaccharides. Int J Biol Macromol 2024; 269:132114. [PMID: 38714279 DOI: 10.1016/j.ijbiomac.2024.132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Mesona chinensis polysaccharide (MCP) has excellent gel-forming characteristic, previous studies showed that MCP could affect the gelling and structural properties of rice starch, but the effect of MCP on rice starch from different types is not clarified. In this study, the effects of MCP on the pasting, rheological, and structural characteristics of glutinous rice starch (GRS), japonica rice starch (JRS), and indica rice starch (IRS) were investigated. The results showed that GRS-MCP has the best viscosity, its peak and final viscosities are higher than JRS-MCP and IRS-MCP. The gel network structure was enhanced by MCP in the order of IRS > JRS > GRS, which was reflected by greater elasticity, higher gel strength and hardness, and less free water in JRS-MCP and IRS-MCP. MCP also enhanced the ordered structure and thermal stability of the three starch gels, which is conducive to their application in the market. These findings provide new theoretical insights to produce rice starch-based foods.
Collapse
Affiliation(s)
- Jia Kong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiajun Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi 330200, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi 330200, China.
| |
Collapse
|
15
|
Pan J, Shi Y, Zou J, Zhang X, Xin B, Zhai B, Guo D, Sun J, Luan F. Preparation technologies, structural features, and biological activities of polysaccharides from Mesona chinensis Benth.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117979. [PMID: 38412892 DOI: 10.1016/j.jep.2024.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton) is an important medicinal and edible plant also known as the Hsian-tsao in China and Southeast Asian countries. It is cold in nature and sweet in taste, with the effects of clearing heat, relieving heatstroke and diuretic, and traditionally used to treat heatstroke, erysipelas, hypertension, joint pain and other diseases in folk medicine. It is also a popular supplement with the function of detoxifying and heat-clearing use in Asia. It is used to be processed into the popular tea, Bean jelly, and so on. Published studies have demonstrated that polysaccharides from M. chinensis (MCPs) are one of the principal bioactive ingredients with a variety of health-promoting effects in the prevention and treatment of diseases, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and other pharmacological properties. AIM OF THE REVIEW This review aims to compile the extraction and purification methods, structural characteristics, pharmacological activities including the mechanism of action of MCPs, and to further understand the applications of M. chinensis in order to lay the foundation for the development of MCPs. MATERIALS AND METHODS By inputting the search term "Mesona chinensis polysaccharides", relevant research information was obtained from databases such as PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI). RESULTS More than 40 polysaccharides have been extracted from M. chinensis, different extraction and purification methods have been described, as well as the structural features and pharmacological activities of MCPs have been systematically reviewed. Polysaccharides, as important components of M. chinensis, were mainly extracted by methods such as hot water dipping method, hot alkali extraction method, enzyme-assisted extraction method and ultrasonic-assisted extraction method, subsequently obtained by decolorization, deproteinization, removal of other small molecules and separation on various chromatographic columns. The chemical composition and structure of MCPs show diversity and have a variety of pharmacological activities, including antioxidant, immunomodulation, anti-inflammatory, hepatoprotective, anti-tumor, hypoglycemic, regulation of gut microbiota, and so on. CONCLUSIONS This article systematically reviews the research progress of MCPs in terms of extraction and purification, structural characteristics, rheological gel properties, pharmacological properties, and safety assessment. The potentials and roles of M. chinensis in the field of medicine, functional food, and materials are further highlighted to provide references and bases for the high-value processing and utilization of MCPs.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
16
|
Ren L, Zheng Z, Fu H, Yang P, Xu J, Yang D. Hot air-assisted radio frequency drying of corn kernels: the effect on structure and functionality properties of corn starch. Int J Biol Macromol 2024; 267:131470. [PMID: 38599425 DOI: 10.1016/j.ijbiomac.2024.131470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.
Collapse
Affiliation(s)
- Liuyang Ren
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhaohui Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hanyu Fu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Pei Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jingshen Xu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Deyong Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Liu W, McClements DJ, Jin Z, Chen L. Design of colloid structure to realize gel salt reduction: a review. Crit Rev Food Sci Nutr 2024; 65:2281-2294. [PMID: 38560993 DOI: 10.1080/10408398.2024.2331565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Excessive consumption of salt is associated with increased incidence of cardiovascular diseases, hypertension, diabetes, and other health issues. However, it is challenging to find appropriate strategies that balance sensory qualities while achieving sodium reduction as salt plays a crucial role in providing desired appearance, texture, and taste. The impact of hydrocolloid properties (addition and type) on saltiness perception were reviewed. Additionally, considering the interactions between food components, both covalent and noncovalent, we propose designing specialized colloidal structures capable of binding sodium ions to enhance salt-taste perception. The effects of hydrocolloids on the physicochemical, structural, and sensory qualities of gel foods are then discussed. Finally, by addressing current issues with low-salt foods and consumer demands, we provide a future outlook for low-salt food development. The selection of suitable hydrocolloids and precise control of the addition are crucial considerations for achieving salt reduction. The interaction between hydrocolloids and other food components can be utilized to design specialized colloidal structures, thereby accomplishing gel-based salt reduction and enhancing properties. This review serves as a theoretical reference for developing healthy, nutritious, and flavorful low-salt foods that can aid in the prevention and mitigation of diseases associated with excessive salt consumption.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Niu G, You G, Liu X. Interactions of hsian-tsao polysaccharide with corn starch to reduce its in vitro digestibility. Int J Biol Macromol 2024; 265:130951. [PMID: 38503373 DOI: 10.1016/j.ijbiomac.2024.130951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Hsian-tsao polysaccharide (HP) with preferable bioactivities was used to produce starchy gel foods. This study elucidated how interactions of HP (0-0.6 %, w/v) with gelatinized corn starch (CS, 6 %, w/v) reduced in vitro digestibility of CS. The CS digestibility (82.85 %, without HP) was reduced to 68.85 % (co-heated) and 74.75 % (non-co-heated) when 0.6 % HP was added, demonstrating that HP reduced the CS digestibility to a larger extent under co-heating by both HP-CS interactions and inhibiting digestive enzyme activities by HP which was dominated under non-co-heating. Moreover, when co-heated, HP bonded to the amylose of CS via physical forces with a composite index of 21.95 % (0.4 % HP), impeded CS swelling and promoted CS aggregation with the average particle size increased to 42.95 μm (0.6 % HP). Also, the HP-CS complexes formed strong association network structures that increased their apparent viscosity and digestive fluid viscosity. Additionally, HP enhanced the short-range ordered structure and crystal structure of CS. These results evidenced that HP-CS interactions significantly reduced the CS digestibility by forming physical barriers, viscosity effects, and ordered structures, to hinder the enzymes from accessing starch matrices. This laid a foundation for applying HP to starchy foods with a low predicted glycemic index.
Collapse
Affiliation(s)
- Gaigai Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Gang You
- Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China.
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
19
|
Lan G, Xie S, Duan Q, Huang W, Huang W, Zhou J, Chen P, Xie F. Effect of soybean polysaccharide and soybean oil on gelatinization and retrogradation properties of corn starch. Int J Biol Macromol 2024; 264:130772. [PMID: 38467217 DOI: 10.1016/j.ijbiomac.2024.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
This investigation stems from the wide interest in mitigating starch retrogradation, which profoundly impacts the quality of starch-based food, garnering significant attention in the contemporary food industry. Our study delves into the intricate dynamics of soluble soybean polysaccharide (SSPS) and soybean oil (SO) when added individually or in combination to native corn starch (NCS), offering insights into the gelatinization and retrogradation phenomena. We observed that SSPS (0.5 %, w/w) hindered starch swelling, leading to an elevated gelatinization enthalpy change (∆H) value, while SO (0.5 %, w/w) increased ∆H due to its hydrophobicity. Adding SSPS and/or SO concurrently reduced the viscosity and storage modulus (G') of starch matrix. For the starch gel (8 %, w/v) after refrigeration, SSPS magnified water-holding capacity (WHC) and decreased hardness through hydrogen bonding with starch, while SO increased hardness with limited water retention. Crucially, the combination of SSPS and SO maximized WHC, minimized hardness, and significantly inhibited starch retrogradation. The specific ratio of SSPS to SO was found to significantly influence the starch properties, with a 1:1 ratio resulting in the most desirable quality for application in starch-based foods. This study offers insights for utilizing polysaccharides and lipids in starch-based food products to extend shelf life.
Collapse
Affiliation(s)
- Guowei Lan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shumin Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinfeng Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Yu Y, Hao Z, Wang B, Deng C, Hu J, Bian Y, Wang T, Zheng M, Yu Z, Zhou Y. Effects of two celery fibers on the structural properties and digestibility of glutinous rice starch: A comparative study. Int J Biol Macromol 2024; 264:130776. [PMID: 38471614 DOI: 10.1016/j.ijbiomac.2024.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.
Collapse
Affiliation(s)
- Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jingwei Hu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Zheng J, Wang N, Yang J, You Y, Zhang F, Kan J, Wu L. New insights into the interaction between bamboo shoot polysaccharides and lotus root starch during gelatinization, retrogradation, and digestion of starch. Int J Biol Macromol 2024; 254:127877. [PMID: 37926313 DOI: 10.1016/j.ijbiomac.2023.127877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
In this study, the interaction between bamboo shoot polysaccharides (BSP) and lotus root starch (LS) during gelatinization, retrogradation, and digestion of starch was investigated. The addition of BSP inhibited the gelatinization of LS and decreased the peak viscosity, valley viscosity, and final viscosity. Amylose leaching initially increased and then decreased with the increase in BSP addition. The apparent viscosity and viscoelasticity of LS decreased with the increase in BSP addition. Moreover, 3 % BSP increased the hardness and cohesiveness of LS gel, whereas 6 %-15 % BSP decreased them. In addition, 3 %-6 % BSP promoted the uniform distribution of water molecules in the starch paste, whereas the addition of 12 % and 15 % BSP resulted in the inhomogeneous distribution of the water. The retrogradation degree of LS gel gradually increased with the increase in BSP addition from 3 % to 6 %, whereas 9 %-15 % BSP restricted the short-term and long-term retrogradation of LS. After 12 % BSP was added, the RDS content reduced by 11.6 %, the RS content significantly increased by 75 %, and the digestibility of starch decreased. This work revealed the interaction between BSP and LS during starch gelatinization, retrogradation, and digestion to improve the physicochemical properties and digestive characteristics of LS.
Collapse
Affiliation(s)
- Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
22
|
Luo Y, Liu X, Ke Z, Yang J, Li Y, Xie X, Li L. Insight into the improvement in pasting and gel properties of waxy corn starch by critical melting treatments. Int J Biol Macromol 2023; 253:127285. [PMID: 37827408 DOI: 10.1016/j.ijbiomac.2023.127285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
To improve the pasting and gel properties of waxy corn starch (WCS), the native starch was modified by critical melting (CM) at the onset temperature (TO), peak temperature (TP), and conclusion temperature (TC) (labeled CMO, CMP, and CMC respectively). CM treatments significantly enhanced the thermal stability of the WCS, as indicated by the increase in the peak gelatinization temperature, pasting temperature, and peak time. In addition, after CMP treatment, the storage modulus, hardness, gumminess, springiness, and chewiness of starch gels significantly increased by 43.29 %, 31.14 %, 23.36 %, 8.26 %, and 61.43 %, respectively, and the syneresis rate significantly decreased by 19.69 % (p < 0.05). These results indicated that CMP treatments significantly improved the gelling ability and freeze-thaw stability of the WCS. These results are ascribed to the partial disruption and enhanced rearrangement of the starch crystalline structure. CMP treatment induced the crystalline structure of starch to be partially disrupted and a hard structure was formed on the surface of starch granules. The hard structure in CMP-treated starch supplied more attachment points for crystalline structure rearrangement during gelatinization. Therefore, the above results indicated that CMP treatments can be used to modify starch to improve the pasting and gel properties of starch-based food products.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhibo Ke
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinjin Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Zhang S, Yue M, Yu X, Wang S, Zhang J, Wang C, Ma C. Interaction between potato starch and barley β-glucan and its influence on starch pasting and gelling properties. Int J Biol Macromol 2023; 253:126840. [PMID: 37696374 DOI: 10.1016/j.ijbiomac.2023.126840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The interactions between potato starch (PtS) and barley β-glucan (BBG) were investigated by preparing PtS-BBG mixtures, and the pasting, rheological, gelling and structural properties were evaluated. Rapid viscosity analysis suggested that BBG reduced the peak and breakdown viscosity, while increasing the setback viscosity of PtS. PtS-12%BBG showed the lowest leached amylose content (12.02 ± 0.36 %). The particle size distribution pattern of PtS was not changed with the addition of BBG, and the median diameter of PtS-12%BBG (88.21 ± 0.41 μm) was smaller than that of PtS (108.10 ± 6.26 μm). Rheological results showed that PtS and PtS-BBG gels exhibited weak gel behaviors, and BBG could remarkably affect the elastic and viscous modulus of PtS gels. Textural analysis suggested that the strength and hardness of PtS gels were increased when few BBG (<6 %, w/w) was present in the system. BBG improved the freeze-thaw stability of PtS gels. Structural analysis indicated that hydrogen bonds were the main force in the PtS-BBG systems. These results indicated that BBG interacted with starch via hydrogen bonds, which delayed starch gelatinization and improved gelling properties of PtS gels. Overall, this study gained insights into starch-polysaccharide interactions and revealed the possible applications of BBG in food processing.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaowei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
24
|
Zhao K, Jia Z, Hou L, Xiao S, Yang H, Ding W, Wei Y, Wu Y, Wang X. Study on physicochemical properties and anti-aging mechanism of wheat starch by anionic polysaccharides. Int J Biol Macromol 2023; 253:127431. [PMID: 37838130 DOI: 10.1016/j.ijbiomac.2023.127431] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The anti-aging effects of two anionic polysaccharides AG (sodium alginate)/SSPS (soluble soybean polysaccharide) and WS (wheat starch) were evaluated, and their different mechanisms were explored. The rheological properties, gelatinization properties and aging properties were characterized. The addition of AG and SSPS changed the gelatinization parameters of WS, decreased the peak viscosity, breakdown viscosity and setback viscosity, and enhanced the fluidity of the gel system. Additionally, the starch molecular orderliness experiment showed that the relative crystallinity of starch gels decreased with the increase in AG and SSPS concentrations, indicating that the rearrangement of amylopectin was disturbed, which inhibited the cross-linking of starch molecules. The water state analysis showed that the hydrophilicity of AG and SSPS and their interactions with starch molecules influenced the relaxation behavior of water protons in the gel system in a concentration-dependent manner. In conclusion, the addition of AG and SSPS could significantly inhibit the aging of WS gels, probably due to the competition effect of AG and SSPS on water and the interaction with starch molecules. The present study results would provide new theoretical insights into WS-based food research.
Collapse
Affiliation(s)
- Kaifeng Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Ziyang Jia
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Lili Hou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Shensheng Xiao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Heng Yang
- Angel Yeast Co., Ltd., 168 Chengdong Avenue, Yichang, Hubei, China
| | - Wenping Ding
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Yanmei Wei
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Yan Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| |
Collapse
|
25
|
Zhao H, Xu Q, Yan T, Zhang H, Yang Y. Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch. Polymers (Basel) 2023; 15:4721. [PMID: 38139972 PMCID: PMC10747244 DOI: 10.3390/polym15244721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A combination of starch and hydrocolloids is a facile method for physically modifying native starch. Bletilla striata polysaccharide (BSP) is a glucomannan with various applications in the food and cosmetic industries as a thickening agent. This study focused on investigating the impact of BSP on the pasting, rheological and adhesive properties of wheat starch (WS). Results from a Rapid Visco-Analyzer (RVA) revealed that the addition of BSP (below 0.2%) resulted in increases in peak viscosity, breakdown and setback values. However, for the addition of BSP at a higher concentration (0.3%), the opposite trend was observed. Rheological measurements indicated that the presence of BSP increased the viscoelastic properties of WS-BSP gels. TGA results demonstrated that the presence of BSP promoted the thermal stability of starch. FTIR results indicated the short-range order structure decreased at low addition concentrations of BSP (0.05% and 0.1%) and increased with higher BSP addition concentrations (0.2% and 0.3%). SEM observation showed that the BSP improved the hydrophilic property of starch gels and decreased the size of pores in the starch gels. Further, the mechanical properties of paper samples unveiled that the present of BSP in starch gels obviously increased its bonding strength as an adhesive.
Collapse
Affiliation(s)
- Haibo Zhao
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
| | - Qiang Xu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
| | - Tianlan Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China;
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Wang N, Wu L, Yang J, You Y, Zhang F, Kan J, Zheng J. Lotus starch/bamboo shoot polysaccharide composite system treated via ultrasound: Pasting, gelling properties and multiscale structure. Food Res Int 2023; 174:113605. [PMID: 37986532 DOI: 10.1016/j.foodres.2023.113605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the effects of ultrasound treatment on the physicochemical properties, digestion properties, and multiscale structure of a lotus root starch (LS) and bamboo shoot polysaccharide (BSP) composite system. It also preliminarily revealed the mechanism underlying the modification effect of ultrasound treatment. After 180-360 W ultrasound treatment, the viscosity, thixotropy, and gel viscoelasticity of the LS/BSP paste increased. However, treatment with the ultrasound power of 540 and 720 W decreased viscoelasticity. After 14 days of retrogradation, the hardness and cohesiveness of the LS/BSP gel increased under 180 and 360 W ultrasound treatment but decreased under 540 and 720 W ultrasound treatment. After 540 W ultrasound treatment, RDS content decreased by 17.2 % and resistant starch content increased by 32.5 %. After 180 min of in vitro digestion, the hydrolysis rate of LS/BSP decreased from 97.82 % to 93.13 % as the ultrasound power increased to 540 W. Ultrasound promoted the uniform dispersion of BSP in the starch paste and the movement, orientation, rearrangement, and aggregation of starch and BSP molecular chains. These effects further enhanced the interaction between BSP and starch, resulting in the formation of a dense paste structure with strong resistance to digestive enzymes. This work revealed the mechanism of the effects of ultrasound treatment on LS/BSP and found that 360-540 W ultrasound treatment could improve the physicochemical properties and digestion properties of LS/BSP.
Collapse
Affiliation(s)
- Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
27
|
Gan Z, Zhang M, Xu S, Li T, Zhang X, Wang J, Wang L. Comparison of quinoa and highland barley derived dietary fibers influence on the physicochemical properties and digestion of rice starch. Food Res Int 2023; 174:113549. [PMID: 37986428 DOI: 10.1016/j.foodres.2023.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the potential of highland barley and quinoa dietary fibers, rich in β-glucan and pectin respectively, as cost-effective and nutritionally valuable physical modifiers for rice starch (RS). HPAEC revealed differences between the monosaccharide composition of soluble and insoluble dietary fibers sourced from highland barley and quinoa (HSDF, HIDF, QSDF and QIDF). Results from both RVA and DSC analysis revealed that the addition of low amounts of dietary fiber significantly modified the pasting properties of RS. Notably, the addition of quinoa soluble dietary fiber (QSDF) significantly inhibits the formation of a stable gel network in rice starch, even at low concentrations (0.1 %), as confirmed by rheological measurements. Furthermore, the incorporation of QSDF effectively reduces the content of rapidly digestible starch in rice starch by 15.6 % and increases the content of slowly digestible starch, from 23.36 % ± 3.02 % to 31.07 % ± 3.98 %. By leveraging the compositional richness of these fibers, this research opens up novel opportunities for developing functional food products with improved nutritional profiles, as well as for improving texture and reducing glycemic index (GI) in starch-based foods.
Collapse
Affiliation(s)
- Zhicong Gan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Shunqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Junren Wang
- Institute of Modern Agriculture, Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd., Nanjing 211800, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
28
|
Zhao L, Jin X, Wu J, Chen H. Effects of Qingke β-glucan with different molecular weights on pasting, gelation, and digestive properties of rice starch. Food Chem X 2023; 19:100803. [PMID: 37780292 PMCID: PMC10534155 DOI: 10.1016/j.fochx.2023.100803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to investigate the impact of Qingke β-glucan (QBG) concentrations and molecular weights (MWs) on rice starch (RS). With the increasing concentrations and MWs, the pasting properties and gelatinization enthalpy of RS/QBG suspension decreasing was observed by using rheometer and differential thermal scanning analysis, respectively, which was consistent with the results of X-ray diffraction. In Infrared spectrum, QBG combined with leached amylose via hydrogen bonds, thus preventing the reaggregation of RS particles and inhibiting the short-term retrogradation of RS. The results of scanning electron microscopy and confocal laser scanning microscopy suggested that interaction between QBG and RS changed RS microstructure, reduced the leached amylose of the starch, and thus altered RS/QBG digestibility that the digestion rate of RS/QBG decreased with the incrementing QBG MWs at in vitro simulated experiments. These results provide further understanding and expand potential application to starch-based foods.
Collapse
Affiliation(s)
- Lan Zhao
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xinyan Jin
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jia Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huibin Chen
- School of Food Science and Engineering, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
29
|
Zhao H, Zhang H, Xu Q, Zhang H, Yang Y. Thermal, Rheological, Structural and Adhesive Properties of Wheat Starch Gels with Different Potassium Alum Contents. Molecules 2023; 28:6670. [PMID: 37764445 PMCID: PMC10534481 DOI: 10.3390/molecules28186670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Wheat starch (WS) is a common adhesive material used in mounting of calligraphy and paintings. Potassium alum (PA) has indeed been used for many centuries to modify the physicochemical properties of starch. Thermal analysis revealed that the presence of PA led to an increase in the gelatinization temperature and enthalpy of the starch gels. The leached amylose and the swelling power of the starch gels exhibited a maximum at the ratio of 100:6.0 (WS:PA, w/w). The rheological properties of starch gels were consistent with changes in the swelling power of starch granules. SEM observations confirmed that the gel structure became more regular, and the holes grew larger with the addition of PA below the ratio of 100:6.0 (WS:PA, w/w). The short-range molecular order in the starch gels was enhanced by the addition of PA, confirmed by FT-IR analysis. Mechanical experiments demonstrated that the binding strength of the starch gels increased with higher PA concentrations and decreased significantly after the aging process. TGA results revealed that PA promoted the acid degradation of starch molecules. This study provides a detailed guide for the preparation of starch-based adhesive and its applications in paper conservation.
Collapse
Affiliation(s)
- Haibo Zhao
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Hongbin Zhang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Qiang Xu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Wang Z, Zhong Z, Zheng B, Zhang Y, Zeng H. Effects of Porphyra haitanensis polysaccharides on gelatinization and gelatinization kinetics of starches with different crystal types. Int J Biol Macromol 2023:125117. [PMID: 37247716 DOI: 10.1016/j.ijbiomac.2023.125117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The effects of Porphyra haitanensis polysaccharide (PHP) on the gelatinization and gelatinization kinetics of corn starch (CS), potato starch (PS) and lotus seed starch (LS) were studied. The gelatinization, rheological and thermal enthalpy properties of the samples were measured by a rapid viscosity analyzer (RVA), a rheometer, and a differential scanning calorimeter (DSC), respectively. And the kinetic equations were further established. RVA confirmed that the addition of 0.4 %, 0.8 % and 1.2 % PHP elevated the gelatinization viscosity of CS and LS but decreased that of the PS, and also elevated the thermal balance of CS, PS, and LS, especially PS (The breakdown viscosity was decreased to 363.00 ± 6.08, 370.00 ± 1.15, and 362.00 ± 0.58, respectively). And the rheometer indicated that the addition of 0.4 %, 0.8 % and 1.2 % PHP improved the apparent viscosity of CS, PS and LS, especially PS (The consistency coefficient was increased to 18.26 ± 0.02, 21.71 ± 0.04, and 23.26 ± 0.01, respectively). Eventually, DSC displayed that the addition of 0.4 %, 0.8 % and 1.2 % PHP extended the gelatinization temperature and enthalpy of CS, PS, and LS, especially PS. Among them, the gelatinization temperature (63.40 ± 0.03, 70.26 ± 0.02 and 74.61 ± 0.01, respectively) and the gelatinization enthalpy (1.55 ± 0.01) of PS increased the most with 1.2 % PHP. Moreover, gelatinization kinetics displayed that the addition of 0.4 %, 0.8 % and 1.2 % PHP decreased the rate constants of CS, PS, and LS and accelerated the activation energies of CS (666.37 ± 4.23, 623.89 ± 4.21 and 558.39 ± 2.35, respectively) and PS (752.53 ± 4.13, 699.61 ± 3.78 and 662.15 ± 4.52, respectively) while reducing that of the LS (938.87 ± 3.38, 669.98 ± 4.61 and 491.48 ± 4.29, respectively). Therefore, the addition of PHP at all concentrations inhibited the gelatinization procedure of CS and PS but promoted that of the LS. This study provided a theoretical basis for the creation of new products based on PHP and starch.
Collapse
Affiliation(s)
- Zhiyun Wang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhong
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
31
|
Zeng X, Jiang W, Li H, Li Q, Kokini JL, Du Z, Xi Y, Li J. Interactions of Mesona chinensis Benth polysaccharides with different polysaccharides to fabricate food hydrogels: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Hu N, Zhao C, Li S, Qi W, Zhu J, Zheng M, Cao Y, Zhang H, Xu X, Liu J. Postharvest ripening of newly harvested corn: Structural, rheological, and digestive characteristics of starch. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
33
|
Putra LO, Suharti S, Sarwono KA, Sutikno S, Fitri A, Astuti WD, Rohmatussolihat R, Widyastuti Y, Ridwan R, Fidriyanto R, Wiryawan KG. The effects of heat-moisture treatment on resistant starch levels in cassava and on fermentation, methanogenesis, and microbial populations in ruminants. Vet World 2023; 16:811-819. [PMID: 37235161 PMCID: PMC10206961 DOI: 10.14202/vetworld.2023.811-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Resistant starch (RS) is difficult to digest in the digestive tract. This study aimed to evaluate the effects of heat-moisture treatment (HMT) on RS in cassava and examined its impact on rumen fermentation. Materials and Methods Cassava flour was used as a raw material and used in a randomized block design with four different cycles of HMT as the treatments and four different rumen incubations in vitro as blocks. Treatments included: HMT0: without HMT (control), HMT1: one HMT cycle, HMT2: two HMT cycles, and HMT3: three HMT cycles. Heat-moisture treatment processes were performed at 121°C for 15 min and then freezing at -20°C for 6 h. Analyzed HMT cassava starch characteristics included components, digestibility, and physicochemical properties. In in vitro rumen fermentation studies (48 h incubation) using HMT cassava, digestibility, gas production, methane, fermentation profiles, and microbial population assessments were performed. Results Heat-moisture treatment significantly reduced (p < 0.05) starch, amylopectin, rapidly digestible starch (RDS), and slowly digestible starch levels. In contrast, amylose, reducing sugars, very RDS, RS, and protein digestion levels were significantly increased (p < 0.05). Additionally, a reduced crystallinity index and an increased amorphous index were observed in starch using Fourier-transform infrared analyses, while a change in crystalline type from type A to type B, along with a reduction in crystallinity degree, was observed in X-ray diffraction analyses. Heat-moisture treatment significantly (p < 0.05) reduced rumen dry matter (DM) degradation, gas production, methane (CH4 for 12 h), volatile fatty acid (VFA), and propionate levels. In addition, acetate, butyrate, and acetate/propionate ratios, as well as population of Streptococcus bovis and Bacteroides were significantly increased (p < 0.05). However, pH, ammonia, and organic matter digestibility were unaffected (p > 0.05) by HMT. Conclusion Cassava HMT altered starch characteristics, significantly increased RS, which appeared to limit rumen digestion activity, decreased rumen DM degradation, gas production, VFAs, and CH4 production for 12 h, but increased S. bovis and Bacteroides levels.
Collapse
Affiliation(s)
- Legi Okta Putra
- Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia
| | - Sri Suharti
- Department of Nutrition and Feed Technology, IPB University, Bogor, Indonesia
| | - Ki Ageng Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Sutikno Sutikno
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ainissya Fitri
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wulansih Dwi Astuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Rohmatussolihat Rohmatussolihat
- Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Yantyati Widyastuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Rusli Fidriyanto
- Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | |
Collapse
|
34
|
Li Z, Kong H, Li Z, Gu Z, Ban X, Hong Y, Cheng L, Li C. Designing liquefaction and saccharification processes of highly concentrated starch slurry: Challenges and recent advances. Compr Rev Food Sci Food Saf 2023; 22:1597-1612. [PMID: 36789798 DOI: 10.1111/1541-4337.13122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Starch-based sugars are an important group of starch derivatives used in food, medicine, chemistry, and other fields. The production of starch sugars involves starch liquefaction and saccharification processes. The production cost of starch sugars can be reduced by increasing the initial concentration of starch slurry. However, the usage of the highly concentrated starch slurry is characterized by challenges such as low reaction efficiency and poor product performance during the liquefaction and saccharification processes. In this study, we endeavored to provide a reference guide for improving high-concentration starch sugar production. Thus, we reviewed the effects of substrate concentration on the starch sugar production process and summarized several potential strategies. These regulation strategies, such as physical field pretreatment, complex enzyme-assisted, and temperature control, can significantly increase the starch concentration and mitigate the challenges of using highly concentrated starch slurry. We believe that highly concentrated starch sugar production will achieve a qualitative leap in the future. This review provides theoretical guidance and highlights the importance of high concentration in starch-based sugar production. Further studies are needed to explore the fine structure and enzyme attack mode during the liquefaction and saccharification processes to regulate the production of more targeted products.
Collapse
Affiliation(s)
- Zexi Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Guo S, Wu H, Liu X, Zhao W, Zheng J, Li W. Structural, Physicochemical and Digestive Property Changes of Potato Starch after Continuous and Repeated Dry Heat Modification and Its Comparative Study. Foods 2023; 12:foods12020335. [PMID: 36673427 PMCID: PMC9858123 DOI: 10.3390/foods12020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate the effects of repeated dry heat treatment (RDH) and continuous dry heat treatment (CDH) on the structure and physicochemical and digestive properties of potato starch, potato starch was treated continuously and repeatedly at 130 °C for 3-18 h. The results showed that the crystalline form of starch was consistent with the original type B. Still, its physicochemical properties, such as swelling power, transparency, peak viscosity (PV), final viscosity (FV), breakdown (BD) and thermal properties (To, Tp, Tc, ΔT), tended to decrease. At the same time, solubility and RS increased after dry heat treatment. Moreover, RDH-treated starches were higher than CDH-treated ones in terms of molecular weight, crystallinity, swelling power, transparency and final viscosity for the same treatment time. Still, there was no significant difference between the thermal properties of the two. Meanwhile, the resistant starch (RS) content showed a downward trend after the peak value of 9 h of CDH treatment and five cycles of RDH treatment with increasing treatment time and the number of cycles, indicating a decrease in the overall digestibility of the starch. Overall, RDH had a more significant effect on potato starch's structure and physicochemical properties than CDH.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhao Li
- Correspondence: ; Fax: +86-029-8709-2486
| |
Collapse
|
36
|
Guan J, Chen Z, Guo L, Cui X, Xu T, Wan F, Zhou T, Wang C, Yang Y. Evaluate how steaming and sulfur fumigation change the microstructure, physicochemical properties and in vitro digestibility of Gastrodia elata Bl. starch. Front Nutr 2023; 9:1087453. [PMID: 36687729 PMCID: PMC9849879 DOI: 10.3389/fnut.2022.1087453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
The sulfur dioxide gas (SO2) generated by sulfur burning can improve the appearance quality of food and enhance the storage time. However, excessive sulfur dioxide will pollute the environment and cause deterioration of food quality, and even the high residual levels can increase the risk of cancer. As Gastrodia elata Blume is prone to corruption during processing, sulfur fumigation is often used for preservation. In this study, spectral analysis and Texture Profile Analysis (TPA) were used to investigate the effects of traditional sulfur fumigation processing on the morphology quality, edible quality and structural characteristics of G. elata. The results showed that compared with direct drying, the pH decreased by 0.399 of the sulfur fumigated after steamed treatment G. elata, and the morphology quality, pasting ability and gel edible quality of the starch were significantly improved. In addition, it was suggested that sulfur fumigation after steaming could promote the release of molecular chains from starch granules and thus enhance the cross-linking between molecules, which explained the reason for the improve of starch edible quality. This study can provide technical and theoretical support for improving the quality of starch rich foods, replacing sulfur fumigation and reducing potential environmental hazards.
Collapse
Affiliation(s)
- Jinjie Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Zhuowen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Lanping Guo
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Tingting Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Fen Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China,Chengxiao Wang,
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China,*Correspondence: Ye Yang,
| |
Collapse
|
37
|
Huang J, Yu M, Wang S, Shi X. Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physiochemical properties of jicama starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Tu J, Adhikari B, Brennan MA, Cheng P, Bai W, Brennan CS. Interactions between sorghum starch and mushroom polysaccharides and their effects on starch gelatinization and digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Fan H, Liu H, Li W, Su W, Wang D, Zhang S, Liu T, Zhang Y. Effect of Tremella fuciformis polysaccharide on the stalling and flavor of tteok during storage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Jia Y, Zhang Z, Li M, Ji N, Qin Y, Wang Y, Shi R, Wang T, Xiong L, Sun Q. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles. Food Res Int 2022; 162:111922. [DOI: 10.1016/j.foodres.2022.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
|
41
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
42
|
Chi C, Shi M, Zhao Y, Chen B, He Y, Wang M. Dietary compounds slow starch enzymatic digestion: A review. Front Nutr 2022; 9:1004966. [PMID: 36185656 PMCID: PMC9521573 DOI: 10.3389/fnut.2022.1004966] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Dietary compounds significantly affected starch enzymatic digestion. However, effects of dietary compounds on starch digestion and their underlying mechanisms have been not systematically discussed yet. This review summarized the effects of dietary compounds including cell walls, proteins, lipids, non-starchy polysaccharides, and polyphenols on starch enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides restricted starch disruption during hydrothermal treatment and the retained ordered structures limited enzymatic binding. Moreover, they encapsulated starch granules and formed physical barriers for enzyme accessibility. Proteins, non-starchy polysaccharides along with lipids and polyphenols interacted with starch and formed ordered assemblies. Furthermore, non-starchy polysaccharides and polyphenols showed robust abilities to reduce activities of α-amylase and α-glucosidase. Accordingly, it can be concluded that dietary compounds lowered starch digestion mainly by three modes: (i) prevented ordered structures from disruption and formed ordered assemblies chaperoned with these dietary compounds; (ii) formed physical barriers and prevented enzymes from accessing/binding to starch; (iii) reduced enzymes activities. Dietary compounds showed great potentials in lowering starch enzymatic digestion, thereby modulating postprandial glucose response to food and preventing or treating type II diabetes disease.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Chengdeng Chi
| | - Miaomiao Shi
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingting Zhao
- Center for Nutrition and Food Sciences, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, ON, Canada
- Meiying Wang
| |
Collapse
|
43
|
Viscoelastic Characterization of Corn Starch Paste: (I) The First Normal Stress Difference of a Cross-Linked Waxy Corn Starch Paste with Sucrose. Bioengineering (Basel) 2022; 9:bioengineering9090465. [PMID: 36135011 PMCID: PMC9495513 DOI: 10.3390/bioengineering9090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental viscoelastic data and the corresponding theoretical analysis of corn starch paste in the past 30 years indicate an evident deficiency of the viscoelastic characterization of the paste. The purposes of the study are to check the capability of a recent model on describing the viscoelasticity of the paste and to improve the viscoelastic analysis. The linear viscoelastic property; the steady shear viscosity and the first normal stress difference (N1) of a cross-linked waxy corn starch paste mixed with sucrose experimentally reported in 2003 were characterized with a structuralized viscoelastic constitutive equation in the present paper. The structuralized parameter f in the equation was obtained using the viscosities in the dynamic and steady shear experiment. Both a power law strain model and a linear strain model were proposed to describe the normal component in the strain matrix. Three kinds of viscoelastic properties of the paste can be described well with the structuralized equation. Both the power law and the linear strain model can yield reasonable calculations of N1. The maximum deviation of N1 calculated by two strain models is about 10%. The theoretical model adopted is available for describing the complex viscoelastic behaviors of corn starch paste usually appearing in the processing of corn starch.
Collapse
|
44
|
Gallic acid and heat moisture treatment improve pasting, rheological, and microstructure properties of Chinese yam starch-chitosan gels: A comparative study. Int J Biol Macromol 2022; 222:114-120. [PMID: 36113602 DOI: 10.1016/j.ijbiomac.2022.09.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Nowadays,It is difficult for the polysaccharide-starch system to meet demand of practical production owing to the poor gel properties. Therefore, aiming to further improve the practical application of polysaccharide-starch gel, the effects of gallic acid (GA) and heat moisture treatment (HMT) on the gel properties and microstructure of yam starch/chitosan (YS/CS) composite gels were investigated. Swell power (SP) results showed that GA and HMT treatment respectively reduced the SP of YS gel by 3.24 g/g and 6.03 g/g, given that GA and HMT decrease the rheology of the water phase inhibiting the entry of water into the swollen starch. In the pasting process, HMT reduced pasting viscosity of the HMT/YS system because only little amylose was leached in the medium for elevating its viscosity after HMT. The rheological properties suggested that high temperature treatment of HMT facilitated the disruption and disintegration of starch granules resulting dynamic modulus had a decline trend. The elastic properties of GA/YS gels were enhanced with the addition of GA, which could be supported by the thicken lamellar observed in its microstructure. In general, GA and HMT effectively alter the gel properties of YS/CS gel system, and facilitate its practical application in food industry.
Collapse
|
45
|
Huang Y, Wu P, Chen XD. Mechanistic insights into the influence of flavonoids from dandelion on physicochemical properties and in vitro digestibility of cooked potato starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Yan Y, Xue X, Jin X, Niu B, Chen Z, Ji X, Shi M, He Y. Effect of annealing using plasma-activated water on the structure and properties of wheat flour. Front Nutr 2022; 9:951588. [PMID: 36034897 PMCID: PMC9403792 DOI: 10.3389/fnut.2022.951588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, wheat flour (WF) was modified by annealing (ANN) using plasma-activated water (PAW) for the first time. Compared with WF and DW-WF, the results of scanning electron microscopy (SEM) and particle-size analysis showed that the granule structure of wheat starch in PAW-WF was slightly damaged, and the particle size of PAW-WF was significantly reduced. The results of X-ray diffraction and Fourier transforming infrared spectroscopy indicated that PAW-ANN could reduce the long-range and short-range order degrees of wheat starch and change the secondary structure of the protein in WF, in which the content of random coils and α-helices was significantly increased. In addition, the analysis of solubility, viscosity, and dynamic rheological properties showed that PAW-ANN improved the solubility and gel properties of WF and decreased its viscosity properties and short-term regeneration. PAW-ANN, as a green modification technology, has the potential for further application in WF modification, as well as in the production of flour products.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xinhuan Xue
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
47
|
Zhang H, He F, Wang T, Chen G. Insights into the interaction of CaCl 2 and potato starch: Rheological, structural and gel properties. Int J Biol Macromol 2022; 220:934-941. [PMID: 36007697 DOI: 10.1016/j.ijbiomac.2022.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 11/05/2022]
Abstract
High viscosity of starch greatly limit its application in some specific foods, in this work, a novel low-viscosity potato starch (PS) was developed via crosslinking between PS (3 %, w/v) and Ca2+ to investigate the effect of CaCl2 concentration (0.1-5 % CaCl2, w/v) on the rheological behaviors, structural and gel properties of PS. The results showed that peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and breakdown viscosity (BD) of pasting curves of CaCl2-treated PS were significantly reduced compared with the native PS. The CaCl2 treatment also decreased the firmness of the PS gel and increased its pasting temperature (PT) and gelatinization enthalpy (∆H). Moreover, The CaCl2 treatment also led to more organized crystallites in the PS granules as affected by the slight increase in the ratio of 1044/1015 cm-1 in the FT-IR analysis, reduced the homogeneity of ordered structures inside granules as indicated by the increase in conclusion temperature (Tc)-onset temperature (To) in DSC analysis, and decreased relatively crystallinity revealed by XRD analysis. The findings of this study indicated CaCl2-treated PS could serve as food ingredients with reduced paste viscosity and regulated paste stability under shear during heating.
Collapse
Affiliation(s)
- Hongcai Zhang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory of Aquatic Products Quality & Safety Risk Assessment (Shanghai) at China Ministry of Agriculture, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Fuli He
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Tao Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Guibing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
48
|
Gelation behaviors of some special plant-sourced pectins: A review inspired by examples from traditional gel foods in China. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
50
|
Liu W, Zhang Y, Xu Z, Pan W, Shen M, Han J, Sun X, Zhang Y, Xie J, Zhang X, Yu L(L. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|