1
|
Zheng H, Liu X, Liang X, Guo S, Qin B, Liu EH, Duan JA. Mechanisms and structure-activity relationships of natural polysaccharides as potential anti-osteoporosis agents: A review. Int J Biol Macromol 2025; 298:139852. [PMID: 39814301 DOI: 10.1016/j.ijbiomac.2025.139852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
In recent years, polysaccharides derived from natural sources have garnered significant attention due to their safety and potential anti-osteoporotic effects. This review provides a comprehensive overview of the sources, distribution, structures, and mechanisms of anti-osteoporosis polysaccharides, as well as an investigation into their structure-activity relationships. Over thirty distinct, homogenous polysaccharides with anti-osteoporosis properties have been extracted from natural sources, primarily categorized as glucans, fructans, galactomannans, glucomannans, and various other heteropolysaccharides. Natural polysaccharides can effectively enhance osteoblast differentiation and mineralization while suppressing osteoclast activation, with the mechanism regulated by the BMP/SMAD/RUNX2, Wnt/Catenin, OPG/RANKL/RANK, and TLR2/NF-κB/NFATc1 signaling pathways. Furthermore, polysaccharides contribute to the prevention of osteoporosis by mitigating oxidative stress, decreasing inflammation, and modulating the gut microbiota. This review also summarizes the relationship between the monosaccharide composition, molecular weight, and glycosidic bond type of polysaccharides and their anti-osteoporotic activity. A comprehensive summary and analysis of the existing deficiencies and challenges in the research of anti-osteoporotic polysaccharides is also concluded. This review may serve as a significant reference for the discovery and utilization of naturally derived anti-osteoporotic polysaccharides in the pharmaceutical and health industries.
Collapse
Affiliation(s)
- Huili Zheng
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Xinhui Liu
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Xiaofei Liang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Sheng Guo
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Bing Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| |
Collapse
|
2
|
Wang J, Jiang Y, Hou X, Tahir R, He Y, Liu X, Xing D, Wei L. AMP1-1 derived from Atractylodes macrocephala Koidz prevents bone aging triggered by lead and cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110189. [PMID: 40081631 DOI: 10.1016/j.cbpc.2025.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
As the major pollutants of industrial wastewater, lead (Pb) and cadmium (Cd) contaminate the environment and lead to bone aging when combined. To elucidate the potential mechanism by which Pb and Cd accelerate bone aging and to screen effective protective agents, we determined the optimum concentrations of Pb and Cd to establish the aging models in vitro and in vivo. The successful establishment of aging models was confirmed through β-galactosidase (β-gal) staining, the detection of aging markers, and the evaluation of biomechanical parameters. Subsequently, the polysaccharides were extracted separately from seven plants and Atractylodes macrocephala polysaccharide (AMP) was confirmed to have the strongest effect on osteoblast proliferation. Therefore, we purified AMP to obtain a small molecular fragment called AMP1-1 and investigated its effect. It has been revealed that AMP1-1 could resist oxidative stress and promote the proliferation and differentiation of osteoblasts, thereby slowing apoptosis and alleviating cell senescence through the results of the β-gal staining and the analyses of the osteoblastic, antioxidant, apoptotic, and senescence indexes. The results in vivo suggested that AMP1-1 exerted a protective role in bone aging by inhibiting the above pathways. Consequently, AMP1-1 has theoretical significance for further development of biological protective agents against heavy metal pollution.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yu Jiang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiaoyu Hou
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Raza Tahir
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yiping He
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xinyue Liu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, No. 73 Huang He Road, Harbin 150090, China.
| | - Lijun Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China.
| |
Collapse
|
3
|
Zou L, Chen G, Rong Y, Tang C, Lv X, Fan Y. Three signalling pathways for iron overload in osteoporosis: a narrative review. J Orthop Surg Res 2025; 20:186. [PMID: 39979989 PMCID: PMC11844007 DOI: 10.1186/s13018-025-05588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in the amount of bone tissue per unit volume and changes in bone microstructure, often resulting in bone fragility and increased susceptibility to fracture. Iron plays an important role in the normal physiological activities of human body, and its abnormal metabolism is one of the risk factors of osteoporosis. Iron overload, as an abnormality of iron metabolism, has been reported to be associated with osteoporosis in recent years. However, the mechanism of iron overload involved in the process of osteoporosis is not fully understood. In this review, we summarize what we have learned about iron overload-associated bone loss from clinical studies and animal models. Starting from the three signaling pathways of Wnt/β-catenin, BMP/SMADs, PI3K/AKT/mTOR, the mechanism of iron overload affecting the process of osteoporosis was explored, we got the conclusion that iron overload accelerates the process of osteoporosis by inhibiting normal wnt signaling, suppressing the BMP-2/SMADs pathway, down-regulating the PI3K/AKT/mTOR pathway to inhibit bone formation, and destroying the bone strength and load-bearing capacity, which providing a new direction for clinical treatment.
Collapse
Affiliation(s)
- Lingling Zou
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Guiquan Chen
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China.
| | - Yi Rong
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Cai Tang
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Xingmin Lv
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| | - Yundong Fan
- School of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, Sichuan, China
| |
Collapse
|
4
|
Song J, Zhang Y, Jin X, Zhu Y, Li Y, Hu M. Eucommia ulmoides Oliver polysaccharide alleviates glucocorticoid-induced osteoporosis by stimulating bone formation via ERK/BMP-2/SMAD signaling. Sci Rep 2024; 14:29647. [PMID: 39609585 PMCID: PMC11604974 DOI: 10.1038/s41598-024-80859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Osteoporosis (OP) is a metabolic disease characterized by low bone mineral mass owing to osteoblast dysfunction. Eucommia ulmoides Oliver (EuO) is a Chinese herbal medicine traditionally used to treat OP. Here, a polysaccharide purified from the EuO cortex (EuOCP3) was administered to OP mice constructed with dexamethasone (Dex) to investigate its anti-OP activity. EuOCP3 significantly improved Dex-induced bone microarchitecture destruction, increased osteoblast numbers and surface, and stimulated an increase in the expression of osteoblast differentiation markers in the femurs of OP mice. Furthermore, EuOCP3 was applied to MC3T3-E1 cells to further explore its effects on osteoblast differentiation. EuOCP3 significantly promoted osteoblast differentiation and increased the level of phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) and SMAD1/5/8. The EuOCP3-mediated enhancement of osteoblast differentiation-related proteins and phosphorylated SMAD1/5/8 expression levels was strongly suppressed by an ERK inhibitor (PD98059), which confirmed the critical role of ERK signaling in EuOCP3-induced osteoblast differentiation. In summary, EuOCP3 can stimulate bone formation by improving osteoblast differentiation via ERK/BMP-2/SMAD signaling, indicating the potential use of EuOCP3 as a functional ingredient in food products for anti-OP treatment.
Collapse
Affiliation(s)
- Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Gao M, Zha Y, Sheng N, Cao Y, Yao W, Bao B, Shan M, Cheng F, Yu S, Zhang Y, Geng T, Liu S, Yan H, Chen P, Zhang J, Zhang L. Integrated transcriptomics and lipidomics reveals protective effect in vascular endothelial barrier of a polysaccharide from Typhae Pollen. Int J Biol Macromol 2024; 282:136817. [PMID: 39490477 DOI: 10.1016/j.ijbiomac.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Endothelial cell dysfunction caused by inflammation and even vascular leakage are important manifestations of blood stasis syndrome (BSS). Reversible regulation of vascular integrity to cure BSS has attracted considerable interest. Herein, a novel acidic polysaccharide (TPP-4) was purified and characterized from Typhae Pollen, a typical traditional Chinese medicine for treating BSS, especially for bleeding caused by blood stasis. A series of structural characterization methods, including spectroscopic methods (FT-IR and UV), chromatographic methods (HPGPC, HPAEC-PDA and GC-MS) and NMR, have been used to reveal the fine structure of TPP-4. TPP-4 was a homogeneous heteropolysaccharide comprised with RG-I backbone. TPP-4 showed fantastic activities in vascular integrity regulation both in vitro (HUVECs) and in vivo (zebrafish). Transcriptomics revealed that SOX7 and lipid metabolism were the potential targets. Lipidomics showed that TPP-4 could regulate lipid metabolism disorders caused by vascular inflammation, particularly affecting LPE levels. The above regulatory effects were furtherly demonstrated to be related with VEGFA/PI3K/mTOR signaling pathway through various molecular biological experiments.
Collapse
Affiliation(s)
- Mingliang Gao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuling Zha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yi Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ting Geng
- Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China.
| | - Shengjin Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Peidong Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juanjuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Cheng X, Jin S, Feng M, Miao Y, Dong Q, He B. The Role of Herbal Medicine in Modulating Bone Homeostasis. Curr Top Med Chem 2024; 24:634-643. [PMID: 38333981 DOI: 10.2174/0115680266286931240201131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.
Collapse
Affiliation(s)
- Xinnan Cheng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Shanshan Jin
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Yunfeng Miao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| |
Collapse
|
8
|
Huo Z, Wu F, Lu G, Huang F. Combination effect of Chinese kidney-tonifying granules and platelet-rich plasma gels on enhancing bone healing in rat models with femur defects. J Orthop Surg Res 2023; 18:975. [PMID: 38114998 PMCID: PMC10729433 DOI: 10.1186/s13018-023-04468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The traditional Chinese kidney-tonifying granules, known as Bushen Zhongyao Keli (BSZYKL), have been found to stimulate calcium salt deposition, enhance bone formation, and foster bone growth within the bone matrix at sites of bone defects. On the other hand, platelet-rich plasma (PRP) is enriched with various growth factors capable of facilitating the repair of bone defects and enhancing bone strength following fractures. This study is dedicated to investigating the combined efficacy of BSZYKL and PRP gel (PRP-G) in the treatment of bone defects. METHODS We established a femur defect model in male Sprague-Dawley (SD) rats and filled the defect areas with autologous coccygeal bone and PRP-G. For 8 consecutive weeks, those rats were given with intragastric administration of BSZYKL. Biomechanical characteristics of the femur were assessed 28 days after intramuscular administration. On day 56, bone formation was examined using X-ray, micro-CT, and transmission electron microscopy. Additionally, we analyzed the expression of bone formation markers, Runx2 and Osterix, in femur tissues through qPCR, Western blotting, and immunohistochemistry. RESULTS Rats receiving the combined treatment of BSZYKL and PRP-G exhibited drastically enhanced femoral peak torsion, failure angle, energy absorption capacity, and torsional stiffness as compared to control group. This combination therapy also led to marked improvements in bone volume, mass, and microarchitecture, accompanied by elevated expressions of Runx2 and Osterix when compared to control group. Notably, the synergistic effects of BSZYKL and PRP-G in treating bone defects surpassed the effects of either treatment alone. CONCLUSIONS These findings revealed the potential of BSZYKL in combination with PRP-G in improving bone defects.
Collapse
Affiliation(s)
- Zhiqian Huo
- Major in Orthopaedics of Traditional Chinese Medicine, The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
- Prestigious Chinese Medicine Expert of Guangdong Province Xu Zhiqiang Inheritance Studio, Foshan, 528000, Guangdong Province, China
| | - Feng Wu
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Guoliang Lu
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Feng Huang
- Major in Orthopaedics of Traditional Chinese Medicine, The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
9
|
Ji Z, Fan B, Chen Y, Yue J, Chen J, Zhang R, Tong Y, Liu Z, Liang J, Duan L. Functional characterization of triterpene synthases in Cibotium barometz. Synth Syst Biotechnol 2023; 8:437-444. [PMID: 37416896 PMCID: PMC10320381 DOI: 10.1016/j.synbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023] Open
Abstract
Cibotium barometz (Linn.) J. Sm., a tree fern in the Dicksoniaceae family, is an economically important industrial exported plant in China and widely used in Traditional Chinese Medicine. C. barometz produces a range of bioactive triterpenes and their metabolites. However, the biosynthetic pathway of triterpenes in C. barometz remains unknown. To clarify the origin of diverse triterpenes in C. barometz, we conducted de novo transcriptome sequencing and analysis of C. barometz rhizomes and leaves to identify the candidate genes involved in C. barometz triterpene biosynthesis. Three C. barometz triterpene synthases (CbTSs) candidate genes were obtained. All of them were highly expressed in C. barometz rhizomes, consisting of the accumulation pattern of triterpenes in C. barometz. To characterize the function of these CbTSs, we constructed a squalene- and oxidosqualene-overproducing yeast chassis by overexpressing all the enzymes in the MVA pathway under the control of GAL-regulated promoter and disrupted the GAL80 gene in Saccharomyces cerevisiae simultaneously. Heterologous expressing CbTS1, CbTS2, and CbTS3 in engineering yeast strain produced cycloartenol, dammaradiene, and diploptene, respectively. Phylogenetic analysis revealed that CbTS1 belongs to oxidosqualene cyclase, while CbTS2 and CbTS3 belong to squalene cyclase. These results decipher enzymatic mechanisms underlying the origin of diverse triterpene in C. barometz.
Collapse
|
10
|
Wang J, Yang J, Tang Z, Yu Y, Chen H, Yu Q, Zhang D, Yan C. Curculigo orchioides polysaccharide COP70-1 stimulates osteogenic differentiation of MC3T3-E1 cells by activating the BMP and Wnt signaling pathways. Int J Biol Macromol 2023; 248:125879. [PMID: 37473884 DOI: 10.1016/j.ijbiomac.2023.125879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The crude polysaccharide CO70 isolated from Curculigo orchioides could alleviate ovariectomy-induced osteoporosis in rats. To clarify the bioactive components, a new heteropolysaccharide (COP70-1) was purified from CO70 in this study, which was consisted of β-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, and →4,6)-α-D-Galp-(1→. COP70-1 significantly promoted the osteoblastic differentiation of MC3T3-E1 cells through improving alkaline phosphatase activity, the deposition of calcium as well as up-regulating the expression of osteogenic markers (RUNX2, OSX, BSP, OCN, and OPN). Furthermore, COP70-1 stimulated the expression of critical transcription factors of the BMP and Wnt pathways, including BMP2, p-SMAD1, active-β-catenin, p-GSK-3β, and LEF-1. In addition, LDN (BMP pathway inhibitor) and DKK-1 (Wnt pathway inhibitor) suppressed the COP70-1-induced osteogenic differentiation of MC3T3-E1 cells. Therefore, COP70-1 was one of the bioactive constituents of C. orchioides for targeting osteoblasts to treat osteoporosis by triggering BMP/Smad and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongbo Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Sharma A, Sharma C, Shah OP, Chigurupati S, Ashokan B, Meerasa SS, Rashid S, Behl T, Bungau SG. Understanding the mechanistic potential of plant based phytochemicals in management of postmenopausal osteoporosis. Biomed Pharmacother 2023; 163:114850. [PMID: 37172332 DOI: 10.1016/j.biopha.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Postmenopausal osteoporosis, an epidemic disorder is defined as a loss in bone mineral density and a greater possibility of fractures in older women. It is a multifactorial disease under the control of various genetic, hormonal, and environmental factors. Insufficiency of estrogen hormone, leads to postmenopausal osteoporosis. Hormone replacement therapy (HRT), despite being the most effective treatment, it is associated with the risk of breast cancer and cardiovascular disorders. This review seeks to compile the most recent information on medicinal plants and natural compounds used to treat and prevent postmenopausal osteoporosis. Furthermore, the origin, chemical constituents and the molecular mechanisms responsible for this therapeutic and preventive effect are also discussed. Literature research was conducted using PubMed, Science direct, Scopus, Web of Science, and Google Scholar. Different plant extracts and pure compounds exerts their antiosteoporotic activity by inhibition of RANKL and upregulation of OPG. RANKL signaling regulates osteoclast formation, characterized by increased bone turnover and osteoprotegrin is a decoy receptor for RANKL thereby preventing bone loss from excessive resorption. In addition, this review also includes the chemical structure of bioactive compounds acting on NFκB, TNF α, RUNX2. In conclusion, we propose that postmenopausal osteoporosis could be prevented or treated with herbal products.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Om Praksah Shah
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai, 602105 India
| | - Bhaskaran Ashokan
- Department of Surgery, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Semmal Syed Meerasa
- Department of Physiology, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India.
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| |
Collapse
|
12
|
Kuang S, Liu L, Hu Z, Luo M, Fu X, Lin C, He Q. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int J Biol Macromol 2023; 228:582-593. [PMID: 36563826 DOI: 10.1016/j.ijbiomac.2022.12.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Min Luo
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
13
|
Wu K, Li Y, Lin Y, Xu B, Yang J, Mo L, Huang R, Zhang X. Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141. Int J Biol Macromol 2023; 227:329-339. [PMID: 36535356 DOI: 10.1016/j.ijbiomac.2022.12.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Until now, relatively little is known about marine-derived fungal polysaccharides and their activities. Exopolysaccharide AVP141-A was isolated from the broth of marine-derived fungus Aspergillus versicolor SCAU141 and purified by Diethylaminoethyl-Sepharose Fast Flow and Sephadex G-100. The structural characteristics of AVP141-A was studied by chemical analysis together with high-performance gel permeation chromatography, ion chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The results showed that AVP141-A with the molecular weight of 5.10 kDa was mainly composed of →4)-α-D-Glcp-(1→, branched by α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ at C-6 positions of the glucan backbone. In particular, sulfate ester (approximately 3.62 %) was found in AVP141-A, which was frequently considered to occur in marine-derived microbial polysaccharides rather than other microbial polysaccharides. Furthermore, AVP141-A significantly enhanced the activity of the inflammatory factors NO, COX-2 and TNF-α in RAW264.7 macrophages by activating the MAPK/p38 and NF-κB/p65 pathways. In addition, metabolomic analysis revealed that most of the pathways with significant changes in RAW264.7 macrophages treated with AVP141-A were amino acid-related pathways, and arginine was the characteristic metabolite. In conclusion, this study identified AVP141-A as a marine fungus-derived sulfated exopolysaccharide with potential for development as an immune activator.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiyang Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University-United International College, Zhuhai 519087, China
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
14
|
Wan Y, Mo LJ, Wu L, Li DL, Song J, Hu YK, Huang HB, Wei QZ, Wang DP, Qiu JM, Zhang ZJ, Liu QZ, Yang XF. Bone morphogenetic protein 4 is involved in cadmium-associated bone damage. Toxicol Sci 2022; 191:201-211. [PMID: 36453845 PMCID: PMC9936213 DOI: 10.1093/toxsci/kfac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cadmium (Cd) is a well-characterized bone toxic agent and can induce bone damage via inhibiting osteogenic differentiation. Bone morphogenetic protein (BMP)/SMAD signaling pathway can mediate osteogenic differentiation, but the association between Cd and BMP/SMAD signaling pathway is yet to be illuminated. To understand what elements of BMPs and SMADs are affected by Cd to influence osteogenic differentiation and if BMPs can be the biomarkers of which Cd-induced osteoporosis, human bone marrow mesenchymal stem cells (hBMSCs) were treated with cadmium chloride (CdCl2) in vitro to detect the expression of BMPs and SMADs, and 134 subjects were enrolled to explore if the BMPs can be potential biomarkers of Cd-associated bone damage. Our results showed that Cd exposure significantly promoted the adipogenic differentiation of hBMSCs and inhibited its osteogenic differentiation by inhibiting the expression of BMP-2/4, SMAD4, and p-SMAD1/5/9 complex. And mediation analyses yielded that BMP-4 mediated 39.32% (95% confidence interval 7.47, 85.00) of the total association between the Cd and the risk of Cd-associated bone damage. Moreover, during differentiation, BMP-4 had the potential to enhance mineralization compared with CdCl2 only group. These results reveal that BMP-4 can be a diagnostic biomarker and therapeutic target for Cd-associated bone damage.
Collapse
Affiliation(s)
| | | | | | - Dong-li Li
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Jia Song
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - You-kun Hu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Hai-bin Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Qin-zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, People’s Republic of China
| | - Da-peng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-min Qiu
- Department of Ultrasound Medicine, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510920, People’s Republic of China
| | - Zi-ji Zhang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, People’s Republic of China
| | - Qi-zhan Liu
- To whom correspondences should be addressed at Xing-fen Yang, Food Safely and Health Research Center, Guangdong Provincial Key Laboratory of tropical Disease Reascarch, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Mdical Universtiy, Guangzhou 510515, Guangdong, People's Republic of China. E-mail: or at Qi-zhan Liu, Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People s Republic of China. E-mail: .
| | - Xing-fen Yang
- To whom correspondences should be addressed at Xing-fen Yang, Food Safely and Health Research Center, Guangdong Provincial Key Laboratory of tropical Disease Reascarch, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Mdical Universtiy, Guangzhou 510515, Guangdong, People's Republic of China. E-mail: or at Qi-zhan Liu, Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People s Republic of China. E-mail: .
| |
Collapse
|
15
|
Fan S, Guo D, Zhang J, Yang Y, Xue H, Xue T, Bai B. Structure, physicochemical properties, antioxidant, and hypoglycemic activities of water‐soluble polysaccharides from millet bran. J Food Sci 2022; 87:5263-5275. [PMID: 36321649 DOI: 10.1111/1750-3841.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sanhong Fan
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Dingyi Guo
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Jinhua Zhang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Hugui Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Tengda Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Baoqing Bai
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| |
Collapse
|
16
|
Structural determination and pro-angiogenic effect of polysaccharide from the pollen of Typha angustifolia L. Int J Biol Macromol 2022; 222:2028-2040. [DOI: 10.1016/j.ijbiomac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
17
|
Wang R, Shan H, Zhang G, Li Q, Wang J, Yan Q, Li E, Diao Y, Wei L. An inulin-type fructan (AMP1-1) from Atractylodes macrocephala with anti-weightlessness bone loss activity. Carbohydr Polym 2022; 294:119742. [DOI: 10.1016/j.carbpol.2022.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
|
18
|
Chen H, Shi X, Zhang L, Yao L, Cen L, Li L, Lv Y, Wei C. Ultrasonic Extraction Process of Polysaccharides from Dendrobium nobile Lindl.: Optimization, Physicochemical Properties and Anti-Inflammatory Activity. Foods 2022; 11:foods11192957. [PMID: 36230031 PMCID: PMC9564065 DOI: 10.3390/foods11192957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
To optimize the ultrasonic extraction process of polysaccharides from Dendrobium nobile Lindl. (DNP), the extraction method was conducted through a single-factor test and the response-surface methodology (RSM). With the optimal extraction process (liquid–solid ratio of 40 mL/g, ultrasonic time of 30 min, and ultrasonic power of 400 W), the maximum extraction yield was 5.16 ± 0.41%. DNP1 and DNP2 were then fractionated via DEAE-QFF and Sephacryl S-300 HR chromatography. The molecular weight (Mw) of DNP1 was identified as 67.72 kDa, composed of Man (75.86 ± 0.05%) and Glc (24.14 ± 0.05%), and the Mw of DNP2 was 37.45 kDa, composed of Man (72.32 ± 0.03%) and Glc (27.68 ± 0.03%). Anti-inflammatory assays results showed that as DNPs were 200 μg/mL, and the contents of NO, TNF-α, IL-1β, IL-6 and IL-10 in LPS-induced RAW 264.7 cells were about 13.39% and 13.39%, 43.88% and 43.51%, 17.80% and 15.37%, 13.84% and 20.66%, and 938.85% and 907.77% of those in control group, respectively. It was indicated that DNP1 and DNP2 inhibited the inflammatory response of RAW 264.7 cells induced by LPS via suppressing the level of NO and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and promoting the secretion of anti-inflammatory cytokine (IL-10). Therefore, DNP1 and DNP2 have potential applications in the treatment of inflammatory injury.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueqin Shi
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lin Zhang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Li Yao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lanyan Cen
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lian Li
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yiyi Lv
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-851-88292178
| |
Collapse
|
19
|
Guo J, Huang Q, Zhou Y, Xu Y, Zong C, Shen P, Ma Y, Zhang J, Cui Y, Yu L, Gao J, Liu G, Huang K, Xu W. Typing characteristics of metabolism-related genes in osteoporosis. Front Pharmacol 2022; 13:999157. [PMID: 36188607 PMCID: PMC9522470 DOI: 10.3389/fphar.2022.999157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Osteoporosis is a common musculoskeletal disease. Fractures caused by osteoporosis place a huge burden on global healthcare. At present, the mechanism of metabolic-related etiological heterogeneity of osteoporosis has not been explored, and no research has been conducted to analyze the metabolic-related phenotype of osteoporosis. This study aimed to identify different types of osteoporosis metabolic correlates associated with underlying pathogenesis by machine learning.Methods: In this study, the gene expression profiles GSE56814 and GSE56815 of osteoporosis patients were downloaded from the GEO database, and unsupervised clustering analysis was used to identify osteoporosis metabolic gene subtypes and machine learning to screen osteoporosis metabolism-related characteristic genes. Meanwhile, multi-omics enrichment was performed using the online Proteomaps tool, and the results were validated using external datasets GSE35959 and GSE7429. Finally, the immune and stromal cell types of the signature genes were inferred by the xCell method.Results: Based on unsupervised cluster analysis, osteoporosis metabolic genotyping can be divided into three distinct subtypes: lipid and steroid metabolism subtypes, glycolysis-related subtypes, and polysaccharide subtypes. In addition, machine learning SVM identified 10 potentially metabolically related genes, GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2, and CD9.Conclusion: Based on the clustering analysis of gene expression in patients with osteoporosis and machine learning, we identified different metabolism-related subtypes and characteristic genes of osteoporosis, which will help to provide new ideas for the metabolism-related pathogenesis of osteoporosis and provide a new direction for follow-up research.
Collapse
Affiliation(s)
- Jiandong Guo
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Qinghua Huang
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Yundong Zhou
- Shanghai Medical Innovation Fusion Biomedical Research Center, Shanghai, China
| | - Yining Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Zong
- Affiliated Hospital of Nantong University, Nantong, China
| | - Panyang Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinxi Zhang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yongfeng Cui
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Liuqian Yu
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jiawei Gao
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Gang Liu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Gang Liu, ; Kangmao Huang, ; Wenbin Xu,
| | - Kangmao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Gang Liu, ; Kangmao Huang, ; Wenbin Xu,
| | - Wenbin Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Gang Liu, ; Kangmao Huang, ; Wenbin Xu,
| |
Collapse
|
20
|
Network Pharmacology-Based Strategy to Investigate the Mechanisms of Cibotium barometz in Treating Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1826299. [PMID: 35873632 PMCID: PMC9303148 DOI: 10.1155/2022/1826299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Cibotium barometz is a representative tonifying kidney drug and is widely used for osteoarthritis (OA) in traditional Chinese medicine. However, its regulatory mechanisms in treating OA remain to be sufficiently investigated. The main chemical components of Cibotium barometz were screened through the TCMID database and the corresponding targets were acquired through SwissTargetPrediction. The OA-related targets were obtained from the OMIM, Genecards, Genebank, TTD, and DisGeNET databases. The prediction of key targets and pathways of Cibotium barometz in the treatment of OA was achieved by constructing a compounds-targets network and performing KEGG enrichment analysis. The OA model rats were established by the Hulth method and used to explore the protective effect of Cibotium barometz via cartilage pathological assessment. In vitro models of OA were built by the proinflammatory factor interleukin-1β (IL-1β) induced SW1353 cells and used to validate the mechanisms predicted by network pharmacology. Network pharmacology results suggested that the therapeutic effects of Cibotium barometz were closely related to matrix metalloproteinase (MMP)-1, 3, 13 and inflammation-related gene COX2, which are regulated by the NFκB pathway. In vivo experiments revealed that Cibotium barometz could effectively restrain cartilage from degeneration and inhibit the mRNA expression of MMP-1, MMP-3, MMP-13, and COX2 in cartilage. In vitro experiments indicated that Cibotium barometz water extract (CBWE) could significantly inhibit the expression of MMP-1, MMP-3, MMP-13, and PGE2 in IL-1β-induced SW1353 cells and markedly prevent the translocation of NFκB p65 from the cytoplasm to the nuclei and decrease its phosphorylation level. After small-interfering RNA (siRNA) was used to suppress the synthesis of NFκB p65 to block NFκB signaling pathway, the ability of CBWE to inhibit MMP-1, MMP-3, MMP-13, and PGE2 was greatly reduced. Cibotium barometz has a chondroprotective effect on OA by inhibiting the response to inflammation and substrate degradation, and the related mechanism is associated with the inhibition of the NFκB pathway.
Collapse
|
21
|
Chen S, Guan X, Yong T, Gao X, Xiao C, Xie Y, Chen D, Hu H, Wu Q. Structural characterization and hepatoprotective activity of an acidic polysaccharide from Ganoderma lucidum. Food Chem X 2022; 13:100204. [PMID: 35499001 PMCID: PMC9039936 DOI: 10.1016/j.fochx.2022.100204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 11/26/2022] Open
Abstract
Ganoderma lucidum crude polysaccharide (GLP) exhibited protective effect on liver damage in mice caused by restraint stress through improving oxidative status. Two polysaccharides, including a neutral β-glucan and an acidic β-glucan containing glucuronic acid were purified from GLP by anion-exchange chromatography (AEC) and gel filtration. Acidic polysaccharide demonstrated stronger hepatoprotective effect in vitro compared to neutral polysaccharide. Anion-exchange chromatography (AEC) is an effective technique for separate β-glucan into neutral and ionic fractions by different ionic strength buffer.
In this study, Ganoderma lucidum crude polysaccharide (GLP) was found to have protective effect on liver damage in mice caused by restraint stress through improving oxidative status. Two polysaccharides, including a neutral β-glucan (GLPB2) and an acidic β-glucan (GLPC2) were purified from GLP through anion-exchange chromatography (AEC) combined with gel permeation. GLPC2, with an average molecular weight of 20.56 kDa, exhibited stronger hepatoprotective effect against H2O2-induced liver injury in HepG2 cells compared to GLPB2. Glycosidic residues and NMR analysis comprehensively revealed that GLPC2 contained d-Glcp-(1→, →3)-d-Glcp-(1→, →4)-d-Glcp-(1→, →6)-d-Glcp-(1→, →3, 6)-d-Glcp-(1 → and → 4)-d-GlcpA-(1 → . AEC can be an effective technique for separating β-glucans into neutral and acidic fractions by different ionic strength buffer. The findings provided a theoretical basis for the potential application of G. lucidum polysaccharides as a hepatoprotective in food and pharmaceutical industry.
Collapse
|
22
|
Pang X, Zhong Z, Jiang F, Yang J, Nie H. Juglans regia L. extract promotes osteogenesis of human bone marrow mesenchymal stem cells through BMP2/Smad/Runx2 and Wnt/β-catenin pathways. J Orthop Surg Res 2022; 17:88. [PMID: 35164786 PMCID: PMC8842536 DOI: 10.1186/s13018-022-02949-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Background The present study investigates the effects of Juglans regia L. (walnut, JRL) leaves extract on osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were incubated with different concentrations of JRL extract (10, 20, 40, or 80 μM). Cell proliferation was evaluated by Cell Counting Kit-8 assay (CCK-8) assay. ALP activity and Alizarin Red staining were used to assess the osteogenesis of BMSCs. Western blot was performed to measure the levels of proteins. Results Our results showed all concentrations of JRL extract had no significant effect on cell proliferation. JRL extract concentration-dependently promoted osteoblastic differentiation and cell autophagy of hBMSCs, characterized by the increased expression of pro-osteogenic markers alkaline phosphatase (ALP), osteocalcin (BGLAP), osterin, and osteoprotegerin (OPG) and autophagy marker proteins (LC3II, Beclin-1, and p62). Furthermore, JRL extract stimulated the activation BMP2/Smad/Runx2 and Wnt/β-catenin signaling pathways in hBMSCs, which play key roles in osteogenesis differentiation. Meanwhile, BMP inhibitor (Noggin) and Wnt antagonist Dickkopf-1 (DKK1) both reversed the increases of BGLAP, osterin, and OPG expression induced by JRL extract. Conclusions Our findings indicate that JRL extract regulated osteogenic differentiation and cell autophagy of hBMSCs through the BMP2/Smad/Runx2 and Wnt/β-catenin pathways.
Collapse
|
23
|
Zhao Z, Nian M, Lv H, Yue J, Qiao H, Yang X, Zheng X. Advances in Anti-Osteoporosis Polysaccharides Derived from Medicinal Herbs and Other Edible Substances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:441-470. [PMID: 35021963 DOI: 10.1142/s0192415x22500173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osteoporosis is a common metabolic bone disease, and treatment is required for the prevention of low bone mass, deterioration of microstructural bone tissue, and fragility fractures. Osteoporosis therapy includes calcium, vitamin D, and drugs with antiresorptive or anabolic action on the bone. Therapy for osteoporosis does not include taking non-steroidal anti-inflammatory drugs (NSAID), but pain associated with osteoporotic fractures can be treated by taking non-steroidal anti-inflammatory drugs (NSAID). Recently, polysaccharides extracted from medicinal herbs and edible substances (PsMHES) have attracted attention on account of their safety and promising anti-osteoporosis effects, whereas a systematic review about their potential in anti-osteoporosis is vacant to date. Herein, we reviewed the recent progress of PsMHES with anti-osteoporosis activities, looking to introduce the advances in the various pharmacological mechanisms and targets involved in the anti-osteoporosis effects, extraction methods, main mechanism involved in Wnt/[Formula: see text]-catenin pathways and RANKL (Receptor Activator for NF[Formula: see text]B ligand or TNFSF25) pathways, and Structure-Activity Relationships (SAR) analysis of PsMHES. Typical herbs likeAchyranthes bidentate and Morinda officinalis used for the treatment of osteoporosis are introduced; their traditional uses in traditional Chinese medicine (TCM) are discussed in this paper as well. This review will help to the recognition of the value of PsMHES in anti-osteoporosis and provide guidance for the research and development of new anti-osteoporosis agents in clinic.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Hong Lv
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohang Yang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province Northwest University, 229 Taibai Road, Xi'an 710069, P. R. China
| |
Collapse
|
24
|
Chen T, Gao F, Luo D, Wang S, Zhao Y, Liu S, Huang J, Lin Y, Zhang Z, Huang H, Wan L. Cistanoside A promotes osteogenesis of primary osteoblasts by alleviating apoptosis and activating autophagy through involvement of the Wnt/β-catenin signal pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:64. [PMID: 35282110 PMCID: PMC8848445 DOI: 10.21037/atm-21-6742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Background As a phenylethanoid glycoside extracted from Cistanche deserticola, cistanoside A has been shown to have antioxidative effects. In recent years, it has been found to play an important role in osteoporosis. Methods Primary osteoblasts were randomly divided into a cistanoside A (Cis A)-1 group (5 µM), a Cis A-2 group (10 µM), and a Cis A-3 group (20 µM) to screen the optimal dose. Then, cells were treated with Rapamycin (Rapa), 3-MA, Dickkopf-1 (DKK-1), 3MA + Cis A (10 µM), and DKK-1 + Cis A (10 µM). After a certain period of routine culture, Alkaline Phosphatase (ALP) and Alizarin Red S Staining were performed again and the cells were collected for subsequent experiments including immunofluorescence staining, western blotting, transmission electron microscopy, mitochondrial membrane measurement, and Annexin-V-Fluorescein isothiocyanate (Annexin-V-FITC). Results The optimal Cis A dose that preserved osteoblast viability and activated osteogenesis was 10 µM. It appeared that Cis A (10 µM) decreased apoptosis and augmented autophagy via increasing microtubule-associated protein light chain 3 (LC3)-I/II expressions as well as raising Wnt/β-catenin signal pathway activity. The addition of 3-MA further inhibited osteogenic differentiation and suppressed Wnt/β-catenin signal pathway activity to increase apoptosis while reducing autophagy levels. A combination of Cis A and DKK-1 resulted in higher levels of apoptosis but lower levels of autophagy. Conclusions Cis A appears to be a potent inducer of autophagy and inhibitor of apoptosis in primary osteoblasts by working through the Wnt/β-catenin signal pathway, thereby resulting in enhanced osteogenic differentiation.
Collapse
Affiliation(s)
- Tongying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fenghe Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhua Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiachun Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Zhang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int J Biol Macromol 2021; 193:1996-2005. [PMID: 34767882 DOI: 10.1016/j.ijbiomac.2021.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease with an increasing incidence rate. Chinese medicinal herbs have a long history of treating bone diseases. Polysaccharides are an important category of phytochemicals in Chinese medicinal herbs, and their health benefits have increased the interest of the public. Numerous studies have indicated that polysaccharides exhibit anti-osteoporosis effects by balancing bone resorption and bone formation, but the detailed effects and mechanism have not been systematically summarized. We performed a comprehensive review of the literature to consolidate studies for the period 2000-2021 by conducting electronic searches on the PubMed, CNKI, VIP, and Wanfang databases. In total, polysaccharides from 19 kinds of Chinese medicinal herbs in 54 studies have shown bone homeostasis protective properties. In vivo and in vitro experiments have demonstrated that polysaccharides present properties in the treatment of postmenopausal osteoporosis, senile osteoporosis, and glucocorticoid-induced secondary osteoporosis, especially postmenopausal osteoporosis. Moreover, a number of signalling pathways, such as the Wnt/β-catenin signalling pathway, BMP/SMAD/RUNX2 signalling pathway, OPG/RANKL/RANK signalling pathway, apoptosis pathway, and transcription factors, are regulated by polysaccharides and participate in improving bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of polysaccharides and the concomitant modulations of signalling pathways.
Collapse
|
26
|
Simultaneous Separation and Analysis of Five Compounds in Cibotium barometz by Micellar Electrokinetic Chromatography with Large-Volume Sample Stacking. SEPARATIONS 2021. [DOI: 10.3390/separations8090147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A large volume sample stacking (LVSS) method in micellar electrokinetic chromatography (MEKC) with diode array detector was developed for the simultaneous separation and analysis of five compounds: protocatechuic acid, protocatechuic aldehyde, caffeic acid, syringetin and vanillin in Cibotium barometz. The electrophoretic separation was performed in a 10 mM sodium dodecyl sulfate (SDS) and 50 mM sodium borax-sodium dihydrogen phosphate system (pH = 8.5) with 10% methanol at a separation voltage of 30 kV after optimizing the typical parameters. The detection limits were from 32 pg to 65 pg, which were around 12–27 times lower than MEKC, and 500 times less than reported methods. Finally, the established method was validated to be applicable for the determination of protocatechuic acid and caffeic acid in Cibotium barometz. This proposed method is expected to facilitate the quality control of Cibotium barometz.
Collapse
|
27
|
Zhongxing L, Shaohong W, Jinlong L, Limin Z, Yuanzheng W, Haipeng G, Jian C. Three-dimensional printed hydroxyapatite bone tissue engineering scaffold with antibacterial and osteogenic ability. J Biol Eng 2021; 15:21. [PMID: 34372891 PMCID: PMC8353754 DOI: 10.1186/s13036-021-00273-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
The development of an effective scaffold for bone defect repair is an urgent clinical need. However, it is challenging to design a scaffold with efficient osteoinduction and antimicrobial activity for regeneration of bone defect. In this study, we successfully prepared a hydroxyapatite (HA) porous scaffold with a surface-specific binding of peptides during osteoinduction and antimicrobial activity using a three-dimensional (3D) printing technology. The HA binding domain (HABD) was introduced to the C-terminal of bone morphogenetic protein 2 mimetic peptide (BMP2-MP) and antimicrobial peptide of PSI10. The binding capability results showed that BMP2-MP and PSI10-containing HABD were firmly bound to the surface of HA scaffolds. After BMP2-MP and PSI10 were bound to the scaffold surface, no negative effect was observed on cell proliferation and adhesion. The gene expression and protein translation levels of type I collagen (COL-I), osteocalcin (OCN) and Runx2 have been significantly improved in the BMP2-MP/HABP group. The level of alkaline phosphatase significantly increased in the BMP2-MP/HABP group. The inhibition zone test against Staphylococcus aureus and Escherichia coli BL21 prove that the PSI10/HABP@HA scaffold has strong antibacterial ability than another group. These findings suggest that 3D-printed HA scaffolds with efficient osteoinduction and antimicrobial activity represent a promising biomaterial for bone defect reconstruction.
Collapse
Affiliation(s)
- Liu Zhongxing
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Wu Shaohong
- Department of Stomatology, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Li Jinlong
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China.
| | - Zhang Limin
- Department of Ophthalmology, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Wang Yuanzheng
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Gao Haipeng
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Cao Jian
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China.
| |
Collapse
|
28
|
Fu CY, Ren L, Liu WJ, Sui Y, Nong QN, Xiao QH, Li XQ, Cao W. Structural characteristics of a hypoglycemic polysaccharide from Fructus Corni. Carbohydr Res 2021; 506:108358. [PMID: 34111687 DOI: 10.1016/j.carres.2021.108358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
PFC-3 is a homogeneous polysaccharide extracted from the dried pulps of Fructus Corni with a molecular weight of 40.3 kDa. The crude polysaccharide was obtained and further purified by DEAE-Sephadex A-25 and Sephadex G-100 columns to investigate its structure and glycemic effect. The monosaccharides in the PFC-3, determined by high-performance liquid chromatography, consisted of glucose (Glc), xylose (Xyl), and galactose (Gal) with a mass molar ratio of 2.35:12.49:1.00. The methylation analysis combined with 1D (1H and 13C), and 2D NMR (1H-1H COSY, HSQC, and HMBC) further demonstrated that PFC-3 was mainly composed of 1,3-α-D-Xylp, 1,6-α-D-Galp, 1,2-α-D-Glcp, and T-α-D-Galp, and contained a backbone fragment of →6)-α-D-Galp-(1 → 2)-α-D-Glcp-(1 → 3)-α-D-Xylp-(1 → . The hypoglycemic effect of PFC-3 in vitro was evaluated by glucose uptake and consumption assays, and the results showed that PFC-3 concentration-dependently enhanced glucose uptake and significantly improved glucose consumption in insulin-resistant HepG2 cells. Furthermore, PFC-3 significantly reduced fasting blood glucose level, glycosylated hemoglobin level, amylase activity, ameliorate lipid metabolism, and hepatic lesions in streptozotocin-induced diabetic rats. Our research provided insights into the hypoglycemic activities of PFC-3.
Collapse
Affiliation(s)
- Cheng-Yang Fu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yi Sui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qian-Han Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Wang Y, Liu G, Liu R, Wei M, Zhang J, Sun C. EPS364, a Novel Deep-Sea Bacterial Exopolysaccharide, Inhibits Liver Cancer Cell Growth and Adhesion. Mar Drugs 2021; 19:171. [PMID: 33809909 PMCID: PMC8004136 DOI: 10.3390/md19030171] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of liver cancer was inferior among tumors. New medicine treatments are urgently needed. In this study, a novel exopolysaccharide EPS364 was purified from Vibrio alginolyticus 364, which was isolated from a deep-sea cold seep of the South China Sea. Further research showed that EPS364 consisted of mannose, glucosamine, gluconic acid, galactosamine and arabinose with a molar ratio of 5:9:3.4:0.5:0.8. The relative molecular weight of EPS364 was 14.8 kDa. Our results further revealed that EPS364 was a β-linked and phosphorylated polysaccharide. Notably, EPS364 exhibited a significant antitumor activity, with inducing apoptosis, dissipation of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS) in Huh7.5 liver cancer cells. Proteomic and quantitative real-time PCR analyses indicated that EPS364 inhibited cancer cell growth and adhesion via targeting the FGF19-FGFR4 signaling pathway. These findings suggest that EPS364 is a promising antitumor agent for pharmacotherapy.
Collapse
Affiliation(s)
- Yun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (G.L.); (R.L.); (M.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ge Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (G.L.); (R.L.); (M.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (G.L.); (R.L.); (M.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Maosheng Wei
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (G.L.); (R.L.); (M.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (G.L.); (R.L.); (M.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
30
|
Parathyroid hormone (1-34) can reverse the negative effect of valproic acid on the osseointegration of titanium rods in ovariectomized rats. J Orthop Translat 2020; 27:67-76. [PMID: 33437639 PMCID: PMC7777001 DOI: 10.1016/j.jot.2020.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023] Open
Abstract
Objective The present work was aimed to evaluate the effect of valproic acid (VPA),Parathyroid hormone (1–34) (PTH)+VPA on Ti rods osseointegration in ovariectomized rats and further investigation of the possible mechanism. Methods The MC3T3-E1 cells were co-cultured with VPA,PTH + VPA and induced to osteogenesis, and the cell viability,mineralization ability were observed by MTT and ALP staining,Alizarin Red staining and Western blotting. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group OVX and VPA,PTH + VPA, and all the rats received Ti implants and animals belong to group VPA,PTH + VPA received valproic acid (300 mg/day), valproic acid (300 mg/day) plus Parathyroid hormone (1–34) every 3 days (60 μg/kg), respectively, treatment until death at 12 weeks. Micro-CT, histology, biomechanical testing, bone metabolism index and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. Results Results shown that VPA decreased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed combined application of systemic VPA showed harmful effects than OVX group on bone formation in osteopenia rats, with the worse effects on CTX-1, P1NP and microarchitecture as well as biomechanical parameters by down-regulated gene expression of Runx2, OCN, Smad1, BMP-2 and OPG, while up-regulated RANKL. However, after PTH treatment, the above indicators were significantly improved. Conclusions The present study suggests that systemic use of VPA may bring harm to the stability of titanium implants in osteoporosis, PTH can reverse the negative effect of VPA on the osseointegration of titanium rods in ovariectomized rats. Translational potential of this article According to our research, when patients with epilepsy have osteoporotic fractures, after joint replacement or internal fixation, continue to use sodium valproate for anti-epileptic therapy, the possibility of postoperative loosening increases, again on the basis of It can be reversed with the anti-osteoporosis drug parathyroid hormone (1-34).
Collapse
|
31
|
Tao ZS, Zhou WS, Xu HG, Yang M. Simvastatin can enhance the osseointegration of titanium rods in ovariectomized rats maintenance treatment with valproic acid. Biomed Pharmacother 2020; 132:110745. [PMID: 33068938 DOI: 10.1016/j.biopha.2020.110745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The present work was aimed to evaluate the effect of valproic acid(VPA), simvastatin (SIM)+VPA on Ti(titanium) rods osseointegration in ovariectomized(OVX) rats and further investigation of the possible mechanism. The MC3T3-E1 cells were co-cultured with VPA, SIM + VPA and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT and ALP staining, Alizarin Red staining and Western blotting. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into three groups: group OVX and VPA, SIM + VPA, and all the rats received Ti implants and animals belong to group VPA, SIM + VPA received valproic acid(300 mg/kg/day), valproic acid(300 mg/kg/day) plus SIM (25 mg/kg/day), respectively, treatment until death at 12 weeks. Micro-CT, histology, biomechanical testing, bone metabolism index and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. Results shown that VPA decreased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed combined application of systemic VPA showed harmful effects than OVX group on bone formation in osteopenic rats, with the worse effects on CTX-1, P1NP and microarchitecture as well as biomechanical parameters by down-regulated gene expression of Runx2, OCN, Smad1, BMP-2 and OPG, while up-regulated RANKL. However, after SIM treatment, the above indicators were significantly improved. The present study suggests that systemic use of VPA may bring harm to the stability of titanium implants in osteoporosis, SIM can reverse the negative effect of VPA on the osseointegration of titanium rods in ovariectomized rats.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, the Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu 241000, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China.
| |
Collapse
|