1
|
Bal K, Çelik SK, Şentürk S, Kaplan Ö, Eker EB, Gök MK. Recent Progress in Chitosan-Based Nanoparticles for Drug Delivery: A Review on Modifications and Therapeutic Potential. J Drug Target 2025:1-51. [PMID: 40336193 DOI: 10.1080/1061186x.2025.2502956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Chitosan, obtained from chitin by deacetylation, is a versatile biopolymer known for its biocompatibility, biodegradability, and environmental friendliness. Combined with its chemical and physical modifiability, these properties have made chitosan an important material in biomedical and pharmaceutical fields, especially in drug delivery systems. Chitosan-based nanomaterials exhibit enhanced functions through various chemical modifications such as thiolation, acetylation, carboxylation, and phosphorylation, as well as through physical and enzymatic approaches. These modifications address inherent limitations such as poor solubility, limited acid resistance, and insufficient mechanical strength, expanding the applications of chitosan in tissue engineering, gene therapy, vaccine delivery, wound healing, and bioimaging.This review provides an in-depth analysis of the chemical structure, physicochemical properties and modification strategies of chitosan. It also explores current methodologies for preparing chitosan nanoparticles, along with drug loading and release techniques. Various targeting strategies employed in chitosan-based delivery systems are examined in detail. To illustrate the clinical relevance of these approaches, representative examples from recent therapeutic studies are included. Moreover, it highlights future research directions and the innovation potential of chitosan-based materials.
Collapse
Affiliation(s)
- Kevser Bal
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Türkiye
| | - Sibel Küçükertuğrul Çelik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Türkiye
| | - Sema Şentürk
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Türkiye
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Türkiye
| | - Emine Büşra Eker
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Türkiye
| | - Mehmet Koray Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Istanbul, Türkiye
| |
Collapse
|
2
|
Ganguly K, Randhawa A, Dutta SD, Park H, Mohammad Hossein Pour M, Kim H, Acharya R, Patil TV, Shin BS, Kim DH, Lim KT. Ultrathin, Stimuli-Responsive, Antimicrobial, Self-Cleaning, Reusable, and Biodegradable, Micro/Nanofibrous Electrospun Mat as an Efficient Face Mask Filter for Airborne Disease Prevention. NANO LETTERS 2025. [PMID: 40311123 DOI: 10.1021/acs.nanolett.4c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A multifunctional, electrospun, ultrathin face mask is desirable for preventing disease spread while ensuring breathability. However, balancing ultrathin construction with antimicrobial efficacy is challenging. Here, we fabricated an ultrathin micro/nanofibrous electrospun matrix, consisting of three biodegradable polymer layers, for high antibacterial efficiency, breathability, and biodegradability. The outer layer, with an average thickness of 9.01 ± 3.1 μm, is composed of polycaprolactone (PCL), silver nitrate (AgNO3), and β-cyclodextrin (β-CD). The middle layer, with a thickness of 4.61 ± 1.4 μm, comprises poly(vinyl alcohol) (PVA) and multiwalled carbon nanotubes (MWCNT) as a conductive layer. The inner layer, with a thickness of 5.12 ± 1.4 μm, contains PVA, carboxymethyl chitosan (CMC), and cellulose nanofibrils (CNFs) as a superabsorbent layer, supported by medical gauze. With a total thickness of ∼300 μm, the mask provides antibacterial efficacy, self-cleaning, reusability, mechanical stability, and biodegradability. This design advances filtering face masks, offering a solution to combat contagious diseases while minimizing environmental impact.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
| | | | | | | | | | - Beom-Soo Shin
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Dae Hyun Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea
| |
Collapse
|
3
|
Ye J, Hua X, Shao X, Yang R. Acid-induced conformation regulation of peanut polysaccharide and its effect on stability and digestibility of oil-in-water emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2704-2717. [PMID: 37997448 DOI: 10.1002/jsfa.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developing the stable and healthy emulsion-based food is in accord with the needs of people for health. In the present study, acidification at pH 3.0 of peanut polysaccharide (APPSI) was employed to regulate its conformation and further improve its advantages in preparing oil-in-water emulsion. RESULTS The results indicated that acidification induced conversion of PPSI aggregates into linear chains. Increasing concentration promoted formation of cross-linked network structure shown in transmission electron microscopy images. Consequently, the viscosity, yield stress, storage modulus and flow activation energy significantly increased, further fabricating gel structure. Moreover, aggregation behavior suggested that more exposed proteins were involved in gel structure, thereby forming many hydrophobic cores as verified by fluorescence spectroscopy of pyrene. Afterwards, emulsion characteristics indicated that APPSI produced strong and thick steric hindrance around oil droplets and the coil-like interweaved chains locked the continuous phase, bringing strong elasticity and resistance to stress and creaming. Meanwhile, the lower fatty acid in APPSI-emulsion was released after simulated gastrointestinal digestion, mainly as a result of the high retention ratio of emulsion droplets. Furthermore, the elastic and viscous Lissajous curves suggested that the structure strength of APPSI-emulsion was similar to that of the salad dressing within the strain 53.22%. CONCLUSION The conformation of PPSI after acidification at pH 3.0 was suitable for preparing the stable emulsion. The obtained emulsion could resist digestion and maintain a strong structure, comprising a cholesterol-free and low-fat salad dressing substitute. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianfen Ye
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Sela A, Moussa S, Rodov V, Iasur Kruh L, Poverenov E. Carboxymethyl chitosan-N-alkylimine derivatives: Synthesis, characterization and use for preservation of symbiotic biofertilizer bacteria on chickpea seeds. Int J Biol Macromol 2024; 262:130057. [PMID: 38340940 DOI: 10.1016/j.ijbiomac.2024.130057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A series of carboxymethyl chitosan-N-alkylimine derivatives with side chain length of 4 to 10 carbons (CMCS-n, n = 4, 6, 8, 10) was prepared in a one-step solvent-free synthesis using Schiff base chemistry. The modified polysaccharides were characterized by their spectral, thermal and physical properties. The prepared polymers demonstrated an ability to spontaneous self-assembly with a clear correlation between critical aggregation concentration and the chain length of the alkyl substituent. N-alkylimine-CMCS derivatives were found to deliver hydrophobic (curcumin) and hydrophilic (ascorbic acid) active agents in unfavorable environments of water and oil, respectively. Then, N-alkylimine-CMCS derivatives were used as a platform for the delivery of symbiotic gram-positive bacteria Bacillus subtilis CJ onto chickpea seeds. These bacteria demonstrated a significantly higher survival rate (106 CFU/mL) in dried CMCS-6 derivative film than in other films tested. The seeds treated with N-alkylimine-CMCS coatings that contained B. subtilis CJ demonstrated up to 100-fold increase of this bacterial population on the seedlings in comparison to the pristine CMCS.
Collapse
Affiliation(s)
- Aviad Sela
- Agro-nanotechnology and Advanced Materials Research Center, Department of Food Science, Agriculture Research Organization, The Volcani Institute, Rishon LeZion, Israel; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suzana Moussa
- Department of Biotechnology Engineering, Braude College of Engineering, Carmiel, Israel
| | - Victor Rodov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Lilach Iasur Kruh
- Department of Biotechnology Engineering, Braude College of Engineering, Carmiel, Israel
| | - Elena Poverenov
- Agro-nanotechnology and Advanced Materials Research Center, Department of Food Science, Agriculture Research Organization, The Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
5
|
Wei C, Yang X, Li Y, Wang L, Xing S, Qiao C, Li Y, Wang S, Zheng J, Dong Q. N-lauric-O-carboxymethyl chitosan: Synthesis, characterization and application as a pH-responsive carrier for curcumin particles. Int J Biol Macromol 2024; 256:128421. [PMID: 38013085 DOI: 10.1016/j.ijbiomac.2023.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Jialin Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250353, China
| | - Qiaoyan Dong
- Technology Center of Shandong Fangyan Biological Technology Co., LTD, 250021 Ji'nan, China
| |
Collapse
|
6
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
7
|
Soleimani S, Jannesari A, Etezad SM. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int J Biol Macromol 2023:125508. [PMID: 37356687 DOI: 10.1016/j.ijbiomac.2023.125508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In this study, a series of novel hydrophobic/hydrophilic hybrid (HHH) coatings with the feature of preventing the fouling phenomenon was fabricated based on polydimethylsiloxane (PDMS), as matrix and two hydrophilic polymers: chitosan and sodium polyacrylate, as dispersed phases. Antibacterial activity, pseudo-barnacle adhesion strength, surface free energy, water contact angle, and water absorption were performed for all samples. Evaluating field immersion of the samples was performed in the natural seawater. The results showed that the dispersed phase containing PDMS coatings showed simultaneously both of antibacterial activity and foul release behavior. Among the samples, the PCs4 coating containing 4 wt% Cs indicated the lowest pseudo barnacle adhesion strength (0.04 MPa), the lowest surface free energy (18.94 mN/m), the highest water contact angle (116.05°), and the percentage of fouling organisms 9.8 % after 30 days immersion. The HHH coatings can be considered as novel eco-friendly antifouling/foul release coatings for aquaculture applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Seyed Masoud Etezad
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
8
|
Dong Y, He Y, Fan D, Wu Z. Preparation of pH-sensitive chitosan-deoxycholic acid-sodium alginate nanoparticles loaded with ginsenoside Rb 1 and its controlled release mechanism. Int J Biol Macromol 2023; 234:123736. [PMID: 36801309 DOI: 10.1016/j.ijbiomac.2023.123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Ginsenoside is a natural extract of the genus ginseng, which has tumor preventive and inhibiting effects. In this study, ginsenoside loaded nanoparticles were prepared by an ionic cross-linking method with sodium alginate to enable a sustained slow release effect of ginsenoside Rb1 in the intestinal fluid through an intelligent response. Chitosan grafted hydrophobic group deoxycholic acid was used to synthesize CS-DA, providing loading space for hydrophobic Rb1. Scanning electron microscopy (SEM) showed that the nanoparticles was spherical with smooth surfaces. The encapsulation rate of Rb1 enhanced with the increase of sodium alginate concentration and could reach to 76.62 ± 1.78 % when concentration was 3.6 mg/mL. It was found that the release process of CDA-NPs was most consistent with the primary kinetic model which is a diffusion-controlled release mechanism. CDA-NPs exhibited good pH sensitivity and controlled release properties in buffer solutions of different pH's at 1.2 and 6.8. The cumulative release of Rb1from CDA-NPs in simulated gastric fluid was <20 % within 2 h, while could release completely around 24 h in the simulated gastrointestinal fluid release system. It was demonstrated that CDA3.6-NPs can effectively control release and intelligently deliver ginsenoside Rb1, which is a promising alternative way for oral delivery.
Collapse
Affiliation(s)
- Yujia Dong
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Daidi Fan
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
9
|
Cheng C, Tu Z, Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: phase behavior and structural properties. Food Res Int 2023; 167:112652. [PMID: 37087241 DOI: 10.1016/j.foodres.2023.112652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023]
Abstract
The aim of this study was to investigate the phase behavior and structural properties of fish gelatin complex coacervation with carboxylated chitosan as a function of pH by varying the amount of carboxylated chitosan added (0-0.25%, w/v) while keeping the fish gelatin concentration constant at 0.667% (w/v). Zeta potential indicated that electrostatic interaction drove the complex coalescence of fish gelatin and carboxylated chitosan to form soluble or insoluble complexes. The turbidity of the fish gelatin-carboxylated chitosan complex system was greatest at a carboxylated chitosan concentration of 0.2%. UV and fluorescence spectroscopy indicated that the carboxylated chitosan changed the tertiary conformation of fish gelatin. Circular dichroism showed that complexation of fish gelatin with carboxylated chitosan resulted in a shift from the α-helix to the β-sheet structure of fish gelatin. In particular, at pH 5, the fish gelatin complexed with carboxylated chitosan had a disordered structure. X-ray diffraction and scanning electron microscopy of the composite coacervates both investigated that electrostatic interaction between the two replaced molecular interaction within the carboxylated chitosan to form a new lamellar porous structure. These findings may in future enable the use of fish gelatin-carboxylated chitosan complex systems in the design of new food matrices.
Collapse
|
10
|
Hou R, Zhou J, Song Z, Zhang N, Huang S, Kaziem AE, Zhao C, Zhang Z. pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis. Carbohydr Polym 2023; 302:120373. [PMID: 36604051 DOI: 10.1016/j.carbpol.2022.120373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.
Collapse
Key Words
- H. axyridis
- Low toxicity
- PubChem CID: 14030006, castor oil
- PubChem CID: 14798, sodium hydroxide
- PubChem CID: 16682738, dibutyltin dilaurate
- PubChem CID: 169132, isophorone diisocyanate
- PubChem CID: 300, chloroacetic acid
- PubChem CID: 3776, isopropyl alcohol
- PubChem CID: 442424, genipin
- PubChem CID: 443046, λ-cyhalothrin
- PubChem CID: 6569, methyl ethyl ketone
- PubChem CID: 7767, N-methyl diethanolamine
- pH-controlled release
- λ-Cyhalothrin
Collapse
Affiliation(s)
- Ruiquan Hou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jingtong Zhou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zixia Song
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Amir E Kaziem
- Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Chen Zhao
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Yoon SJ, Kim SH, Choi JW, Chun HJ, Yang DH. Guided cortical and cancellous bone formation using a minimally invasive technique of BMSC- and BMP-2-laden visible light-cured carboxymethyl chitosan hydrogels. Int J Biol Macromol 2023; 227:641-653. [PMID: 36549614 DOI: 10.1016/j.ijbiomac.2022.12.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A cavity defect inside the bone is formed by deformed cancellous bone from the fixation of the cortical bone, and consequently, abnormal bone healing occurs. Therefore, repairing cancellous bone defects is a remarkable topic in orthopedic surgery. In this study, we prepared bone marrow-derived stem cell (BMSC)-laden and bone morphogenetic protein-2 (BMP-2)-laden visible light-cured carboxymethyl chitosan (CMCS) hydrogels for cortical and cancellous bone healing. Proton nuclear magnetic resonance (1H NMR) analysis confirmed the methacrylation of CMCS (CMCSMA), resulting in 55 % of substitution. The higher concentration of CMCSMA hydrogel resulted in the lower swelling ratio, the larger viscosity, the slower degradation behavior, and the stronger compressive strength. The 5 w/v% hydrogel exhibited a controlled BMP-2 release for 14 days, while the 7 and 10 w/v% hydrogels displayed a controlled BMP-2 release for 28 days. Results of in vitro cytotoxicity and cell proliferation assays revealed the biocompatibility of the samples. In vivo animal tests demonstrated that BMSC- and BMP-2-laden 7 w/v% CMCSMA (CMCSMA+Cell+BMP-2) improved bone formation in the defected cortical and cancellous bones of the femur, as analyzed by micro-computed tomography (micro-CT) and histological evaluations. Consequently, we suggested that CMCSMA+Cell+BMP-2 can be a valuable scaffold for restoring cortical and cancellous bone defects.
Collapse
Affiliation(s)
- Sun-Jung Yoon
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sae Hyun Kim
- Lumenbio Co., LTD., Seoul 08590, Republic of Korea
| | - Jae Won Choi
- Lumenbio Co., LTD., Seoul 08590, Republic of Korea
| | - Heung Jae Chun
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
12
|
Li Z, Zhang Y, Shen Y, Yang X, Li T, Chen G. The study on the relationship between the molecular structures of chitosan derivatives and their hydrate inhibition performance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Hou R, Li C, Tan Y, Wang Y, Huang S, Zhao C, Zhang Z. Eco-friendly O-carboxymethyl chitosan base chlorfenapyr nanopesticide for effective pest control and reduced toxicity to honey bees. Int J Biol Macromol 2022; 224:972-983. [DOI: 10.1016/j.ijbiomac.2022.10.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
14
|
Liu Q, Li B, Li Y, Yang X, Wang S, Qiao C, Wang N. Cross-linked films based on N-hydrophobic-O-hydrophilic chitosan derivatives: Preparation, properties and application in bananas storage. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
16
|
Liu Q, Li Y, Xing S, Wang L, Yang X, Hao F, Liu M. Genipin-crosslinked amphiphilic chitosan films for the preservation of strawberry. Int J Biol Macromol 2022; 213:804-813. [PMID: 35691425 DOI: 10.1016/j.ijbiomac.2022.06.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
As a material for films used to keep fruits fresh, chitosan has attracted extensive interest because of its advantages of degradability, environmental friendliness, and biocompatibility. In this study, two amphiphilic chitosan derivative films were prepared by crosslinking N-2-hydroxypropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxypropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC)) with genipin, an excellent natural cross-linking agent. The microstructures, mechanical properties, water vapor permeability, swelling ratios, light transmittance, wettability, thermal stability, antibacterial properties, and biocompatibility of the crosslinked films were characterized. The results showed that the crosslinked films had compact structures, low moisture permeability, strong water resistance, strong ultraviolet resistance, unaffected visible light transmittance, and good hydrophilicity. Compared with the uncrosslinked films, the tensile strength of the genipin-crosslinked ones was increased by 328.33 % (HBCC) and 397.83 % (H2ECC). More importantly, the crosslinked films had strong antibacterial activity against Staphylococcus aureus and Escherichia coli and were non-toxic to endothelial cells. The crosslinked films could effectively prolong the preservation time of strawberries, inhibit the decay of strawberries, and inhibit the reduction of vitamin C in strawberries. In conclusion, genipin-crosslinked HBCC and H2ECC films are potential fruit preservation materials.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shu Xing
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ling Wang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fei Hao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
17
|
Zhou C, Zhang L, Yang Z, Pan Q, He Z, Wang C, Liu Y, Song S, Yang Z, Chen Y, Li P. Synthesis and characterization of carboxymethyl chitosan/epoxidized soybean oil based conjugate catalyed by UV light, and its application as drug carrier for fusarium wilt. Int J Biol Macromol 2022; 212:11-19. [DOI: 10.1016/j.ijbiomac.2022.05.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/19/2023]
|
18
|
Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/ N, N-Dimethyl- N-dodecyl- N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery. Polymers (Basel) 2022; 14:polym14101936. [PMID: 35631818 PMCID: PMC9147693 DOI: 10.3390/polym14101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
Chitosan has potential applications in many fields, due to its biocompatibility, biodegradability and reproducibility. However, the insolubility in water restricts its wide application. In order to expand the application of chitosan in the delivery of oil-soluble drugs and improve the efficacy of oil-soluble drugs, N-Glycidyltrimethyl ammonium chloride-modified chitosan (GTA-m-CS) and N,N-Dimethyl-N-dodecyl-N-(1,2-epoxy propyl) ammonium chloride (DDEAC), a kind of reactive surfactant, were synthesized and characterized by FTIR, NMR and XRD methods. The interactions between GTA-m-CS and DDEAC was studied by surface tension, viscosity, conductivity and fluorescence methods. The parameters, including equilibrium surface tension, critical micelle concentrations of DDEAC with different GTA-m-CS concentration, critical aggregation concentration of DDEAC, the amount of DDEAC adsorbed on GTA-m-CS, pc20 and πcmc were obtained from the surface tension curves. The influence of temperature on the above parameters were evaluated. The degree of counterion binding to micelle and the thermodynamic parameters of the system were calculated from the conductivity curves. According to the change of conductivity with temperature, the thermodynamic parameters of micellar formation were calculated. The aggregation number of DDEAC molecules in GTA-m-CS/DDEAC aggregates were calculated from steady-state fluorescence data. Based on the experimental results, the interaction models between GTA-m-CS and DDEAC were proposed. The GTA-m-CS/DDEAC aggregates could be used as curcumin carries, and achieved sustained release.
Collapse
|
19
|
Synthesis of Chitosan Derivatives and Their Inhibition Effects on Methane Hydrates. ENERGIES 2022. [DOI: 10.3390/en15072675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the study of natural polymer products such as methane hydrate inhibitors has attracted more and more attention in the scientific research field. In order to achieve environmentally friendly and economical methane hydrate inhibitors with high activity, four chitosan derivatives were successfully synthesized and their methane hydrate inhibition effects were compared with chitosan (CS) and carboxymethyl chitosan (CMCS). Under the conditions of 6 MPa, 1 °C and 400 rpm, the induction time of methane hydrate was prolonged by 7.3 times with the addition of 0.1 wt% CS. It was found that chitosan with high hydrophobicity could effectively prevent methane gas from entering the water solution and reduce the driving force of methane hydrates, resulting in the extension of hydrate induction time. The hydrate inhibition effect of CMCS could be improved by the introduction of hydroxypropyl-3-trimethylamine and N-2-hydroxypropyl-3-isooctyl ether groups based on the enhancement of the molecular hydrophobicity. At the same time, the introduction of the trimethyl quaternary ammonium group increased the ion content in the aqueous solution, which further inhibited the nucleation and growth of methane hydrates. This work is supposed to serve as an inspiration for the further research and development of green kinetic hydrate inhibitors with high-efficiency.
Collapse
|
20
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
21
|
FAN C, LI Z, JI Q, SUN H, LIANG Y, YANG P. Carboxymethyl chitin or chitosan for osteoinduction effect on the human periodontal ligament stem cells. Dent Mater J 2022; 41:392-401. [DOI: 10.4012/dmj.2021-250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chun FAN
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Zhiyuan LI
- Medical Research Center, The Affiliated Hospital of Qingdao University
| | - Qiuxia JI
- Department of Periodontology, The Affiliated Hospital of Qingdao University
| | - Hui SUN
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Ye LIANG
- Medical Research Center, The Affiliated Hospital of Qingdao University
| | - Pishan YANG
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| |
Collapse
|
22
|
Jing H, Du X, Mo L, Wang H. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy. Int J Biol Macromol 2021; 192:1169-1177. [PMID: 34678379 DOI: 10.1016/j.ijbiomac.2021.10.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 10/09/2021] [Indexed: 01/13/2023]
Abstract
Carboxymethyl chitosan (CMCS)-based complex coacervate has attracted much attention in drug oral delivery due to its pH-responsive property. As a unique ampholyte polymer, the self-coacervation of CMCS has great research potential. In this work, CMCS self-coacervates were prepared by adjusting the pH of the CMCS aqueous solution close to its isoelectric point. The Fourier-transformed infrared spectroscopy (FTIR) results revealed that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were involved in the self-coacervation of CMCS. The obtained self-coacervates presented a dense surface structure, and were stable at a wide pH range of 3.0-6.0, and gradually dissolved under basic conditions. Although self-coacervation decreased the crystallinity and thermal stability of CMCS, the obtained coacervates showed excellent pH-responsive properties and ionic strength stability. We also investigated its potential in lactoferrin (LF) encapsulation and oral delivery. The CMCS self-coacervates exhibited a high encapsulation efficiency (EE) of 94.79 ± 0.49% and loading capacity (LC) of 26.29 ± 0.52% when the addition amount of LF was 2 mg. The simulated gastric digestion results demonstrated that CMCS self-coacervates could protect more than 80% of LF from hydrolysis and maintain the bioactivities of LF. Accordingly, the self-coacervation of CMCS could be used as a pH-responsive encapsulation and delivery strategy.
Collapse
Affiliation(s)
- Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ling Mo
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
23
|
Liu Q, Li B, Li Y, Yang X, Qiao C, Hu W, Liu M. Solution properties of N-(2-allyl-butyl ether)-O-carboxymethyl chitosan and N-(2-allyl-isooctyl ether)-O-carboxymethyl chitosan. Int J Biol Macromol 2021; 190:93-100. [PMID: 34481851 DOI: 10.1016/j.ijbiomac.2021.08.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 02/04/2023]
Abstract
pH-sensitive and amphiphilic chitosan derivatives can be used as hydrophobic drug carriers, and their rheological properties play a key role in their performance. In this paper, two pH-responsive and amphiphilic chitosan derivatives, N-(2-allyl-butyl glycidyl ether)-O-carboxymethyl chitosan (HBCC) and N-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC) were synthesized, and their rheological properties were studied. The influence of parameters including concentrations of HBCC and H2ECC, the degree of substitution, solution pH, and [Ca2+] on the rheological properties were investigated. The results showed that the overlap and entanglement concentration of HBCC and H2ECC was ca. 1.7 wt% and 5 wt%, respectively. The dilute and semidilute solutions showed Newtonian behavior. Above 5 wt%, strong networks formed, and shear-thinning behavior appeared at high shear rates (>10 s-1) for entangled solutions. A high degree of substitution and pH near the isoelectric points of HBCC and H2ECC corresponded to a low viscosity and viscoelasticity. In addition, Ca2+ played a shielding effect on the -COO- groups at low concentrations (<10 mmol/L), whereas it acted as a cross-linker when [Ca2+] ≥ 20 mmol/L. The intermolecular hydrogen bonds were examined by molecular dynamics simulations. The results provide new information related to the application of HBCC and H2ECC for hydrophobic drug packaging and transportation.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wei Hu
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
24
|
Li S, Li Y, Yang X. Reaction kinetics of glycidyl trimethyl ammonium chloride and chitosan in 1-allyl-3-methylimidazolium chloride. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Zhou J, Ma S, Zhang Y, He Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydr Polym 2021; 264:118030. [PMID: 33910720 DOI: 10.1016/j.carbpol.2021.118030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
An integrated gene nanovector capable of overcoming complicated physiological barriers in one vector is desirable to circumvent the challenges imposed by the intricate tumor microenvironment. Herein, a nuclear localization signals (NLS)-decorated element and an iRGD-functionalized element based on O-carboxymethyl chitosan were synthesized, mixed, and coated onto PEI/DNA to fabricate bacterium-mimicking sequentially targeted therapeutic nanocomplexes (STNPs) which were internalized through receptor-mediated endocytosis and other pathways and achieved nuclear translocation of DNA. The endo/lysosomal membrane disruption triggered by reactive oxygen species (ROS) after short-time illumination, together with the DNA nuclear translocation, evoked an enhanced gene expression. Alternatively, the excessive ROS from long-time irradiation induced apoptosis in tumor cells, bringing about greater anti-tumor efficacy owing to the integration of gene and photodynamic therapy. Overall, these results demonstrated bacterium-mimicking STNPs could be a potential candidate for tumor treatments.
Collapse
Affiliation(s)
- Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Shengnan Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, PR China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
27
|
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr Polym 2021; 256:117590. [DOI: 10.1016/j.carbpol.2020.117590] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
|
28
|
Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules 2021; 26:molecules26020452. [PMID: 33467083 PMCID: PMC7829902 DOI: 10.3390/molecules26020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.
Collapse
|