1
|
Liu M, Cui Z, Xu D, Liu C, Zhou C. Chitin nanocrystal-reinforced chitin/collagen composite hydrogels for annulus fibrosus repair after discectomy. Mater Today Bio 2025; 31:101537. [PMID: 40026628 PMCID: PMC11869017 DOI: 10.1016/j.mtbio.2025.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/06/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Discectomy is a widely utilized approach for alleviating disc herniation; however, effective repair of postoperative annulus fibrosus (AF) defects remains a significant challenge. This study introduces a hydrogel patch with enhanced mechanical properties for AF repair fabricated using chitin (Ch), collagen (Col), and chitin nanocrystals (ChNCs) through a freeze-thaw cycling technique. The Ch and Col components constitute the matrix of the hydrogel patch, while uniformly dispersed ChNCs act as a nanofiller, markedly improving the mechanical performance (compression strain: 95 %; compression modulus: 0.27 MPa) of the resulting Ch/Col@ChNCs hydrogel patch. The patch demonstrates advantageous properties, including high porosity, superior water absorption, thermal stability, and biodegradability in simulated body fluid. In vitro assessments reveal excellent biocompatibility with AF cells and enhanced collagen deposition. Furthermore, in vivo studies confirm that the patch effectively repairs postoperative disc defects, exhibiting strong integration with surrounding tissues and facilitating the orderly regeneration of fibrous tissue. This innovative hydrogel patch, combining exceptional properties with a straightforward fabrication process, presents a viable strategy for advancing clinical biomaterials for postoperative AF repair.
Collapse
Affiliation(s)
- Mingzhi Liu
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| | - Zhiyong Cui
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266035, Qingdao, China
| |
Collapse
|
2
|
Zhang M, Xu S, Zuo Z, Xu H, Xu Q, Li T, Zhang X, Wang L. Modulation of rice starch physicochemical properties and digestibility: The role of highland barley non-starch polysaccharide fractions. Int J Biol Macromol 2024; 279:135206. [PMID: 39244124 DOI: 10.1016/j.ijbiomac.2024.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Highland barley non-starch polysaccharides (HBNP), particularly β-glucans, are known for their health-promoting effects, including modulation of glycemic response and enhancement of gut health. This study investigated the impact of different HBNP fractions on the properties and digestibility of high-glycemic index rice starch. HBNP was segmented into five fractions (HBNP-15, HBNP-30, HBNP-45, HBNP-60, and HBNP-75) using gradient ethanol precipitation, and these fractions exhibited varying molecular weights, monosaccharide compositions, and β-glucan contents. All fractions reduced rice starch's pasting viscosity, with 1 % HBNP-75 leading to a 99.1 % decrease in final viscosity. Morphological and size distribution analyses showed that HBNP fractions limited granule swelling and disrupted starch's continuous phase structure. HBNPs also reduced starch digestibility and increased the formation of resistant starch from 10 % to 28 %. These results suggest potential uses for HBNP fractions in developing low-glycemic starch-based foods.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Institute of Modern Agriculture, Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd., Nanjing 211800, China
| | - Shunqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Hui Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Qianqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
3
|
Liao J, Wen R, Wang Y, Zhou Y, Zhang J. Film-Forming Capability and Antibacterial Activity of Surface-Deacetylated Chitin Nanocrystals: Role of Degree of Deacetylation. Biomacromolecules 2024; 25:5138-5148. [PMID: 39007299 DOI: 10.1021/acs.biomac.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing sustainable food-active packaging materials is a major issue in food preservation applications. Chitin nanocrystals (ChNCs) are regarded as unique bioderived nanomaterials due to their inherent nitrogen moiety. By tuning the chemical functionality of this nanomaterial, it is possible to affect its properties, such as film-forming capability and antibacterial activity. In this work, surface-deacetylated chitin nanocrystals (D-ChNCs) with different degrees of deacetylation (DDs) were prepared by partial deacetylation of native chitin and subsequent acid hydrolysis, and their film-forming capability and antibacterial activity were studied systematically. The D-ChNCs showed favorable film-forming ability and antibacterial activity, which are closely related to their DD. With the increase in DD (from 5.7% to 45.4%), the formed transparent films based on ChNCs showed gradually increased elongation at break (from 0.5% to 2.5%) and water contact angle (from 25.5° to 87.0°), but decreased break strength (from 3.13 to 0.89 MPa), Young's modulus (from 0.84 to 0.24 MPa), and water vapor permeability (from 4.7 × 10-10 to 4.1 × 10-10g/m s Pa). Moreover, the antibacterial activity of the D-ChNCs against E. coli and S. aureus also increased with the increase of DD. This study also found that the depolarization and potential dissipation of the bacterial cell membrane induced by the contact between amino-rich D-ChNCs and bacteria through electrostatic attraction are the possible mechanisms causing bacterial cell death. This study provides a basis for understanding the effects of DD on the film-forming capability and antibacterial activity of ChNCs, which is conducive to the design of novel active packaging films based on ChNCs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Ruizhi Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Zhao L, Li J, Ding Y, Sun L. Preparation and Characterization of a Novel Longzhua mushroom Polysaccharide Hydrogel and Slow-Release Behavior of Encapsulated Rambutan Peel Polyphenols. Foods 2024; 13:1711. [PMID: 38890937 PMCID: PMC11171559 DOI: 10.3390/foods13111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to encapsulate rambutan peel polyphenols (RPP) and delay their release time to improve their stability and bioavailability. The mechanical properties, rheology, stability, swelling properties, water-holding capacity, RPP loading, and slow-release behavior of LMPH were investigated. The results showed that LMPH has adequate mechanical and rheological properties, high thermal stability, excellent swelling and water-holding capacity, and good self-healing behavior. Increasing the polysaccharide content not only improved the hardness (0.17-1.13 N) and water-holding capacity of LMPH (90.84-99.32%) but also enhanced the encapsulation efficiency of RPP (93.13-99.94%). The dense network structure slowed down the release of RPP. In particular, LMPH5 released only 61.58% at 48 h. Thus, a stable encapsulated slow-release system was fabricated using a simple method based on the properties of LMPH. The developed material has great potential for the sustained release and delivery of biologically active substances.
Collapse
Affiliation(s)
| | | | | | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.Z.); (J.L.); (Y.D.)
| |
Collapse
|
5
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
6
|
Peydayesh M, Boschi E, Bagnani M, Tay D, Donat F, Almohammadi H, Li M, Usuelli M, Shiroka T, Mezzenga R. Hybrid Amyloid-Chitin Nanofibrils for Magnetic and Catalytic Aerogels. ACS NANO 2024; 18:6690-6701. [PMID: 38345899 DOI: 10.1021/acsnano.4c00883] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the quest for a sustainable and circular economy, it is essential to explore environmentally friendly alternatives to traditional petroleum-based materials. A promising pathway toward this goal lies in the leveraging of biopolymers derived from food waste, such as proteins and polysaccharides, to develop advanced sustainable materials. Here, we design versatile hybrid materials by hybridizing amyloid nanofibrils derived by self-assembly of whey, a dairy byproduct, with chitin nanofibrils exfoliated from the two distinct allomorphs of α-chitin and β-chitin, extracted from seafood waste. Various hydrogels and aerogels were developed via the hybridization and reassembly of these biopolymeric nanobuilding blocks, and they were further magnetized upon biomineralization with iron nanoparticles. The pH-phase diagram highlights the significant role of electrostatic interactions in gel formation, between positively charged amyloid fibrils and negatively charged chitin nanofibrils. Hybrid magnetic aerogels exhibit a ferromagnetic response characterized by a low coercivity (<50 Oe) and a high specific magnetization (>40 emu/g) at all temperatures, making them particularly suitable for superparamagnetic applications. Additionally, these aerogels exhibit a distinct magnetic transition, featuring a higher blocking temperature (200 K) compared to previously reported similar nanoparticles (160 K), indicating enhanced magnetic stability at elevated temperatures. Finally, we demonstrate the practical application of these hybrid magnetic materials as catalysts for carbon monoxide oxidation, showcasing their potential in environmental pollution control and highlighting their versatility as catalyst supports.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel Tay
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zürich, Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mingqin Li
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Toni Shiroka
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Gan Z, Zhang M, Xu S, Li T, Zhang X, Wang J, Wang L. Comparison of quinoa and highland barley derived dietary fibers influence on the physicochemical properties and digestion of rice starch. Food Res Int 2023; 174:113549. [PMID: 37986428 DOI: 10.1016/j.foodres.2023.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the potential of highland barley and quinoa dietary fibers, rich in β-glucan and pectin respectively, as cost-effective and nutritionally valuable physical modifiers for rice starch (RS). HPAEC revealed differences between the monosaccharide composition of soluble and insoluble dietary fibers sourced from highland barley and quinoa (HSDF, HIDF, QSDF and QIDF). Results from both RVA and DSC analysis revealed that the addition of low amounts of dietary fiber significantly modified the pasting properties of RS. Notably, the addition of quinoa soluble dietary fiber (QSDF) significantly inhibits the formation of a stable gel network in rice starch, even at low concentrations (0.1 %), as confirmed by rheological measurements. Furthermore, the incorporation of QSDF effectively reduces the content of rapidly digestible starch in rice starch by 15.6 % and increases the content of slowly digestible starch, from 23.36 % ± 3.02 % to 31.07 % ± 3.98 %. By leveraging the compositional richness of these fibers, this research opens up novel opportunities for developing functional food products with improved nutritional profiles, as well as for improving texture and reducing glycemic index (GI) in starch-based foods.
Collapse
Affiliation(s)
- Zhicong Gan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Shunqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Junren Wang
- Institute of Modern Agriculture, Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd., Nanjing 211800, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
8
|
He Y, Lin X, Feng Y, Wu F, Luo B, Liu M. Non-spherical assemblies of chitin nanocrystals by drop impact assembly. J Colloid Interface Sci 2023; 651:714-725. [PMID: 37567115 DOI: 10.1016/j.jcis.2023.07.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Preparing complex non-spherical assemblies of elongated nanoparticles and exploring their topological conformations is a challenge due to liquid crystals' mobility and elastic distortion. Here, we fabricated a variety of non-spherical liquid crystal assemblies of chitin nanocrystals (ChNCs) in a coagulation bath containing sodium triphosphate (STP) by drop impact assembly method, and the forming mechanism and internal topology were systematically investigated. The collection height, ChNCs concentration, and STP concentration have significant influence on the shape and size of the assembled structures. Long-range ordered structures and long-lived topological textures of the ChNCs liquid crystal can be obtained since a molecular interaction of hydrogen bonding and electrostatic attractions between ChNCs and STP occur during the impact assembly. Rheological and kinetic analysis suggested the shear thinning behavior of the ChNCs liquid crystals and the rapid gelation phenomenon of ChNCs induced by STP. Morphology results showed that the rod-like ChNCs in the non-spherical assemblies were orderly and closely arranged with periodic repetition and layered structure. The non-spherical assemblies of ChNCs liquid crystals can be used as carriers of carbon nanotubes, magnetic Fe3O4 nanoparticles, synthesized polymers, and anticancer drugs for functional composite applications. The drop impact assembly method of ChNCs liquid crystal structure is highly controllable on the composition, morphology, and function, which shows promising applications in energy, environmental-friendly, and bioactive materials.
Collapse
Affiliation(s)
- Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Feng Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
9
|
Hu Z, Shang J, Wang P, Zhang L, Zhou J. Omnidirectional antireflective coatings prepared with chitin nanofibers via layer-by-layer self-assembly. J Colloid Interface Sci 2023; 650:676-685. [PMID: 37441961 DOI: 10.1016/j.jcis.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Antireflective coatings play an important role in various optical devices. Herein, we developed omnidirectional antireflective coatings fabricated with charged chitin nanofibers (ChNFs) through layer-by-layer (LbL) self-assembly technology. The charged ChNFs were prepared from chitin with modifications of esterification (negatively charged) and esterification followed partial deacetylation (positively charged), respectively, through ultrasonic treatment. The effects of concentration of the ChNF suspensions and number of bilayers on thickness, refractive index and antireflective capacity of the ChNF coatings were investigated. Refractive index of the ChNF coatings can be manipulated by changing concentration of the ChNF suspensions. Thickness of the ChNF coatings depends on number of bilayers and concentration of the ChNF suspensions. The ChNF coating on a glass substrate with 5 bilayers fabricated using the suspensions with concentration 0.1% had a refractive index of 1.36 and yielded 4% gain in transmittance compared to the glass at the wavelength of 550 nm. This work demonstrates that charged ChNFs are promising building blocks to fabricate antireflective coatings on large size substrates with high efficiency and low cost through LbL self-assembly.
Collapse
Affiliation(s)
- Zhiqing Hu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peizhuang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
10
|
Du Y, Zhao K, Tian X, Zhang H, Zhou X, Wang W. Focusing on papain release in the intestine: The effects of Chitinous materials on alginate microsphere properties. Int J Food Sci Technol 2023; 58:2873-2882. [DOI: 10.1111/ijfs.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
SummaryExogenous enzymes, accompanied by a function of assisting digestion, can be employed in therapeutic application which supplement the daily diet for the patients suffering from gastrointestinal diseases. To prevent the degradation of the enzymes in gastric fluid, papain was encapsulated into alginate microspheres with the external wrap of chitin nanocrystals. The protective effect of the assembled alginate microspheres (PAM‐ChNC) on papain was studied and compared with traditional chitosan‐coated alginate microspheres (PAM‐Ch). Scanning electron microscopy results showed that ChNC could form a dense structure on the surface of alginate microspheres. The swelling rate of PAM‐ChNC was lower than that of PAM‐Ch at pH 1.2. The effect of papain (encapsulated in microspheres) on the digestion of myofibrillar protein gels (MP) was investigated by in vitro digestion. The results showed that the degree of hydrolysis of MP + PAM‐ChNC was significantly higher than that of MP+ PAM‐Ch, indicating that PAM‐ChNC was expected to become a controlled release system for oral exogenous enzymes that assist digestion.
Collapse
Affiliation(s)
- Yuehong Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co., Ltd. Beijing 100102 China
| | - Xunyong Zhou
- Zhenzhen (Suqian) Biotechnology Co., Ltd. Suqian 223800 China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
11
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|
12
|
Alimi BA, Pathania S, Wilson J, Duffy B, Frias JMC. Extraction, quantification, characterization, and application in food packaging of chitin and chitosan from mushroom: A review. Int J Biol Macromol 2023; 237:124195. [PMID: 36972819 DOI: 10.1016/j.ijbiomac.2023.124195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The application of chitin in food systems is limited by its insolubility in some common solvents and poor degradability. Hence, it is deacetylated to obtain chitosan, an industrially important derivative with excellent biological properties. Fungal-sourced chitosan is gaining prominence and industrial attraction because of its superior functional and biological properties, and vegan appeal. Further, the absence of such compounds as tropomyosin, myosin light chain, and arginine kinase, which are known to trigger allergic reactions, gives it an edge over marine-sourced chitosan in food and pharmaceutical applications. Mushrooms are macro-fungi with a significant content of chitin, with many authors reporting the highest content to be in the mushroom stalks. This indicates a great potential for the valorisation of a hitherto waste product. Hence, this review was written to provide a global summary of literature reports on the extraction and yield of chitin and chitosan from different fruiting parts of some species of mushroom, different methods used to quantify extracted chitin, as well as physicochemical properties of chitin and chitosan from some mushroom species are presented. Critical comparisons of reports on chitin and chitosan from mushrooms and other sources are made. This report concludes with an exposition of the potential application of mushroom-sourced chitosan for food packaging application. The reports from this review provide a very positive outlook regarding the use of mushrooms as a sustainable source of chitin and chitosan and the subsequent application of chitosan as a functional component in food packaging.
Collapse
Affiliation(s)
| | - Shivani Pathania
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, Dublin-15, Ireland
| | - Jude Wilson
- MBio, Monaghan Mushrooms, Tyholland, Co. Monaghan, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin-City Campus, Kevin Street, Dublin D08 NF82, Ireland
| | | |
Collapse
|
13
|
Zhang M, Zhao K, Zhang K, Wang W, Xing J, Li Y. Influence of glucan on physicochemical and rheology properties of chitin nanofibers prepared from Shiitake stipes. Carbohydr Polym 2022; 294:119762. [PMID: 35868786 DOI: 10.1016/j.carbpol.2022.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Procedures for chitin nanofibers extraction from mushroom significantly modify their structure and physicochemical properties, through disintegration and surface oxidation of glucan residue, as well as surface deacetylation of chitin. Here, four kinds of chitin-glucan nanofibers (CGNF) were isolated form Shiitake stipes via different alkali treatment conditions, wherein glucan content ranged from 6.4 % to 46.8 %. Observations with transmission electron microscopy showed that CGNFs possessed average widths with 5.1 ± 1.2 to 7.1 ± 1.5 nm. The glucan showed a negative effect on the crystal index and thermal stability of CGNFs. A strong positive correlation was observed between glucan residues and zeta potential value. The phenomenon about the increase of viscosity, yield stress and elastic modulus upon glucan decrease was discussed. Overall, the residual glucan offers fungi-derived chitin nanomaterials a diversity of material properties and tuning its content is a feasible approach for customize nano chitin fibers used in nutraceutical and food industry.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinfeng Xing
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Li
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr Polym 2022; 291:119553. [DOI: 10.1016/j.carbpol.2022.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
|
15
|
Lei L, Chen YL, Zhu CH, Wu HF, Wan ZL, Yang XQ, Yuan Y. The novel Pickering emulsion gels stabilized by zein hydrolysate-chitin nanocrystals coacervates: Improvement on stability and bioaccessibility for curcumin. Food Res Int 2022; 161:111877. [DOI: 10.1016/j.foodres.2022.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022]
|
16
|
Chitin Nanocrystals Provide Antioxidant Activity to Polylactic Acid Films. Polymers (Basel) 2022; 14:polym14142965. [PMID: 35890741 PMCID: PMC9320242 DOI: 10.3390/polym14142965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
About 1/3rd of produced food goes to waste, and amongst others, advanced packaging concepts need to be developed to prevent this from happening. Here, we target the antioxidative functionality of food packaging to thus address food oxidation without the need for the addition of antioxidants to the food product, which is not desirable from a consumer point of view. Chitin nanocrystals (ChNC) have been shown to be promising bio-fillers for improving the mechanical strength of biodegradable plastics, but their potential as active components in plastic films is rather unexplored. In the current study, we investigate the antioxidant activity of chitin nanocrystals as such and as part of polylactic acid (PLA) films. This investigation was conducted using DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. Chitin nanocrystals produced via acid hydrolysis showed five times higher activity compared to crude chitin powder. When using these crystals as part of a polylactic acid film (either inside or on top), in both scenarios, antioxidant activity was found, but the effect was considerably greater when the particles were at the surface of the film. This is an important proof of the principle that it is possible to create biodegradable plastics with additional functionality through the addition of ChNC.
Collapse
|
17
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
18
|
Influence of content and degree of substitution of carboxymethylated cellulose nanofibrils on the gelation properties of cull cow meat myofibrillar proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Toxicological studies and some functional properties of carboxymethylated cellulose nanofibrils as potential food ingredient. Int J Biol Macromol 2021; 190:887-893. [PMID: 34534583 DOI: 10.1016/j.ijbiomac.2021.09.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
Carboxymethylated cellulose nanofibrils (CNF) with different carboxyl contents (0, 0.36, 0.72 and 1.24 mmol/g) were prepared and characterized via morphology, diameter distribution, zeta potential, structural features, rheological properties, suspension stability, and thermal properties. The results of toxicological studies of ingested CNF via in vitro and in vivo models were present. In vitro studies used an epithelial-like cell line (Caco-2) to assess the effects of a 24 h incubation with CNF, in which no significant cytotoxicity was observed. In vivo studies were evaluated in mice gavage once per day for 8 weeks with 1% or 3.5% w/w suspension of CNF in water. Blood and serum were collected for analysis. No significant differences in hematology, and serum markers were observed between controls and mice given CNF suspensions. Weight, food intake and feces were recorded for growing development and nutrient retention in feces was measured for investigation of functional properties of CNFs. Mice given CNF suspensions gained a significant increment in fecal fat but a reduction in food intake and weight compared to controls. These findings suggested that CNFs are non-toxic and have potentials in behaving as food additives or supplements to reduce caloric intake.
Collapse
|
20
|
Liao J, Dai H, Huang H. Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydr Polym 2021; 262:117953. [PMID: 33838829 DOI: 10.1016/j.carbpol.2021.117953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/14/2021] [Indexed: 11/18/2022]
Abstract
Carboxymethyl chitin hydrogels with different degree of substitution (DS) were prepared by the homogeneous carboxymethylation of chitin extracted from Hericium erinaceus residue. The effect of DS on gel structure and property were studied. Results showed that the DS of carboxymethyl chitin hydrogels can be increased by increasing the amount of sodium chloroacetate. The equilibrium swelling degree and pH swelling sensitivity of the hydrogels were enhanced as the increase of DS. Zeta potential, low-field nuclear magnetic resonance, contact angle and molecular dynamics simulation results suggested that the introduction of carboxymethyl functional group enhanced the negative charge, water mobility, surface hydrophilicity and the ability to form hydrogen bonds with water of the hydrogels, resulting in an increased swelling degree of the hydrogels. Moreover, the prepared hydrogels showed different adsorption capability to various dyes, and the adsorption performance of the prepared hydrogels for cationic dyes could be enhanced as the increase of DS.
Collapse
Affiliation(s)
- Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
21
|
Si Y, Luo H, Zhou F, Bai X, Han L, Sun H, Cha R. Advances in polysaccharide nanocrystals as pharmaceutical excipients. Carbohydr Polym 2021; 262:117922. [DOI: 10.1016/j.carbpol.2021.117922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
|
22
|
Kumar S, Foroozesh J. Chitin nanocrystals based complex fluids: A green nanotechnology. Carbohydr Polym 2021; 257:117619. [PMID: 33541647 DOI: 10.1016/j.carbpol.2021.117619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/31/2022]
Abstract
Chitin biopolymer has received significant attention recently by many industries as a green technology. Nanotechnology has been used to make chitin nanocrystals (ChiNCs) that are rod-shaped natural nanomaterials with nanoscale size. Owing to the unique features such as biodegradability, biocompatibility, renewability, rod-shape, and excellent surface and interfacial, physiochemical, and thermo-mechanical properties; ChiNCs have been green and attractive products with wide applications specifically in medical and pharmaceutical, food and packaging, cosmetic, electrical, and electronic, and also in the oil and gas industry. This review aims to give a comprehensive and applied insight into ChiNCs technology. It starts with reviewing different sources of chitin and their extraction methods followed by the characterization of ChiNCs. Furthermore, a detailed investigation into various complex fluids (dispersions, emulsions, foams, and gels) stabilized by ChiNCs and their characterisation have been thoroughly deliberated. Finally, the current status including ground-breaking applications, untapped investigations, and future prospective have been presented.
Collapse
Affiliation(s)
- Sunil Kumar
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Malaysia
| | - Jalal Foroozesh
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Malaysia.
| |
Collapse
|