1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136011. [PMID: 39393316 DOI: 10.1016/j.jhazmat.2024.136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Maintaining high separation performance during continuous emulsion separation remains a challenge. Herein, based on biomimetic coupling ideas, hole array interlaced wetting surfaces (HAIWSs) and mastoid array interlaced wetting surfaces (MAIWSs) were prepared by laser processing, electroless silver deposition, thiol modification, and spraying for on-demand emulsion separation. When the separation is going on, randomly moving emulsion droplets are prone to being captured by holes or mastoids due to interlaced wettability. Under this unique interface behavior, the occurrence of filter cake and pore clogging is reduced, thus achieving both high efficiency (∼99.5 and ∼99.3 %). Meanwhile, the high flux can also be maintained (∼3212 and ∼3458 L m-2 h-1). Significantly better than surfaces without pores or mastoid structures. Further, the as-prepared surfaces also exhibit excellent recyclability. After 50 separation cycles, optimized HAIWS and MAIWS still maintained high efficiency (∼96.2 and ∼95.8 %) and high flux (∼3042 and ∼3164 L m-2 h-1), exceeding other surfaces without hole or mastoid structure. Notably, complex physical/chemical cleaning processes are avoided. Besides, even in harsh conditions, HAIWS and MAIWS still maintain excellent stability. The above strategy provides a novel mechanism for effective on-demand emulsion separation and is expected to encourage the creation of new-class separation devices for oily wastewater treatment in industry.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Hao Z, Wang M, Cheng L, Si M, Feng Z, Feng Z. Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles. Front Bioeng Biotechnol 2024; 11:1337543. [PMID: 38260749 PMCID: PMC10800703 DOI: 10.3389/fbioe.2023.1337543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The excessive use of antibiotics in clinical settings has resulted in the rapid expansion, evolution, and development of bacterial and microorganism resistance. It causes a significant challenge to the medical community. Therefore, it is important to develop new antibacterial materials that could replace traditional antibiotics. With the advancements in nanotechnology, it has become evident that metallic and metal oxide nanoparticles (MeO NPs) exhibit stronger antibacterial properties than their bulk and micron-sized counterparts. The antibacterial properties of silver nanoparticles (Ag NPs) and copper nanoparticles (Cu NPs) have been extensively studied, including the release of metal ions, oxidative stress responses, damages to cell integrity, and immunostimulatory effects. However, it is crucial to consider the potential cytotoxicity and genotoxicity of Ag NPs and Cu NPs. Numerous experimental studies have demonstrated that bimetallic nanoparticles (BNPs) composed of Ag NPs and Cu NPs exhibit strong antibacterial effects while maintaining low cytotoxicity. Bimetallic nanoparticles offer an effective means to mitigate the genotoxicity associated with individual nanoparticles while considerably enhancing their antibacterial efficacy. In this paper, we presented on various synthesis methods for Ag-Cu NPs, emphasizing their synergistic effects, processes of reactive oxygen species (ROS) generation, photocatalytic properties, antibacterial mechanisms, and the factors influencing their performance. These materials have the potential to enhance efficacy, reduce toxicity, and find broader applications in combating antibiotic resistance while promoting public health.
Collapse
Affiliation(s)
- Zhaonan Hao
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Mingbo Wang
- Guangdong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co, Ltd., Shenzhen, China
| | - Lin Cheng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Minmin Si
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Zezhou Feng
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Feng
- Shanxi Academy of Advanced Research and Innovation (SAARI), Taiyuan, China
- Department of Orthodontics, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Gumber S, Kanwar S, Mazumder K. Properties and antimicrobial activity of wheat-straw nanocellulose-arabinoxylan acetate composite films incorporated with silver nanoparticles. Int J Biol Macromol 2023; 246:125480. [PMID: 37348584 DOI: 10.1016/j.ijbiomac.2023.125480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
In the current study, the novel eco-friendly and biodegradable nanocomposite films (NC-AXAc) were prepared from wheat-straw NC and AXAc with improved functional properties. NC derived from wheat-straw cellulose has a fibre-like structure with mean-particle size in the 340-520 nm range. AX derived AXAc was prepared with Degree of Substitution (DS) in the range of 1.85-1.89. Furthermore, to enhance antimicrobial properties, AgNPs were prepared via the reduction method using NaBH4 and added into the concentration of 4 × 10-4M into the emulsion forming composite films. The silver nanoparticles (AgNPs) incorporated in the composite exhibited an average size of 40-70 nm and a surface plasmon resonance (SPR) absorption peak at 395 nm. The high-resolution XPS spectrum of the Ag element showed that the two peaks at around 374.2 eV (Ag3d3/2) and 368.2 eV (Ag3d5/2) clearly revealed the metallic Ag existence in composite films. SEM analysis revealed the coarse and heterogeneous morphology of AgNPs incorporated films. The AgNPs incorporated composites exhibited good mechanical, thermal stability, and antimicrobial activity. The results suggested that AgNPs incorporated NC-AXAc composites could be used as a potential biodegradable antimicrobial nanocomposite in active food packaging systems for shelf-life extension of perishable commodities.
Collapse
Affiliation(s)
- Sakshi Gumber
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121 001, Haryana (NCR Delhi), India
| | - Swati Kanwar
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India.
| |
Collapse
|
4
|
Mittag A, Rahman MM, Hafez I, Tajvidi M. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation. MEMBRANES 2022; 13:1. [PMID: 36676808 PMCID: PMC9862162 DOI: 10.3390/membranes13010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
New methods of oil-water separation are needed as industrialization has increased the prevalence of oil-water mixtures on Earth. As an abundant and renewable resource with high oxygen and grease barrier properties, mechanically refined cellulose nanofibrils (CNFs) may have promising applications for oil-water separations. The unbleached form of these nanofibrils, lignin-containing CNFs (LCNFs), have also been found to display extraordinary barrier properties and are more environmentally friendly and cost-effective than CNFs. Herein, both wet and dry LCNF-modified filter papers have been developed by coating commercial filter paper with an LCNF suspension utilizing vacuum filtration. The LCNF-modified filters were tested for effectiveness in separating oil-water emulsions, and a positive relationship was discovered between a filter's LCNF coat weight and its oil collection capabilities. The filtration time was also analyzed for various coat weights, revealing a trend of high flux for low LCNF coat weights giving-way-to predictions of a coat weight upper limit. Additionally, it was found that wet filters tend to have higher flux values and oil separation efficiency values than dry filters of the same LCNF coat weight. Results confirm that the addition of LCNF to commercial filter papers has the potential to be used in oil-water separation.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Musfiqur Rahman
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Islam Hafez
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Mehdi Tajvidi
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| |
Collapse
|
5
|
Wang D, Gao Y, Gao S, Huang H, Min F, Li Y, Seeger S, Jin J, Chu Z. Antifouling superhydrophilic porous glass membrane based on sulfobetaine prepared by thiol−ene click chemistry for high-efficiency oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Tian Q, Qiu F, Li Z, Xiong Q, Zhao B, Zhang T. Structured sludge derived multifunctional layer for simultaneous separation of oil/water emulsions and anions contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128651. [PMID: 35299105 DOI: 10.1016/j.jhazmat.2022.128651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The effective treatment of complex oily wastewater is of great significance but still a considerable challenge, since single-function, expensive reagents, and complicated process have emerged as shackles for practical applications. Herein, with the objective to waste-control-waste, we proposed a facile and sustainable strategy to fabricate a low-cost multifunctional layer from hazardous waste aluminum sludge (WAS) for complex oily wastewater management. The as-designed layered double oxides/WAS (LDOs/WAS) layer with three-dimensional (3D) hierarchical rough surface exhibited excellent underwater superoleophobicity even under corrosive conditions and low adhesion to oil without any chemical modification reagent treatment. Significantly, the layer can be applied to gravity-directed simultaneous efficient oil-in-water emulsions and anions (taking phosphate as an example) separation with a separation efficiency for emulsion and phosphate up to 99.4% and 99.1%, respectively, and a high separation flux of above 2585 L m-2 h-1. Notably, the flux can be controlled simply and flexibly by adjusting the thickness of the layer. Furthermore, the layer also displayed excellent thermal stability, chemical stability, durability and recyclability. Therefore, this work not only presents a promising approach to design sludge-based multifunctional materials for complex oily wastewater remediation, but also shows great potential and value in environmental pollutions reduction and industrial applications.
Collapse
Affiliation(s)
- Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bencheng Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Lartey PO, Li D, Li J, Qin W, Guo K, Ma J. Fluoropolymer-based Hybrid Superhydrophobic Nanocomposite Coating with Antifouling and Self-Cleaning Properties for Efficient Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Elgawady Y, Ponnamma D, Hassan MK, Adham S, Karim A, Al‐Maadeed MAA. In situ synthesized amphiphilic polysulfone‐poly(ethylene‐glycol) block copolymer/silver nanocomposite for separating oil/water emulsion. J Appl Polym Sci 2022. [DOI: 10.1002/app.51931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yara Elgawady
- Center for Advanced Materials Qatar University Doha Qatar
| | | | | | - Samer Adham
- ConocoPhilips Global Water Sustainability Center Qatar Science and Technology Park Doha Qatar
| | - Alamgir Karim
- Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| | - Mariam Al Ali Al‐Maadeed
- Center for Advanced Materials Qatar University Doha Qatar
- Materials Science Technology Program College of Arts & Sciences, Qatar University Doha Qatar
| |
Collapse
|
9
|
Peng K, Huang Y, Peng N, Chang C. Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation. Carbohydr Polym 2022; 278:118929. [PMID: 34973747 DOI: 10.1016/j.carbpol.2021.118929] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
The superhydrophilic/underwater superoleophobic nanocellulose-based membranes show great potential in oil/water emulsion separation. However, nanocellulose composed of polysaccharides inevitably suffered from bacterial erosion during use or storage, resulting in structural damage or reduced separation efficiency. In this work, silver nanoparticles (AgNPs) as effective bactericidal materials are uniformly deposited on tunicate cellulose nanocrystals (TCNCs) by in situ hydrothermal reduction of silver nitrate. TCNCs not only act as reducing agents for silver ions, but also work as dispersant and stabilizers of AgNPs. Nanocomposite membranes are fabricated by vacuum-assisted filtrating of AgNPs@TCNC suspension, which exhibit nanoporous structure, superhydrophilicity, and underwater superoleophobicity. These membranes could efficiently separate oil/water microemulsion with water flux (>324 L m-2 h-1 bar-1) and oil rejection (>99%). Importantly, these membranes show excellent antibacterial efficacy against E. coli and S. aureus, benefiting to their long-term use and storage.
Collapse
Affiliation(s)
- Kun Peng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430080, China
| | - Yanan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Peng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430080, China.
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Zhang L, Guo L, Wei G. Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5390. [PMID: 34576613 PMCID: PMC8469206 DOI: 10.3390/ma14185390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Cellulose is one of the important biomass materials in nature and has shown wide applications in various fields from materials science, biomedicine, tissue engineering, wearable devices, energy, and environmental science, as well as many others. Due to their one-dimensional nanostructure, high specific surface area, excellent biodegradability, low cost, and high sustainability, cellulose nanofibrils/nanofibers (CNFs) have been widely used for environmental science applications in the last years. In this review, we summarize the advance in the design, synthesis, and water purification applications of CNF-based functional nanomaterials. To achieve this aim, we firstly introduce the synthesis and functionalization of CNFs, which are further extended for the formation of CNF hybrid materials by combining with other functional nanoscale building blocks, such as polymers, biomolecules, nanoparticles, carbon nanotubes, and two-dimensional (2D) materials. Then, the fabrication methods of CNF-based 2D membranes/films, three-dimensional (3D) hydrogels, and 3D aerogels are presented. Regarding the environmental science applications, CNF-based nanomaterials for the removal of metal ions, anions, organic dyes, oils, and bio-contents are demonstrated and discussed in detail. Finally, the challenges and outlooks in this promising research field are discussed. It is expected that this topical review will guide and inspire the design and fabrication of CNF-based novel nanomaterials with high sustainability for practical applications.
Collapse
Affiliation(s)
- Lianming Zhang
- School of Resources and Environmental engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
11
|
Yan Y, Zeng X, Yang K, Zhou P, Xu S, Pi P, Li H, Fang J, Wang S, Wen X. Janus sand filter with excellent demulsification ability in separation of surfactant-stabilized oil/water emulsions: An experimental and molecular dynamics simulation study. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126346. [PMID: 34329000 DOI: 10.1016/j.jhazmat.2021.126346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Developing efficient separation materials for surfactant-stabilized oil/water emulsions is of great importance while significantly challenging. In this work, a sand filter with Janus channels was prepared by simply mixing superhydrophilic and superhydrophobic quartz sand in a mass ratio of 1:1. Due to the imbalanced force of droplets in those Janus channels, better separation performance under gravity was achieved for both surfactant-stabilized oil-in-water and water-in-oil emulsions than the superhydrophilic or superhydrophobic sand filter alone. It also received high flux (1080.13 L m-2 h-1 for dichloroethane-in-water emulsion and 1378.07 L m-2 h-1 for water-in-dichloroethane emulsion) and high separation efficiency (99.80% for dichloroethane-in-water emulsion and 99.98% for water-in-dichloroethane emulsion). Molecular dynamics based computational work and experimental studies revealed that the Janus channels of mixed sand layer exhibited greater interaction energy with emulsion droplets for more efficient adsorption, resulting in better demulsification capability and separation performance. The as-prepared Janus sand filters retained excellent separation performance after 50 cycles of the stability test. Together with the needs on only cheap and easily accessible raw materials and its environmentally friendly preparation method, this Janus sand filtration process exhibits its great potential for the separation of surfactant-stabilized oil/water emulsions.
Collapse
Affiliation(s)
- Yuanyang Yan
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Xinjuan Zeng
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Kangquan Yang
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Peizhang Zhou
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Shouping Xu
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Pihui Pi
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China
| | - Hao Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China
| | - Jing Fang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, PR China
| | - Shengnian Wang
- Chemical Engineering, Center of Biomedical Engineering and Rehabilitation Science, Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | - Xiufang Wen
- School of Chemical and Chemical Engineering, Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
12
|
Cellulose-based special wetting materials for oil/water separation: A review. Int J Biol Macromol 2021; 185:890-906. [PMID: 34214576 DOI: 10.1016/j.ijbiomac.2021.06.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Oil spill accidents and oily wastewater discharged by petrochemical industries have severely wasted water resources and damaged the environment. The use of special wetting materials to separate oil and water is efficient and environment-friendly. Cellulose is the most abundant renewable resource and has natural advantages in removing pollutants from oily wastewater. The application and modification of cellulose as special wetting materials have attracted considerable research attention. Therefore, we summarized cellulose-based superlipophilic/superhydrophobic and superhydrophilic/superoleophobic materials exhibiting special wetting properties for oil/water separation. The treatment mechanism, preparation technology, treatment effect, and representative projects of oil-bearing wastewater are discussed. Moreover, cellulose-based intelligent-responsive materials for application to oil/water separation and the removal of other pollutants from oily wastewater have also been summarized. The prospects and potential challenges of all the materials have been highlighted.
Collapse
|