1
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
2
|
Soriente A, Zuppardi F, Duraccio D, d'Ayala GG, Razzaq HAA, Corsaro MM, Casillo A, Ambrosio L, Raucci MG. Barley β-glucan bioactive films: Promising eco-friendly materials for wound healing. Int J Biol Macromol 2024; 278:134434. [PMID: 39098670 DOI: 10.1016/j.ijbiomac.2024.134434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Mixtures containing β-glucans were extracted from barley, under both mild and high alkaline conditions, to prepare biodegradable films (MA and HA, respectively), as natural dressings with intrinsic therapeutic properties. An in-depth characterization was performed to evaluate the impact of mild and high alkaline conditions on chemical, physicochemical, and biological features for potential use in wound treatments. Both MA and HA films exhibited a good ability to absorb water and simulate wound fluid, which helps maintain optimal tissue hydration. Moreover, their oxygen permeability (147.6 and 16.4 cm3 × μm/m2 × 24 h × Pa × 107, respectively) appeared adequate for the intended application. Biocompatibility tests showed that the films do not harm human dermal fibroblasts. Impressively, they promote cell attachment and growth, with MA having a stronger effect due to its higher β-glucan content. Furthermore, MA films can modulate macrophage behaviour in an inflamed microenvironment, reducing oxidative stress and pro-inflammatory cytokines, while simultaneously increasing levels of anti-inflammatory cytokines. In a scratch test, HA films allowed for faster fibroblast migration within the first 16 h compared to MA. Overall, this study demonstrates that developing β-glucan based films from barley, through a sustainable and cost-effective process, holds great promise for skin applications. These films exhibit significant potential to promote wound healing and modulate inflammation.
Collapse
Affiliation(s)
- Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Naples, Italy
| | - Federica Zuppardi
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, Naples, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, Naples, Italy.
| | - Hussam A A Razzaq
- The New Zealand Institute for Plant & Food Research, Gerald Street, Lincoln, 7608 Christchurch, New Zealand
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Viale J.F. Kennedy 54, Mostra d'Oltremare Pad 20, 80125 Naples, Italy
| |
Collapse
|
3
|
Du H, Ji Q, Xing Y, Ma X, Xia Y. A general route to strong, conductive and antibacterial curdlan-based purely natural eutectohydrogels with self-assembled layer-by-layer network structure. Carbohydr Polym 2023; 316:121035. [PMID: 37321730 DOI: 10.1016/j.carbpol.2023.121035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
To promote the application extension of curdlan from food industry- dominant to advanced flexible biomaterials, a novel group of purely natural curdlan gels with noticeable performance was developed through a simple heating-cooling approach, i.e., heating the dispersion of pristine curdlan in mixed acidic natural deep eutectic solvents (NADESs) and water at 60-90 °C, and cooling at ambient temperature. The NADESs employed are composed of choline chloride and natural organic acids (lactic acid as the representative). The as-developed gels (called eutectohydrogels) are not only compressible and stretchable but conductive, which traditional curdlan hydrogels are not attainable. The compressive stress at 90 % strain exceeds 2.00 ± 0.03 MPa, the tensile strength and fracture elongation reach 0.131 ± 0.002 MPa and 300 ± 9 % respectively, attributed to the distinctive, reciprocally linked self-assembled layer-by-layer network structure formed during gelation. An electric conductivity up to 2.22 ± 0.04 S‧m-1 is achieved. The excellent mechanics and conductivity confer them good strain-sensing behavior. Additionally, the eutectohydrogels display high antibacterial activity against S. aureus (a model Gram-positive bacterium) and E. coli (a model Gram-negative bacterium). The outstanding comprehensive performance together with the purely natural attribute makes them broad application prospects in biomedical fields like flexible bioelectronics.
Collapse
Affiliation(s)
- He Du
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Yanzhi Xia
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
4
|
Li W, Fang K, Yuan H, Li D, Li H, Chen Y, Luo X, Zhang L, Ye X. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. Int J Biol Macromol 2023; 242:124383. [PMID: 37030457 DOI: 10.1016/j.ijbiomac.2023.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Poria cocos alkali-soluble polysaccharide (PCAP), a water-insoluble β-glucan, is the main component of the total dried sclerotia of Poria cocos. However, its gelation behaviour and properties have yet to be comprehensively studied. In this study, an acid-induced physical hydrogel based on natural PCAP is fabricated. The acid-induced gelation in PCAP is explored with respect to the pH and polysaccharide concentration. PCAP hydrogels are formed in the pH range of 0.3-10.5, and the lowest gelation concentration is 0.4 wt%. Furthermore, dynamic rheological, fluorescence, and cyclic voltammetry measurements are performed to elucidate the gelation mechanism. The results reveal that hydrogen bonds and hydrophobic interactions play a dominant role in gel formation. Subsequently, the properties of the PCAP hydrogels are investigated using rheological measurements, scanning electron microscopy, gravimetric analysis, free radical scavenging, MTT assays, and enzyme-linked immunosorbent assays. The PCAP hydrogels exhibit a porous network structure and cytocompatibility, in addition to good viscoelastic, thixotropic, water-holding, swelling, antioxidant, and anti-inflammatory activities. Furthermore, using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behaviour from the PCAP hydrogel is pH dependent. These results indicate the potential of PCAP hydrogels for application in biological medicine and drug delivery.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Kexin Fang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haochen Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyao Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lian Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaochuan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
5
|
Pino P, Pellegrino G, Ronchetti S, Mollea C, Bosco F, Onida B. Antibacterial β-Glucan/Zinc Oxide Nanocomposite Films for Wound Healing. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractAdvanced antimicrobial biomaterials for wound healing applications are an active field of research for their potential in addressing severe and infected wounds and overcoming the threat of antimicrobial resistance. Beta-glucans have been used in the preparation of these materials for their bioactive properties, but very little progress has been made so far in producing biomedical devices entirely made of beta-glucans and in their integration with effective antimicrobial agents. In this work, a simple and eco-friendly method is used to produce flexible beta-glucan/nanostructured zinc oxide films, using glucans derived from the yeast Saccharomyces cerevisiae. The properties of the films are characterized through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared and UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water absorption tests. Finally, the antibacterial properties of the nanostructured zinc oxide and of the composite films are assessed against Staphylococcus epidermidis and Escherichia coli, showing a marked effectiveness against the former. Overall, this study demonstrates how a novel bionanocomposite can be obtained towards the development of advanced wound healing devices.
Collapse
|
6
|
Talaei A, O'Connell CD, Sayyar S, Maher M, Yue Z, Choong PF, Wallace GG. Optimizing the composition of gelatin methacryloyl and hyaluronic acid methacryloyl hydrogels to maximize mechanical and transport properties using response surface methodology. J Biomed Mater Res B Appl Biomater 2023; 111:526-537. [PMID: 36269163 PMCID: PMC10092314 DOI: 10.1002/jbm.b.35169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 01/21/2023]
Abstract
Hydrogel materials are promising candidates in cartilage tissue engineering as they provide a 3D porous environment for cell proliferation and the development of new cartilage tissue. Both the mechanical and transport properties of hydrogel scaffolds influence the ability of encapsulated cells to produce neocartilage. In photocrosslinkable hydrogels, both of these material properties can be tuned by changing the crosslinking density. However, the interdependent nature of the structural, physical and biological properties of photocrosslinkable hydrogels means that optimizing composition is typically a complicated process, involving sequential and/or iterative steps of physiochemical and biological characterization. The combinational nature of the variables indicates that an exhaustive analysis of all reasonable concentration ranges would be impractical. Herein, response surface methodology (RSM) was used to efficiently optimize the composition of a hybrid of gelatin-methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) with respect to both mechanical and transport properties. RSM was employed to investigate the effect of GelMA, HAMA, and photoinitiator concentration on the shear modulus and diffusion coefficient of the hydrogel membrane. Two mathematical models were fitted to the experimental data and used to predict the optimum hydrogel composition. Finally, the optimal composition was tested and compared with the predicted values.
Collapse
Affiliation(s)
- Alireza Talaei
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Cathal D O'Connell
- Discipline of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,BioFab3D, Aikenhead Center for Medical Discovery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Malachy Maher
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Commonwealth Scientific Industrial Research Organization, Manufacturing Clayton, Victoria, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia
| | - Peter F Choong
- Orthopaedic Department, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon G Wallace
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales, Australia.,Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Matsumoto Y, Enomoto Y, Kabe T, Iwata T. Static and in situ small-angle X-ray scattering analyses of the effect of molecular structure on the tensile properties of cross-linked curdlan hydrogels and stretched, dried gel-films. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Feuzing F, Mbakidi JP, Marchal L, Bouquillon S, Leroy E. A review of paramylon processing routes from microalga biomass to non-derivatized and chemically modified products. Carbohydr Polym 2022; 288:119181. [PMID: 35450615 DOI: 10.1016/j.carbpol.2022.119181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Paramylon is a linear β-1,3-glucan, similar to curdlan, produced as intracellular granules by the microalga Euglena gracilis, a highly versatile and robust strain, able to grow under various trophic conditions, with valorization of CO2, wastewaters, or food byproducts as nutrients. This review focuses in particular on the various processing routes leading to new potential paramylon based products. Due to its crystalline structure, involving triple helices stabilized by internal intermolecular hydrogen bonds, paramylon is neither water-soluble nor thermoplastic. The few solvents able to disrupt the triple helices, and to fully solubilize the polymer as random coils, allow non derivatizing shaping into films, fibers, and even nanofibers by a specific self-assembly mechanism. Chemical modification in homogeneous or heterogeneous conditions is also possible. The non-selective or regioselective substitution of the hydroxyl groups of glucosidic units leads to water-soluble ionic derivatives and thermoplastic paramylon esters with foreseen applications ranging from health to bioplastics.
Collapse
Affiliation(s)
- Frédérica Feuzing
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Jean Pierre Mbakidi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Luc Marchal
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Eric Leroy
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France.
| |
Collapse
|
9
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Togo A, Usagawa M, Kimura S, Iwata T. In Vitro Enzymatic Polymerization of α-1,6- Graft-α-1,3-glucan and Structural Analysis of Gel Formation. Biomacromolecules 2021; 22:4701-4708. [PMID: 34676760 DOI: 10.1021/acs.biomac.1c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-1,6-Graft-α-1,3-glucan comprises a main-chain of α-1,6-glucan and side-chains of α-1,3-glucan. It was synthesized by a one-pot in vitro enzymatic polymerization of sucrose and dextran (α-1,6-glucan) of different molecular weights. In the presence of the high-molecular-weightdextran (Mw ≥ 650 000), the graft glucan formed a self-standing hydrogel without any cross-linker. It was possible to control the number of α-1,3-glucan side-chains by controlling the molecular weight and concentration of the dextran. Consequently, it was possible to control the compression strength of the obtained gels. Hydrogels of the graft glucan were formed by physically cross-linking the α-1,3-glucan side-chains. These physical gels are potentially useful biomaterials with high biocompatible, because the graft glucan is composed of glucose alone.
Collapse
Affiliation(s)
- Azusa Togo
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mayumi Usagawa
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Technology Advancement Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Bhattad T, Koradiya A, Prakash G. Prebiotic activity of paramylon isolated from heterotrophically grown Euglena gracilis. Heliyon 2021; 7:e07884. [PMID: 34584997 PMCID: PMC8450201 DOI: 10.1016/j.heliyon.2021.e07884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/02/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Paramylon from Euglena gracilis is an insoluble crystalline β-1,3-glucan which have pharmaceutical and nutraceuticals applications. The present study aims to check the prebiotic potential of paramylon derived from heterotrophically grown E. gracilis in bioreactor. The Paramylon was extracted using sodium dodecyl sulfate from E. gracilis biomass. The Fourier Transform-Infra Red spectroscopy and scanning electron microscopy demonstrated the isolated paramylon to be equivalent to that of analytical standard. The prebiotic activity of E. gracilis cell extract and isolated paramylon was studied. E. gracilis cell extract as well as isolated paramylon led to cell number enhancement of Lacfid (Lactobacillus) strain exhibiting the prebiotic activities.
Collapse
Affiliation(s)
| | - Akshaykumar Koradiya
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
12
|
He Q, Kobayashi K, Kusumi R, Kimura S, Enomoto Y, Yoshida M, Kim UJ, Wada M. In Vitro Synthesis of Branchless Linear (1 → 6)-α-d-Glucan by Glucosyltransferase K: Mechanical and Swelling Properties of Its Hydrogels Crosslinked with Diglycidyl Ethers. ACS OMEGA 2020; 5:31272-31280. [PMID: 33324837 PMCID: PMC7726921 DOI: 10.1021/acsomega.0c04699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
A hydrogel was prepared from a polysaccharide, enzymatically synthesized through a one-pot reaction in aqueous solution, and its properties as a functional material were evaluated. Enzymatic synthesis using glucosyltransferase K obtained from Streptococcus salivarius ATCC 25975 was performed with sucrose as a substrate. The synthetic product was unbranched linear (1 → 6)-α-d-glucan with a high molecular weight, M w: 1.0-3.0 × 105. The synthesized (1 → 6)-α-d-glucan was insoluble in water and crystallized in a monoclinic unit cell, which is consistent with the hydrated form of dextran. Transparent and highly swellable (1 → 6)-α-d-glucan hydrogels were obtained by crosslinking with diglycidyl ethers. The hydrogels showed no syneresis and no volume change during compression, resulting in the retention of shape under repeated compression. The elastic moduli of these hydrogels (<60 kPa) are smaller than those of other polysaccharide-based hydrogels having the same solid contents. The oven-dried gels could be restored to the hydrogel state with the original transparency and a recovery ratio greater than 98%. The mechanism of water diffusion into the hydrogel was investigated using the kinetic equation of Peppas. The properties of the hydrogel are impressive relative to those of other polysaccharide-based hydrogels, suggesting its potential as a functional biomaterial.
Collapse
Affiliation(s)
- Qinfeng He
- Division
of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kayoko Kobayashi
- Division
of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryosuke Kusumi
- Division
of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Kimura
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Department
of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Yukiko Enomoto
- Department
of Biomaterials Science, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Yoshida
- Department
of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Saiwai-cho, 3-5-8, Tokyo 183-8509, Japan
| | - Ung-Jin Kim
- Department
of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Masahisa Wada
- Division
of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department
of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| |
Collapse
|