1
|
Wang T, Cao J, Sun L, Zhao J, Fu Y. Cellulose-based molecularly imprinted core-shell microspheres with dual environment responsiveness for specific recognition and enrichment of paclitaxel. Int J Biol Macromol 2025; 309:143164. [PMID: 40239786 DOI: 10.1016/j.ijbiomac.2025.143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Paclitaxel (PTX), a natural diterpene alkaloid with potent anticancer activity, has been a focus of global research due to its complex structure, significant biological effects, unique mechanism of action, and limited natural availability. In this study, cellulose was used as the raw material to synthesize functionalized pH-responsive modified cellulose porous hydrogel microspheres (MCC/SA/MA-POSS-PTX) via inverse suspension polymerization, using sodium alginate (SA) as the pH-responsive material. Based on this using PTX as the template molecule, 4-VP as the functional monomer, N-isopropylacrylamide (NIPAM) as the thermosensitive monomer, cellulose-based PTX molecularly imprinted hydrogel microspheres (CDLMIHM-PTX) with dual pH and temperature responsiveness were prepared. The adsorption mechanism of the novel material was elucidated through a series of characterization and adsorption experiments. The CDLMIHM-PTX exhibited exceptional adsorption capacity (35.12 mg·g-1) and selectivity, as well as good reusability (6 of cycles). Specific enrichment of PTX from the crude extract of Taxus × media branches was achieved, increasing its content from 7.59 % to 55.98 %. This highlights the capability of CDLMIHM-PTX for targeted enrichment and separation of PTX from complex plant matrices, suggesting promising industrial applications. This work explores the construction of pH/temperature dual responsive cellulose-based molecularly imprinted hydrogel microspheres for the selective capture of target compounds, with potential for practical applications.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Foresty University, 150040 Harbin, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Jingsong Cao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Foresty University, 150040 Harbin, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Linan Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Foresty University, 150040 Harbin, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Jingru Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Foresty University, 150040 Harbin, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083 Beijing, PR China; The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
2
|
Zhang Y, Li H, Hai X, Lu Q, Niu J, Fu R, Guo X, Di X. Green synthesis of water-compatible layer-by-layer assembled sandwich bread-like molecularly imprinted polymers for selective recognition of baicalin from Scutellariae Radix. J Chromatogr A 2025; 1743:465673. [PMID: 39837188 DOI: 10.1016/j.chroma.2025.465673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Molecularly imprinted polymers (MIPs) are typically synthesized in organic solvents, leading to poor compatibility with water, weak affinity and selectivity for target molecules in aqueous media. To address these challenges, a green and sustainable synthesis of sandwich bread-like ATP@MIP was conducted using polyethylenimide (PEI) and deep eutectic solvent (DES) as hydrophilic bi-functional monomers via layer-by-layer self-assembly on the attapulgite (ATP) carrier. The new ATP@MIP can provide a higher density of imprinting sites with more orderly and uniform distribution due to inhibiting the competitive polymerization between PEI and DES, thereby significantly enhancing recognition ability. Moreover, the ATP@MIP was synthesized in water, aligning with green chemistry principles and establishing a sustainable preparation method for MIP materials. Equipped with the remarkable merits of good water compatibility, excellent selectivity (IF=3.6), high adsorption capacity (77.6 mg g-1) and desirable repeatability (8 times), the as-prepared materials were used as a solid phase extraction adsorbent for efficient separation and enrichment of baicalin from Scutellariae Radix. More importantly, the recognizing performance of ATP@MIP for baicalin increased 1.40-1.69 times than other MIP materials, and its excellent specificity was demonstrated in comparison with several common commercial adsorbents (C18, HLB, MCX and SAX). Therefore, this work introduces a feasible and green strategy to synthesize water-compatible MIP materials for highly selective enrichment and separation of active components from natural products.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Xu J, Wang W, Chen Y, Xu X, Duan A, Zhu Y, Zhu Q. Molecularly imprinted polymer for solid-phase extraction of oleanolic acid from Ligustrum lucidum fruit. J Chromatogr Sci 2025; 63:bmaf010. [PMID: 39982979 DOI: 10.1093/chromsci/bmaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/25/2024] [Accepted: 02/20/2025] [Indexed: 02/23/2025]
Abstract
A molecularly imprinted polymer (MIP) was synthesized for the selective extraction of oleanolic acid (OA), employing OA as the template molecule, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and chloroform as the porogenic solvent. The characterization of the obtained MIPs was evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy. The MIPs reached adsorption equilibrium within 2 hours to OA, with high adsorption capacity of 124.68 mg/g. Subsequently, these MIPs were packed in empty solid-phase extraction (SPE) cartridge to enrichment OA from Ligustrum lucidum fruit extract. The parameters of SPE were optimized as follows: loading 0.5 ml of a 1.0 mg/ml OA reference solution, washing with 0.5 ml of toluene, and eluting with 4 ml of methanol. Under these conditions, the enrichment rate of OA from L. lucidum extract reached 76.0%. Additionally, an high-performance liquid chromatography method for determining OA content was validated. This study provides an effective approach for the separation and enrichment of OA from complex matrices and also provides practical feasibility for the separation and enrichment of other triterpenoids.
Collapse
Affiliation(s)
- Jianling Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenna Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, Guangdong 518172, China
| | - Yixin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaotian Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ao Duan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, Guangdong 510515, China
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, Guangdong 510515, China
| |
Collapse
|
4
|
Cao RZ, Zhang ZY, Jiao J, Gai QY, Liu Y, Wang Y, Qu D, Fu YJ. A novel surface molecularly imprinted polymer based on the natural biological macromolecule sporopollenin for the specific and efficient adsorption of resveratrol from Polygonum cuspidatum extracts. Int J Biol Macromol 2024; 280:136168. [PMID: 39357698 DOI: 10.1016/j.ijbiomac.2024.136168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Sporopollenin is a natural biological macromolecule consisting of highly cross-linked carbon, hydrogen, and oxygen atoms, with a highly porous structure and multifunctional groups. In this work, a novel surface molecularly imprinted polymer based on magnetically aminated cattail sporopollenin (MACSp-SMIP) was prepared for the specific and efficient adsorption of resveratrol, with the aim of purifying resveratrol from Polygonum cuspidatum extracts. MACSp-SMIP was found to have a porous structure covered with the multi-layered sponge-like imprinted polymers. MACSp-SMIP had a high adsorption capacity for resveratrol (65.77 mg·g-1) and excellent selectivity (imprinting factor 5.64). The adsorption of resveratrol by MACSp-SMIP was a homogeneous diffusion dominated by chemical adsorption with three stages of external diffusion, internal diffusion, and micropore diffusion. MACSp-SMIP was used as an adsorbent in molecularly imprinted solid-phase extraction for the purification of resveratrol from P. cuspidatum extracts, achieving a resveratrol recovery of 94.33 % and a purity of 76.67 % in the final products. MACSp-SMIP maintained a satisfactory recovery of resveratrol (88.18 %) after six cycles. Overall, this work developed a promising biological macromolecule-based adsorbent MACSp-SMIP for the specific and efficient adsorption of resveratrol, and also provided an efficient and simple approach for the selective purification of resveratrol from P. cuspidatum extracts for food/nutraceutical applications.
Collapse
Affiliation(s)
- Run-Ze Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Zi-Yi Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, PR China
| | - Dan Qu
- Beijing Tong Ren Tang Technologies CO. LTD., Pharmaceutical Factory, Beijing 100071, PR China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
5
|
Fu L, Li Y, Zhang X, Cui J, Zhao X, Wang J, Zhou Q, Wang L, Fu Y. Targeted recognition and enhanced biotransformation of phytochemicals by a dual-functional cellulose-based hydrogel bioreactor. Int J Biol Macromol 2024; 281:136271. [PMID: 39366624 DOI: 10.1016/j.ijbiomac.2024.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The combined technology of molecular imprinting and immobilization is a promising strategy for improving biocatalytic performance. In this work, a dual-functional cellulose-based hydrogel bioreactor with targeted recognition and transformation functions was innovatively designed by cellulose-based molecularly imprinted polymers (CM-MIPs) hydrogel coupled with layered double hydroxide immobilized enzyme (LDH-E). Firstly, CM-MIPs hydrogel was prepared by using phlorizin, 4-pinylpyridine, and cellulose microspheres as template molecule, functional monomer, and support material, respectively. Meanwhile, layered double hydroxide (LDH) taken as a carrier to immobilize β-glucosidase. The prepared LDH was layered sheet-like structure with ultra-thin thickness of approximately only 1.5 nm, and β-glucosidase was immobilized on both sides of the LDH. Further, the dual-functional bioreactor was constructed by the anion exchange, which possessed maximum targeted adsorption capacity to phlorizin of 15.25 mg/g, exhibited 1.2 folds higher transformation efficiency than LDH-E, and the phloretin content increased 26 folds to that in Lithocarpus litseifolius (Hance) Chu leaves extracts. Moreover, the transformation efficiency remained above 70 % even after five consecutive transformations. Overall, the dual-functional bioreactor has broad prospects for the application in targeted recognition and transformation of phytochemicals, and provides a new insight on multifunctional bio-based reactors in natural production field.
Collapse
Affiliation(s)
- Lina Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Ye Li
- The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Xinlin Zhang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Jihong Cui
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Xuanting Zhao
- The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jiandong Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Quan Zhou
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083 Beijing, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 155100 Shuangyashan, PR China; The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
6
|
Kaspute G, Ramanavicius A, Prentice U. Molecular Imprinting Technology for Advanced Delivery of Essential Oils. Polymers (Basel) 2024; 16:2441. [PMID: 39274074 PMCID: PMC11397921 DOI: 10.3390/polym16172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Essential oils (EOs) hold therapeutic potential, but their conventional delivery systems have some limitations. This review focuses on the critical review and discussion of research related to EO delivery systems. The review also explores how molecular imprinting technologies (MIT) can advance EO delivery. MIT offer several techniques, namely covalent, non-covalent, and semi-covalent imprinting, creating targeted cavities that selectively bind and release EOs. These approaches promise significant advantages including increased selectivity, controlled release, and protection from environmental degradation. However, some challenges related to the stability and biocompatibility of MIPs remain unsolved. Integrating nanotechnology through methods like nanoparticle imprinting and some lithographic techniques seems promising to overcome these limitations. Some recently established models and systems used for EO-related research are paving the way for a more efficient and targeted EO delivery approach to harnessing the therapeutic power of EOs. Therefore, some recent and future research seems promising, and eventually it will increase the effectiveness of MIP-based EO delivery systems.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, Santariskes St. 5, LT-08410 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, Santariskes St. 5, LT-08410 Vilnius, Lithuania
| |
Collapse
|
7
|
Lin J, Gao D, Zeng J, Li Z, Wen Z, Ke F, Xia Z, Wang D. MXene/ZnS/chitosan-cellulose composite with Schottky heterostructure for efficient removal of anionic dyes by synergistic effect of adsorption and photocatalytic degradation. Int J Biol Macromol 2024; 269:131994. [PMID: 38697431 DOI: 10.1016/j.ijbiomac.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.
Collapse
Affiliation(s)
- Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhou Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. PLANTS (BASEL, SWITZERLAND) 2024; 13:965. [PMID: 38611494 PMCID: PMC11013868 DOI: 10.3390/plants13070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.
Collapse
Affiliation(s)
- Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
9
|
Su Y, Yang D, Wang Y, Ding J, Ding L, Song D. The construction of highly selective surface molecularly imprinted polymers based on Cu(II) coordination for the detection of bisphenol A. Talanta 2024; 269:125441. [PMID: 38029605 DOI: 10.1016/j.talanta.2023.125441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Herein, we designed and constructed a highly selective MIPs for bisphenol A (BPA) named Cu-MIPs@CS based on Cu(II) coordination. The synthesis of Cu-MIPs@CS employed a dummy template strategy and surface imprinting technology, with chitosan (CS) as the substrate linked to imprinted layers via Cu2+ bridging. 4-vinylpyridine acted as the functional monomer, capable of forming a complex with the template ketoprofen, while ethylene glycol dimethacrylate served as the cross linker. Cu-MIPs@CS exhibited a significantly enhanced imprinting factor of 14.78 for BPA, which was approximately 6.6 times higher than that of imprinted materials without Cu2+ (MIPs@CS). Cu-MIPs@CS exhibited a selective factor of 12.74 towards resorcinol, which possessed identical functional groups but a smaller size than BPA, representing an enhancement of selectivity by 12.25-fold compared to MIPs@CS. More importantly, Cu-MIPs@CS exhibited a superior discrimination ability between BPA and its structural analogue, diphenolic acid, with an excellent selective factor of 2.93, highlighting its significance in distinguish the structural analogue of BPA. In contrast, MIPs@CS lack sufficient selectivity to differentiate between them. Through exploration of adsorption mechanism of Cu-MIPs@CS, it was demonstrated that the incorporation of Cu2+ significantly reduced nonspecific adsorption, but also facilitated the creation of more selective imprinted cavities by introducing metal coordination, thereby notably enhancing the selectivity of Cu-MIPs@CS. Finally, the developed Cu-MIPs@CS were applied as the solid phase extraction adsorbent and combined with HPLC-DAD detection to establish an analytical method towards BPA in drinking water samples. The limit of detection of the method was 0.14 μg L-1 and recoveries ranged from 95.6 % to 101 %. This work provided broad prospects for construction of highly selective MIPs and accurate quantification of trace amounts of BPA.
Collapse
Affiliation(s)
- Yu Su
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dandan Yang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanjie Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China; College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
10
|
Cao RZ, Gai QY, Jiao J, Wang Y, Fu YJ, Nie SM, Lu Y. Surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes for the highly selective purification of resveratrol from crude extracts of Vitis vinifera, Arachis hypogaea, and Polygonum cuspidatum. J Sep Sci 2024; 47:e2300811. [PMID: 38403440 DOI: 10.1002/jssc.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
In this work, surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes were prepared for the specific recognition and adsorption of resveratrol. The functionalization of magnetic multi-walled carbon nanotubes and the synthesis process of surface molecularly imprinted polymers were optimized. Characterizations were performed to demonstrate the successful synthesis of the imprinted materials. The imprinted materials showed satisfactory adsorption capacity of resveratrol (45.73 ± 1.72 mg/g) and excellent selectivity (imprinting factor 2.89 ± 0.15). In addition, the imprinted materials were used as adsorbents in molecularly imprinted solid-phase extraction for the purification of resveratrol from crude extracts of some food and medicinal resources, achieving recoveries of 93.69%-95.53% with high purities of 88.37%-92.33%. Moreover, the purified products exhibited extremely strong free radical scavenging activity compared with crude extracts. Overall, this work provided a promising approach for the highly selective purification of resveratrol from natural resources, which would contribute to the application of this valuable compound in the food/nutraceutical fields.
Collapse
Affiliation(s)
- Run-Ze Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, P. R. China
| | - Si-Ming Nie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| | - Yao Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, P. R. China
| |
Collapse
|
11
|
Wang Y, Wu X, Shao G, Zhai B, Wang Z, Qin B, Wang T, Liu Z, Fu Y. Novel molecularly imprinted aerogels: Preparation, characterization, and application in selective separation for oleanolic acid in lingonberry. Talanta 2024; 266:124983. [PMID: 37542848 DOI: 10.1016/j.talanta.2023.124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An oleanolic acid (OA) surface molecularly imprinted polymer silylated porous composite aerogels (OA-MIP@Si-PC-aerogels) adsorbent material was successfully prepared and characterized. The material not only has a great selectivity for the target molecule OA but also has other noteworthy qualities including high stability, excellent repeatability, and a sizable adsorption capacity. via cellulose and sodium alginate as the main materials, the carrier Si-PC-aerogels were made through ionic cross-linking, chemical cross-linking, and silylation procedures. By adopting a surface molecular imprinting approach on Si-PC-aerogels, OA-MIP@Si-PC-aerogels were effectively created utilizing OA as the template molecule and MAA as the functional monomer. Due to the presence of a specific imprinted layer on the aerogel surface, the adsorption capacity of OA-MIP@Si-PC-aerogels for OA could reach 66.20 mg g-1. OA-MIP@Si-PC-aerogels could achieve a 68.86% yield of OA from the extracts of lingonberry (Vaccinium Vitis-Idaea L.). The adsorption capacity remained at 90% after five consecutive adsorption-desorption cycles. HepG2 cells were exposed to OA that was effectively enriched with OA-MIP@Si-PC-aerogels in lingonberry (Vaccinium Vitis-Idaea L.) fruit homogenates. This OA significantly inhibited the growth of HepG2 cells in vitro. It further demonstrated that OA-MIP@Si-PC-aerogels could efficiently target OA enrichment and separation with good recovery.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bowen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
12
|
Zhang L, Yu H, Chen H, Huang Y, Bakunina I, de Sousa DP, Sun M, Zhang J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023; 164:105383. [PMID: 36481366 DOI: 10.1016/j.fitote.2022.105383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.
Collapse
Affiliation(s)
- Luxuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Pharmacy 2019, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
13
|
Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohydr Polym 2023; 300:120268. [DOI: 10.1016/j.carbpol.2022.120268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
14
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
15
|
Li S, Gao D, Lin J, Wen Z, Zhang K, Xia Z, Wang D. Preparation of double-network hydrogel consisting of chitosan, cellulose and polyacrylamide for enrichment of tetracyclines. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Pulsed-sonochemiluminescence combined with molecularly imprinted polymerized high internal phase emulsion adsorbent for determination of bentazone. Mikrochim Acta 2022; 189:302. [PMID: 35913687 DOI: 10.1007/s00604-022-05406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
A small low-power humidifier with a simple programmable on/off switch was used as a pulsed ultrasound generator. Using this tool, a novel sonochemiluminescence (SCL) method was developed to determine bentazone. To the best of our knowledge, no chemiluminescence method has been proposed to determine this pesticide. Only five studies have been proposed for SCL quantitative applications so far. Therefore, revealing new aspects of SCL promises to develop analytical methods for the quantitative determination of different substances. A molecularly imprinted polymerized high internal phase emulsion (MIP-polyHIPE) was synthesized, bentazone separated from aqueous solutions, and pre-concentrated by the MIP-polyHIPE foam. The adsorption of bentazone on the MIP-polyHIPE adsorbent was theoretically studied by density functional theory through molecular dynamics simulation. Both experimental and simulation results indicated removal and pre-concentration of bentazone by the MIP-polyHIPE adsorbent. Using the proposed SCL method and without pre-concentration process, a linear dynamic range (LDR) of 2.5 × 10-7-5.0 × 10-5 mol L-1 and a limit of detection (LOD) of 8.4 × 10-8 mol L-1 were obtained for bentazone with a relative standard deviation of 2.64%. The LDR and LOD were improved to 2.6 × 10-9-2.0 × 10-7 mol L-1 and 8.8 × 10-10 mol L-1, respectively, using MIP-polyHIPE adsorbents. The method's application was evaluated by removing and pre-concentration of bentazone from water samples, including well, river, and tap water. The results showed that the pre-concentration factor and recovery percentages were 113-131 times and 93-106%, respectively, using the MIP-polyHIPE absorbent.
Collapse
|
17
|
Ahmadi M, Mokhtari A, Bahlakeh G, Karimian H. Flow Injection Chemiluminescence Determination of Ethion and Computational Investigation of the Adsorption Process on Molecularly Imprinted Polymerized High Internal Phase Emulsion. LUMINESCENCE 2022; 37:1514-1523. [PMID: 35816014 DOI: 10.1002/bio.4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The lack of sufficient selectivity is the main limitation of chemiluminescence (CL) methods; because the CL reagent is not restricted to a specific analyte. This study investigated the preconcentration and determination of ethion by a flow injection CL (FIA-CL) method using a molecularly imprinted poly high internal phase emulsion (MIP-polyHIPE) adsorbent. Preliminary studies showed that ethion could be determined with high sensitivity in the Ru (bipy)3 2+ -acidic Ce (IV) CL system. A MIP-polyHIPE adsorbent was synthesized and used for preconcentration to increase the selectivity and sensitivity of the method. The adsorption of ethion on the adsorbent was investigated using density functional theory (DFT) and molecular dynamics (MD), UV-Vis and FTIR spectrophotometry and liquid chromatography-tandem mass spectrometry (LC-MS-MS). Response surface methodology (RSM) and central composite design (CCD) were used to find optimized concentrations of variables. The linear dynamic range (LDR) and limit of detection (LOD) for ethion in the FIA-CL method were calculated 1.0✕10-9 -2.0✕10-7 and 6.0✕10-10 mol L-1 , respectively. The percentage of relative standard deviation for 5 repetitive measurements of 5.0⨯10-8 mol L-1 ethion was 4.2%. The proposed method was successfully used to separate and preconcentrate ethion from drinking and surface water sources.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ali Mokhtari
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| |
Collapse
|
18
|
Wen Z, Gao D, Lin J, Li S, Zhang K, Xia Z, Wang D. Magnetic porous cellulose surface-imprinted polymers synthetized with assistance of deep eutectic solvent for specific recognition and purification of bisphenols. Int J Biol Macromol 2022; 216:374-387. [PMID: 35798079 DOI: 10.1016/j.ijbiomac.2022.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using Fe3O4 as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
Collapse
Affiliation(s)
- Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siyi Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
19
|
Zhang W, Luo Y, Xie Z, Kong C, Na Z. Extraction and detection of morin from Sanghuangporus lonicericola by magnetic molecularly imprinted polymers coupled with HPLC analysis. J Food Sci 2022; 87:1575-1585. [PMID: 35292983 DOI: 10.1111/1750-3841.16110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023]
Abstract
In this study, morin magnetic molecularly imprinted polymers (Morin-MMIPs) were synthesized based on magnetic nanoparticles and surface molecularly imprinted technology with superparamagnetism and extraction selectivity. The polymers allowed the separating of morin from complex matrices in the presence of an external magnetic field with no need for centrifugation or filtration. The microstructure of the polymers was characterized by scanning electron microscopy and transmission electron microscopy. Meanwhile, the functional group and magnetic properties of the polymers were characterized using Fourier transform infrared spectroscopy (FT-IR) and magnetic vibration meter (VSM). The maximum adsorption capacity of MMIPs was 3.24 mg/g, which was 2.55 times higher than that of MNIPs (1.27 mg/g). Morin was quantified by HPLC-DAD, which showed good linearity in the concentration range of 0.05-60 µg/ml with the correlation coefficient R2 = 0.9993. The limit of detection (LOD) was 0.08 µg/ml, and the spiked recoveries were 87.5-106.8%. The calculation of the adsorption isotherm and kinetic model revealed the adsorption mechanisms, and the adsorption process was consistent with the Langmuir adsorption isotherm and pseudo-secondary kinetic models. Likewise, the material has been successfully used to extract and separate morin from food samples. The method reported in this paper has the advantages of fast adsorption speed, high selectivity, and environmental friendliness. It provided a reliable method for the separation and detection of morin or other natural products.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Ziqi Xie
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chenchen Kong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhen Na
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
20
|
A novel nanocomposite optosensing sensor based on porous molecularly imprinted polymer and dual emission quantum dots for visual and high selective detection of bovine serum albumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Preparation and application of modified three-dimensional cellulose microspheres for paclitaxel targeted separation. J Chromatogr A 2021; 1655:462487. [PMID: 34487882 DOI: 10.1016/j.chroma.2021.462487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023]
Abstract
In this article, we successfully prepared three-dimensional cellulose microspheres modified by molecularly imprinted polymer for paclitaxel recognition and separation (3D-CM &PTX&MIPs). The material was characterized by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TG) and diffraction of X-rays (XRD). Under the optimized adsorption conditions, the maximum adsorption capacity reached 65.7 mg/g. And after 5 runs of reuse, (3D-CM&PTX&MIPs) still maintained a reusability rate of 90%. Besides, (3D-CM&PTX&MIPs) showed excellent selectivity for target PTX. Finally, (3D-CM&PTX&MIPs) was used for PTX recognition and separation in the extracts of yew leaves. This research laid a good foundation and scientific basis for the efficient, environmentally friendly, and rapid enrichment of metabolites in plants using bio-based molecularly imprinted polymers.
Collapse
|
22
|
Capsule-like molecular imprinted polymer nanoparticles for targeted and chemophotothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2021; 208:112126. [PMID: 34600360 DOI: 10.1016/j.colsurfb.2021.112126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Selective cancer cell targeting, controlled drug release, easy construction and multiple therapeutic modalities are some of the desirable characteristics of drug delivery systems. We designed and built simple capsule-like molecular imprinted polymer (MIP)-based nanoparticles for targeted and chemo-photothermal synergistic cancer therapy. Using dopamine (DA) as functional monomer, cross-linking agent as well as photo-thermal agent, ZIF-8 (zeoliticimidazolate framework-8) as drug carrier, epitope of EGFR (epidermal growth factor receptor) as template molecules, molecular imprinted polymer (MIP) drug carrier was constructed. The ability of MIP layer to bind to EGFR epitope endowed the MD (DOX@MIP) particles to recognize EGFR-overexpressing cancer cells, while the pH-responsiveness and photothermal conversion ability of PDA (polydopamine) achieved chemo-photothermal synergistic effects upon NIR irradiation. Taken together, the MD nanoparticles integrated cancer cell targeting recognition, intelligent drug release, biocompatibility and chemo-photothermal effects, and is therefore a promising tool for targeted cancer therapy with minimal toxicity to normal cells, as well as tumor imaging.
Collapse
|
23
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
24
|
Cao J, Wu X, Wang L, Shao G, Qin B, Wang Z, Wang T, Fu Y. A cellulose-based temperature sensitivity molecular imprinted hydrogel for specific recognition and enrichment of paclitaxel. Int J Biol Macromol 2021; 181:1231-1242. [PMID: 34022304 DOI: 10.1016/j.ijbiomac.2021.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A microcrystalline cellulose-based temperature sensitivity paclitaxel molecular imprinted hydrogel (MCC-TSMIHs-PTX) was successfully prepared by temperature-sensitive monomer N-isopropylacrylamide, functional monomer 4-vinylpyridine, cross-linking agent N, N'-methylenebisacrylamide and microcrystalline cellulose. They showed imprinting effective responses to the temperature changes. The results of adsorption kinetics, adsorption equilibrium, thermodynamics, selectivity and reusability showed the successful formation of a grafting thermosensitivity hydrogel with higher adsorption capacity and specific recognition. When the temperature reached 308 K, imprinting effect of hydrogel cavities would be most effective and conducive to capture template molecules. When the temperature reached 288 K, the lowest imprinting effect would facilitate the desorption of PTX. Finally, the MCC-TSMIHs-PTX was applied to enrich the paclitaxel in Taxus × media extracts samples, the relative contents of PTX in the samples were increased greatly from 7.23% to 78.32%, indicating the MCC-TSMIHs-PTX was a stable adsorption capacity for efficient separation and enrichment of PTX in Taxus × media extracts.
Collapse
Affiliation(s)
- Jingsong Cao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The college of chemistry, chemical engineering and resource utilization, Northeast Forestry University, Harbin 150040, PR China; The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
25
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|