1
|
Wang S, Mastantuoni GG, Dong Y, Zhou Q. Strong and transparent film of naturally aligned softwood holocellulose fibers. Carbohydr Polym 2025; 347:122722. [PMID: 39486952 DOI: 10.1016/j.carbpol.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 11/04/2024]
Abstract
Mildly delignified softwood holocellulose fibers featuring native tracheid fiber cell wall structure and high hemicellulose content are prominent building blocks for wood derived fiber-based materials. However, preserving the natural alignment of long softwood fiber is challenging since top-down structure-retaining delignified softwood is unstable as extensive removal of lignin from intercellular space induces cracking and disintegration of wood structure. Here we report the use of chemical crosslinking pretreatment to improve the intercellular bonding between softwood fibers, therefore preserving the integrity of the naturally aligned softwood fibers after delignification. The crosslinked softwood veneer was delignified with peracetic acid and further densified into transparent and high-density film by thermal compression. The obtained transparent film of naturally aligned softwood holocellulose fibers showed high optical transmittance of 71 %, high haze of 85 %, strong optical anisotropy, as well as high tensile strength of 449 ± 58 MPa and high Young's modulus of 49.9 ± 5.6 GPa. This study provides a facile approach to preserve the natural alignment of softwood fibers for the fabrication of high performance holocellulose fibers-based materials.
Collapse
Affiliation(s)
- Shennan Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Gabriella G Mastantuoni
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yuyi Dong
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Xu D, Hui YY, Zhang W, Zhao MN, Gao K, Tao XR, Wang JW. Genipin-crosslinked hydrogels for food and biomedical applications: A scientometric review. Int J Biol Macromol 2024; 282:137478. [PMID: 39537060 DOI: 10.1016/j.ijbiomac.2024.137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Genipin, a precursor of dietary blue pigment, is a promising alternative for industrial applications in food and health. Due to its ability to simultaneously satisfy biosafety requirements and provide crosslinking effects, genipin has attracted considerable attention for food and biomedical applications. In this review, we attempt to shed light on the progress in genipin research using scientometrics. Based on this scientometric discovery, we reviewed the use of genipin-crosslinked films for fruit packaging in food science. Genipin-crosslinked hydrogels used for drug delivery include natural, chemical, and protein delivery systems. Genipin-crosslinked hydrogels for tissue engineering primarily include materials used for tissue regeneration and repair. Genipin-crosslinked hydrogels are used in wound dressings and wound closure. This review provides a scientometric perspective to facilitate future research and development of genipin for food science, drug delivery, tissue engineering, and wound healing.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Yu Hui
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Mei-Na Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing-Ru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Nicu R, Lisa G, Darie-Nita RN, Avadanei MI, Bargan A, Rusu D, Ciolacu DE. Tailoring the Structure and Physico-Chemical Features of Cellulose-Based Hydrogels Using Multi-Epoxy Crosslinking Agents. Gels 2024; 10:523. [PMID: 39195052 DOI: 10.3390/gels10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied. The performances of the hydrogels were investigated through the gel fraction, as well as by ATR-FTIR, DVS, SEM, DSC, and TG analyses. Also, the swelling and rheological behaviors of the hydrogels were examined. The advantages and limitations of each approach were discussed and a strong correlation between the crosslinker structure and the hydrogel properties was established. The formation of new ether bonds was evidenced by ATR-FTIR spectroscopy. It was emphasized that the pore size is directly influenced by the crosslinker type, namely, it decreases with the increasing number of epoxy groups from the crosslinker molecule, i.e., from 46 ± 11.1 µm (hydrogel CE, with ECH) to 12.3 ± 2.5 µm (hydrogel CB, with BDDE) and 6.7 ± 1.5 µm (hydrogel CT, with TMPTGE). The rheological behavior is consistent with the swelling data and hydrogel morphology, such as CE with the highest Qmax and the largest pore size being relatively more elastic than CB and CT. Instead, the denser matrices obtained by using crosslinkers with more complex structures have better thermal stability. The experimental results highlight the possibility of using a specific crosslinking agent, with a defined structure and functionality, in order to establish the main characteristics of hydrogels and, implicitly, to design them for a certain field of application.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, 700050 Iasi, Romania
| | - Raluca Nicoleta Darie-Nita
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mihaela Iuliana Avadanei
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Alexandra Bargan
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Daniela Rusu
- Department of Physics of Polymers and Polymeric Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana Elena Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
4
|
Yan Z, Di Y, Wang L, Fei P, Chen S, Yue X, Wang Y, Zuo Z, Lu J, Zhao Z. Mechanistic insight into homogeneous catalytic crosslinking behavior between cellulose and epoxide by explicit solvent models. Int J Biol Macromol 2023; 252:126093. [PMID: 37573910 DOI: 10.1016/j.ijbiomac.2023.126093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Inspired by recent advances on functional modification of cellulosic materials, the crosslinking behaviors of epoxide with cellulose under the catalysis of different homogeneous catalysts including H2O, Brønsted acid, Brønsted base, Lewis acid and neutral salt were systematically investigated using density functional theory (DFT) methods with hybrid micro-solvation-continuum approach. The results showed that catalytic activity, reaction mechanism and regioselectivity are determined by the combined effect of catalyst type, electronic effect and steric hindrance. All the homogeneous catalysts have catalytic activity for the crosslinking reaction, which decreases in the order of NaOH > HCl > NCl3 > MCl2 > CH3COOH > NaCl (N = Fe3+, Al3+; M = Zn2+, Ca2+). Upon the catalysis of NaOH, hydroxyl group of cellulose is firstly deprotonated to form a carbanion-like intermediate which will further attack the less sterically hindered C atom of epoxide showing excellent regioselectivity. Acidic catalysts readily cause epoxide protonated, which suffers from nucleophilic attack of cellulose and forms the carbocation-like intermediate. Brønsted acid exhibits poor regioselectivity, however, Lewis acid shows an interesting balance between catalytic activity and regioselectivity for the crosslinking reaction, which may be attributed to the unique catalysis and stabilization effects of its coordinated H2O on the transition state structure.
Collapse
Affiliation(s)
- Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; National Advanced Functional Fiber Innovation Center, Suzhou 215228, Jiangsu, China
| | - Youbo Di
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Le Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shaojie Chen
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yuping Wang
- National Advanced Functional Fiber Innovation Center, Suzhou 215228, Jiangsu, China
| | - Zhijun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zhou Zhao
- School of Textile science and engineering, Xi'an Polytechnic university, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
5
|
Ruhr D, Reiche A. Kinetic Parameters of the Cross‐linking Reaction of Cellulose Membranes with Bifunctional Epoxides. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dominik Ruhr
- Leibniz University Hannover Institute of Technical Chemistry Callinstraße 5 30167 Hannover Germany
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37079 Göttingen Germany
| | - Annette Reiche
- Sartorius Stedim Biotech GmbH August-Spindler-Straße 11 37079 Göttingen Germany
| |
Collapse
|
6
|
Yang I, Lin I, Liang Y, Lin J, Chen T, Chen Z, Kuan C, Chi C, Li C, Wu H, Lin F. Development of di(2‐ethylhexyl) phthalate‐containing thioglycolic acid immobilized chitosan mucoadhesive gel as an alternative hormone therapy for menopausal syndrome. Bioeng Transl Med 2021; 7:e10267. [PMID: 35600649 PMCID: PMC9115706 DOI: 10.1002/btm2.10267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023] Open
Abstract
Menopausal syndrome includes the symptoms that most women experience owing to hormone changes after menopause. Although hormone replacement therapy is a common treatment for menopausal syndrome, there are still many side effects and challenges hindering research. In this study, thioglycolic acid (TGA)‐immobilized chitosan mucoadhesive gel was synthesized by a new method of low concentration of 1,4‐butanediol diglycidyl ether (BDDE) would encapsulate di(2‐ethylhexyl) phthalate (DEHP) as an alternative hormone replacement therapy for menopausal syndrome. The efficacies of the DEHP‐containing TGA‐chitosan gel (CT‐D) were confirmed and evaluated by materials characterization and in vitro study. Results showed that CT‐D was not cytotoxic and had better mucoadhesive ability than chitosan. The animal model was constructed 1 month after bilateral ovariectomy in SD rats. CT‐D was administered intravaginally every 3 days. Bodyweight, wet weight of the uterus and vagina, vaginal smears, histology, blood element analysis, and serological analysis was used to assess the ability of the material to relieve menopausal syndrome. The results indicated that the combination of the sustained release of DEHP and mucoadhesive TGA‐immobilized chitosan allows the developed CT‐D to relieve the menopausal syndrome through low concentrations of DEHP, which falls in the safety level of the tolerable daily intake of DEHP.
Collapse
Affiliation(s)
- I‐Hsuan Yang
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - I‐En Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Ya‐Jyun Liang
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Jhih‐Ni Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Tzu‐Chien Chen
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Zhi‐Yu Chen
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
| | - Che‐Yung Kuan
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
| | - Chih‐Ying Chi
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| | - Chi‐Han Li
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| | - Hung‐Ming Wu
- Department of Neurology Changhua Christian Hospital Changhua Taiwan
| | - Feng‐Huei Lin
- Department of Biomedical Engineering College of Medicine and College of Engineering, National Taiwan University Taipei Taiwan
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes Zhunan, Miaoli County Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine National Chung Hsing University Taichung Taiwan
| |
Collapse
|
7
|
Yao X, Zhang S, Qian L, Du M. Dendrimer-assisted boronate affinity cellulose foams for the efficient and selective separation of glycoproteins. Carbohydr Polym 2021; 265:118082. [PMID: 33966846 DOI: 10.1016/j.carbpol.2021.118082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Surfaces engineered to identify and enrich glycoproteins are of considerable interest in the diagnostic and detection fields. A boronate affinity (BA) material was proposed as a potential candidate for the isolation of glycoproteins. However, this material has the disadvantages of low efficiency and non-degradability. Herein, a novel dendrimer-amplified BA cellulose foam (PEI-PBA-CF) was fabricated via a mild two-step approach. The as-prepared PEI-PBA-CF exhibited a rapid adsorption equilibrium rate (within 60 min) and outstanding adsorption capacity for horseradish peroxidase (537.4 mg g-1) and ovalbumin (495.5 mg g-1). Furthermore, competitive adsorption experiments demonstrated that PEI-PBA-CF could achieve selective separation and purification of glycoproteins from complex biological samples due to the synergistic effect of the improved BA capacity by the dendrimer and the well-interconnected porous structure of the biomass matrix. Consequently, these cellulose foams might present new application opportunities in analytical and biomedical fields.
Collapse
Affiliation(s)
- Xue Yao
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China.
| | - Liwei Qian
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China.
| | - Min Du
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China
| |
Collapse
|
8
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
9
|
Ong CS, Lay HT, Tamilselvam NR, Chew JW. Cross-Linked Polycarbonate Microfiltration Membranes with Improved Solvent Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4025-4032. [PMID: 33759528 DOI: 10.1021/acs.langmuir.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report a facile preparation of an organic solvent-resistant membrane through the formation of urethane bonds between polycarbonate and polyethyleneimine groups. The modified membrane was further cross-linked with 1,4-butanediol diglycidyl ether (BDG) to enhance its solvent resistance as well as its thermal and mechanical stability. The cross-linked polycarbonate membranes exhibited improved solvent resistance with various organic solvents, giving a maximum swelling degree of 6%. It also showed better mechanical and thermal stability, as well as excellent permeance and rejection performance. This study demonstrates BDG as an attractive cross-linker for polycarbonate microfiltration membranes to transform them toward organic solvent filtration applications.
Collapse
Affiliation(s)
- Chi Siang Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Huang Teik Lay
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Navin Raj Tamilselvam
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
10
|
Harada N, Mitsukami Y, Uyama H. Preparation and characterization of water-swellable hydrogel-forming porous cellulose beads. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Imidazolium functionalized cellulose filter paper derived from waste newspaper and its application in removal of chromium(VI). REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|