1
|
Lin Q, Zhao W, Liang W, Wang X, Zeng J, Gao H, Li W. Ion type-based formation rules and functional properties of polysaccharide-starch aerogels with chitooligosaccharide, xanthan gum, and locust bean gum: A comparative study. Food Res Int 2025; 202:115674. [PMID: 39967144 DOI: 10.1016/j.foodres.2025.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Polysaccharide ion types may play a regulatory role in the functionalization development of starch-polysaccharide-based gels, although the relevant mechanisms remain to be elucidated. This study provides a simple and effective strategy for developing gels suitable for different adsorption scenarios by adding different ratios and ion types of polysaccharides. The addition of locust bean gum (LBG, neutral charge) and xanthan gum (XG, -/negative charge) increased the viscosity of wheat gels, with XG increasing more significantly at the same addition. Meanwhile, chito oligosaccharides (COS, +/positive charge) decreased the viscosity of wheat gels. SEM showed that the gels' pore size became larger after adding polysaccharides. FT-IR results showed that adding all three polysaccharides resulted in a more disordered structure and a decrease in the hardness of the gels. However, due to the different charges, the adsorption property results showed that adding the anionic polysaccharide XG increased the methylene blue adsorption capacity dramatically, while COS showed the opposite trend. The obtained results are expected to facilitate the high-value processing and utilization of polysaccharide resources and the on-demand construction of gel materials with promising textural or adsorption performance in food processing or industrial manufacture.
Collapse
Affiliation(s)
- Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Meng D, Long W, Sun J, Li H, Wang Z, Gu X, Zhang S. Eco-friendly fabrication of a delignified wood‑calcium alginate aerogel with improved mechanical properties for efficient thermal insulation and flame retardancy. Int J Biol Macromol 2025; 287:138561. [PMID: 39662569 DOI: 10.1016/j.ijbiomac.2024.138561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Wood based composites with low density and great flame retardancy are increasingly required as sustainable and low-carbon building materials for energy conservation. In this work, the symbiosis between bio-based calcium alginate (CaA) and delignified wood was fabricated to form delignified wood-CaA aerogel composites. The density of the delignified wood@CaA sample was dropped to only 89 kg/m3 from 120 kg/m3 of the control wood. In addition, its tensile strength, elongation at break, and bending strength reached 16.9 MPa, 4.6 %, and 40.2 MPa, which was increased by 128.4 %, 109.1 %, and 31.8 %, respectively compared to that of control wood. During either heating or cooling, the delignified wood@CaA sample always showed better thermal insulation than the control wood, moreover, it can be developed as an infrared stealthy material. Furthermore, the delignified wood@CaA aerogel reached the limiting oxygen index of 59.2 %, and it was self-extinguished immediately after leaving ignitor in the vertical burning test. In the cone calorimeter test, the total heat release and total smoke production of delignified wood@CaA aerogel decreased by 27.6 % and 71.4 % compared to that of the control wood, respectively. In summary, the light-weighted delignified wood@CaA aerogel composite with superior performance is an ideal material used in sustainable and low-carbon building.
Collapse
Affiliation(s)
- Dan Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiyun Long
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Zhu J, Zhao X, Wang Y, Xu Y, Yin Y. Tough and thermal insulating cellulose-based aerogel fiber via long yarn-assisted interfacial polyelectrolyte complexation spinning. Carbohydr Polym 2024; 344:122501. [PMID: 39218540 DOI: 10.1016/j.carbpol.2024.122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Cellulose-based aerogel fibers are recognized as a promising candidate for wearable thermal insulation textiles due to their high porosity, extremely low thermal conductivity, and environmental friendliness. Unfortunately, their practical application in textiles is severely limited by their brittleness. Herein, a novel "long yarn-assisted interfacial polyelectrolyte complexation (YAIPC) spinning" technique is proposed to fabricate cellulose-based aerogel fibers with a unique core-shell structure. The as-prepared core-shell aerogel fibers show excellent thermal insulation performance (34.3 mW m-1 K-1) and robust mechanical strength (∼100 MPa, 31.5 MJ m-3), providing great potential as wearable thermal insulating materials. Accordingly, our research would open a new avenue for designing and constructing wearable aerogel fibers and textiles.
Collapse
Affiliation(s)
- Jintao Zhu
- Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaoyi Zhao
- Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yangyang Wang
- Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yingjun Xu
- Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Yuanyuan Yin
- Institute of Functional Textiles and Advanced Materials, Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Hu Z, Zhang X, Sun Q, Gu P, Liang X, Yang X, Liu M, Huang J, Wu G, Zu G. Biomimetic Transparent Layered Tough Aerogels for Thermal Superinsulation and Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307602. [PMID: 38150669 DOI: 10.1002/smll.202307602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Transparent aerogels are ideal candidates for thermally insulating windows, solar thermal receivers, electronics, etc. However, they are usually prepared via energy-consuming supercritical drying and show brittleness and low tensile strength, significantly restricting their practical applications. It remains a great challenge to prepare transparent aerogels with high tensile strength and toughness. Herein, biomimetic transparent tough cellulose nanofiber-based nanocomposite aerogels with a layered nanofibrous structure are achieved by vacuum-assisted self-assembly combined with ambient pressure drying. The nacre-like layered homogeneous nanoporous structures can reduce light scattering and effectively transfer stress and prevent stress concentration under external forces. The aerogels exhibit an attractive combination of excellent transparency and hydrophobicity, high compressive and tensile strengths, high toughness, excellent machinability, thermal superinsulation, and wide working temperature range (-196 to 230 °C). It is demonstrated that they can be used for superinsulating windows of buildings and high-efficient thermal management for electronics and human bodies. In addition, a prototype of transparent flexible aerogel-based triboelectric nanogenerator is developed. This work provides a promising pathway toward transparent tough porous materials for energy saving/harvesting, thermal management, electronics, sensors, etc.
Collapse
Affiliation(s)
- Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Qi Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Muxiang Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Guangming Wu
- Shanghai Key laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
5
|
Xiao M, Li P, Lu Y, Cao J, Yan H. Development of a three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel for efficient extraction and detection of polyhalogenated carbazoles in sediment samples. Talanta 2024; 271:125711. [PMID: 38290266 DOI: 10.1016/j.talanta.2024.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The three-dimensional porous ionic liquid-chitosan-graphene oxide aerogel (IL-CS-GOA) monolithic adsorbent with a through-hole structure was prepared using natural chitosan (CS) as the skeletal framework, graphene oxide (GO) as the support to provide mechanical strength, and ionic liquid (IL) as the porogen and modifier. The resulting IL-CS-GOA demonstrated a fluffy and porous structure with various pore sizes and excellent regeneration capability (over six cycles). Its specific surface area exceeded that of CS-GOA and IL-GOA by more than 7 times, enhancing its polyhalogenated carbazoles (PHCZs) adsorption capacity. Within 5 min, IL-CS-GOA (1.0 mg) exhibited adsorption amounts of 539 ng mg-1 for 3-bromocarbazole (3-BCZ), 716 ng mg-1 for 2,7-dibromocarbazole (2,7-BCZ), and 798 ng mg-1 for 1,3,6,8-tetrabromocarbazole (1,3,6,8-BCZ), showcasing its rapid mass transfer and high adsorption capabilities. IL-CS-GOA was utilized as the adsorbent for glass dropper extraction (GDE) in conjunction with gas chromatography-mass spectrometry (GC-MS/MS), to develop a highly efficient and accurate method for determining PHCZs in sediments. Under optimal conditions, the established method exhibited a wide linear range (0.4-250 ng g-1, r ≥ 0.9990), low detection limits (0.04-0.24 ng g-1), and satisfactory recoveries (80.5 %-93.8 %), enabling the accurate and rapid detection of PHCZs in sediment samples. This study presents a novel approach for creating three-dimensional porous aerogels, introduces a new form of sample pretreatment using GDE with a monolithic adsorbent, and offers a new method for the determination of PHCZs in environmental matrices.
Collapse
Affiliation(s)
- Meng Xiao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Pengfei Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yanke Lu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Zhao Y, Xu Z, Li M, Zhou L, Liu M, Yang D, Zeng J, Xie R, Hu W, Dong F. S defect-rich MoS 2 aerogel with hierarchical porous structure: Efficient photocatalysis and convenient reuse for removal of organic dyes. CHEMOSPHERE 2024; 354:141649. [PMID: 38458356 DOI: 10.1016/j.chemosphere.2024.141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
To avoid the difficulty of separating solids from liquids when reusing powder photocatalysts, 3D stereoscopic photocatalysts were constructed. In this study, three-dimensional S defect-rich MoS2 hierarchical aerogel was prepared by chemical cross-linking of functional ultrathin 2D MoS2. Its phase, micro-morphology and structure were characterized, and it was used in the study of photocatalytic degradation of organic pollutants. Of the samples tested, MS@CA-3 (i.e., defect-rich 3D MoS2 aerogel with a loading of 30 mg of defect-rich MoS2) exhibited the best photocatalytic activity due to its suitable load, good light transmission, and a degradation rate of up to 91.0% after 3 h. In addition, MS@CA-3 aerogel offers high recyclability and structural stability, and the degradation rate of the organic pollutant methylene blue decreases only 9.8% after more than ten cycles of photocatalytic degradation. It combines the high catalytic performance of S defect-rich 2D MoS2 and the convenient reusability of hierarchical porous aerogel. This study provides valuable data and a reference for the practical promotion and application of photocatalytic technology in the field of environmental remediation.
Collapse
Affiliation(s)
- Yu Zhao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Zhihao Xu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Meijuan Li
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education of China, Mianyang, 621010, PR China
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jiawei Zeng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, PR China.
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Wenyuan Hu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education of China, Mianyang, 621010, PR China.
| |
Collapse
|
7
|
Ravishankar K, Km S, Sreekumar S, Sivan S, Kiran MS, Lobo NP, Jaisankar SN, Raghavachari D. Microwave-assisted synthesis of crosslinked ureido chitosan for hemostatic applications. Int J Biol Macromol 2024; 260:129648. [PMID: 38246465 DOI: 10.1016/j.ijbiomac.2024.129648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
In this study, we present a facile method for introducing hydrophilic ureido groups (NH2-CO-NH-) into chitosan using a microwave-assisted reaction with molten urea, with the aim of enhancing chitosan's interaction with blood components for improved hemostasis. The formation of the ureido groups through nucleophilic addition reaction between the amine groups in chitosan and in situ generated isocyanic acid was confirmed by FTIR, CP/TOSS 13C NMR, and CP/MAS 15N NMR spectroscopic techniques. However, in stark contrast to the glucans, the said modification introduced extensive crosslinking in chitosan. Spectroscopic studies identified these crosslinks as carbamate bridges (-NH-COO-), which were likely formed by the reaction between the ureido groups and hydroxyl groups of adjacent chains through an isocyanate intermediate. These carbamate bridges improved ureido chitosan's environmental stability, making it particularly resistant to changes in pH and temperature. In comparison to chitosan, the crosslinked ureido chitosan synthesized here exhibited good biocompatibility and cell adhesion, rapidly arrested the bleeding in a punctured artery with minimal hemolysis, and induced early activation and aggregation of platelets. These properties render it an invaluable material for applications in hemostasis, particularly in scenarios that necessitate stability against pH variations and degradation.
Collapse
Affiliation(s)
- Kartik Ravishankar
- Polymer Science and Technology Division, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Shelly Km
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| | - Sreelekshmi Sreekumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Sisira Sivan
- Polymer Science and Technology Division, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Manikantan Syamala Kiran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Nitin Prakash Lobo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Centre for Analysis, Testing, Evaluation& Reporting Services (CATERS), CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Sellamuthu N Jaisankar
- Polymer Science and Technology Division, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Dhamodharan Raghavachari
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
8
|
Zhao S, Wei H, Zhang X, Wang F, Su Z. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination. J Colloid Interface Sci 2024; 653:1504-1513. [PMID: 37804618 DOI: 10.1016/j.jcis.2023.09.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Solar-driven water purification is a promising technology that can effectively utilize solar energy for seawater desalination. However, poor materials are unable to meet the dense energy of solar steam generation in natural sunlight for real-time practical applications. Therefore, the demand for energy density can be increased by using improved semiconductor aerogel materials. Here, we report a simple chemical method to obtain a CuS@ATP/PS composite aerogel (named CuAP), which was made of attapulgite (ATP) and CuS loaded onto it using an N-template to give it good photothermal characteristics (CuS@ATP), and then cross-link it with potato starch (PS). The evaporation rate of CuAP-15 aerogel in pure water at 1 kW m-2 solar radiation is 1.57 kg m-2 h-1. Meanwhile, CuAP-15 aerogel showed excellent salt resistance with an evaporation rate of 1.35 kg m-2 h-1 in 20 wt% NaCl solution. And also exhibited excellent cycling durability in cycling stability tests. More importantly, the freshwater yield can reach 6.54 kg m-2 under natural light irradiation for 11 h. Therefore, CuAP aerogel has a great prospect of application in the field of seawater desalination in the future.
Collapse
Affiliation(s)
- Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huangfang Wei
- Zhejiang Zili Polymer Chemistry Materials Co., Ltd, Shaoxing 312300, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Pantić M, Maver U, Rožanc J, Vihar B, Andrejč DC, Knez Ž, Novak Z. Evaluation of ethanol-induced chitosan aerogels with human osteoblast cells. Int J Biol Macromol 2023; 253:126694. [PMID: 37673150 DOI: 10.1016/j.ijbiomac.2023.126694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The following article provides an insight into the production of chitosan aerogels as potential materials for tissue engineering. Chitosan aerogels were prepared following two different protocols: formation in ethanol and formation in sodium hydroxide in an ethanol solution. The main objective was to apply a new route to obtain chitosan aerogels with no external cross-linkers and compare the mentioned preparation approaches. Forming chitosan aerogels in ethanol implies a simple, environmentally friendly, and efficient method. The prepared materials showed specific surface areas of up to 450 m2/g, highly porous networks and great mechanical properties. In vitro degradation studies revealed high stability for up to 10 weeks. The differences between the samples were significant. While the chitosan aerogels prepared in ethanol showed superior textural, morphological and mechanical properties, the chitosan aerogels prepared in the sodium hydroxide solution proved that a considerable influence on end properties could be made simply by adjusting the ageing medium. In vitro cell analysis with primary human osteoblasts showed good biocompatibility and pointed towards the potential use of these aerogels for orthopedic applications. This testing showed further that adjustments in structural properties by sodium hydroxide also come with a cost regarding their suitability to host bone cells.
Collapse
Affiliation(s)
- Milica Pantić
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Jan Rožanc
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Boštjan Vihar
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Darija Cör Andrejč
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
10
|
Chen L, Qu N, Lu H, Jiang S, Zhang B, Hasi QM, Zhang Y. Preparation of a Magnetic Core-Shell Bioreactor for Oil/Water Separation and Biodegradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14891-14903. [PMID: 37819843 DOI: 10.1021/acs.langmuir.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
With the frequent occurrence of offshore oil spills, the effective separation and treatment of oily wastewater are essential to the environment. In this work, the core-shell bioreactor (abbreviated as Fe3O4/MHNTs-CNF@aerogel) was prepared with a core composed of camphor leaf cellulose-based aerogels for loading microorganisms and a shell derived from hydrophobic silane-modified halloysite doping with Fe3O4 for selective absorption of oil and maganetic recycling. The core-shell-structured bioreactor Fe3O4/MHNTs-CNF@aerogel has excellent self-floating properties and can float on water for up to 100 days. The whole core-shell structure not only has excellent oil/water separation performance but also has good microbial degradation performance. By applying it in water containing 5% diesel for the biodegradation test, the biodegradation efficiency of Fe3O4/MHNTs-CNF@aerogel for diesel can reach 82.4% in 10 days. The efficiency was 20% higher than for free microorganisms, and it still had excellent degradation ability after three degradation cycles, with a degradation rate of over 75%. In addition, the result obtained from the study on environmental tolerance shows that Fe3O4/MHNTs-CNF@aerogel possessed a strong tolerance ability under different pH and salinity conditions. The Fe3O4/MHNTs-CNF@aerogel also has superior mechanical properties; i.e., nearly no deformation occurs at 30 kPa. Compared with those conventional oil/water separation materials which can only absorb or separate the oils for water with limited capacity and taking the risk of secondary contamination, our core-shell-structured bioreactor is capable of not only selectively absorbing oil from water through its hydrophobic shell but also degrading it into a nontoxic substance by its microorganism-loaded core, thus showing great potential for practical application in oily wastewater treatment.
Collapse
Affiliation(s)
- Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Nannan Qu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Haijing Lu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Shuai Jiang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Bin Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Qi-Meige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| | - Yuhan Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of State Ethnic Affairs Commission, Northwest Xincun 1, Lanzhou 730030, P. R. China
| |
Collapse
|
11
|
Takeshita S, Ono T. Biopolymer-Polysiloxane Double Network Aerogels. Angew Chem Int Ed Engl 2023; 62:e202306518. [PMID: 37466360 DOI: 10.1002/anie.202306518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/20/2023]
Abstract
A new series of transparent aerogels of biopolymer-polysiloxane double networks is reported. Biopolymer aerogels have attracted much attention from green and sustainable aspects but suffered from strong hydrophilicity and difficulty to make homogeneous structures in nanoscale; these drawbacks are overcome by compositing with a polysiloxane network. Alginate-polymethylsilsesquioxane aerogel has high optical transparency, water repellency, comparable superinsulation property and improved bending flexibility compared to pure polymethylsilsesquioxane aerogel. The nanoscale homogeneity is realized by separating the crosslinking steps for two networks in a sequential protocol: condensation of siloxane bonds and metal-crosslinking of biopolymer. The crosslinking order, biopolymer-first or siloxane-first, and universality/limitation of biopolymer-crosslinker pairs are discussed to construct fundamental chemistry of double network systems for their further application potentials.
Collapse
Affiliation(s)
- Satoru Takeshita
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, 3058565, Tsukuba, Japan
| | - Takumi Ono
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, 3058565, Tsukuba, Japan
| |
Collapse
|
12
|
Xu Y, Sun Y, Yao Z, Zheng C, Zhang F. Gradient assembly of alginic acid/quaternary chitosan into biomimetic hidden nanoporous textiles for thermal management. Carbohydr Polym 2023; 300:120236. [DOI: 10.1016/j.carbpol.2022.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
13
|
Wang A, Tu Y, Wang S, Zhang H, Yu F, Chen Y, Li D. A PEGylated Chitosan as Gel Polymer Electrolyte for Lithium Ion Batteries. Polymers (Basel) 2022; 14:4552. [PMID: 36365545 PMCID: PMC9657041 DOI: 10.3390/polym14214552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 07/23/2024] Open
Abstract
Due to their safety and sustainability, polysaccharides such as cellulose and chitosan have great potential to be the matrix of gel polymer electrolytes (GPE) for lithium-based batteries. However, they easily form hydrogels due to the large numbers of hydrophilic hydroxyl or amino functional groups within their macromolecules. Therefore, a polysaccharide-based amphiphilic gel, or organogel, is urgently necessary to satisfy the anhydrous requirement of lithium ion batteries. In this study, a PEGylated chitosan was initially designed using a chemical grafting method to make an GPE for lithium ion batteries. The significantly improved affinity of PEGylated chitosan to organic liquid electrolyte makes chitosan as a GPE for lithium ion batteries possible. A reasonable ionic conductivity (1.12 × 10-3 S cm-1) and high lithium ion transport number (0.816) at room temperature were obtained by replacing commercial battery separator with PEG-grafted chitosan gel film. The assembled Li/GPE/LiFePO4 coin cell also displayed a high initial discharge capacity of 150.8 mA h g-1. The PEGylated chitosan-based GPE exhibits great potential in the field of energy storage.
Collapse
Affiliation(s)
- Anqi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yue Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Sijie Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Hongbing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Grzybek P, Jakubski Ł, Dudek G. Neat Chitosan Porous Materials: A Review of Preparation, Structure Characterization and Application. Int J Mol Sci 2022; 23:ijms23179932. [PMID: 36077330 PMCID: PMC9456476 DOI: 10.3390/ijms23179932] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review presents an overview of methods for preparing chitosan-derived porous materials and discusses their potential applications. This family of materials has garnered significant attention owing to their biocompatibility, nontoxicity, antibacterial properties, and biodegradability, which make them advantageous in a wide range of applications. Although individual porous chitosan-based materials have been widely discussed in the literature, a summary of all available methods for preparing materials based on pure chitosan, along with their structural characterization and potential applications, has not yet been presented. This review discusses five strategies for fabricating porous chitosan materials, i.e., cryogelation, freeze-drying, sol-gel, phase inversion, and extraction of a porogen agent. Each approach is described in detail with examples related to the preparation of chitosan materials. The influence of the fabrication method on the structure of the obtained material is also highlighted herein. Finally, we discuss the potential applications of the considered materials.
Collapse
|
15
|
Ultrafast gelation of silk fibroin-assisted conductive hydrogel with long-term environmental stability using self-catalytic dopamine/metal/H2O2 system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zheng B, Li B, Wan H, Lin X, Cai Y. Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128611. [PMID: 35278958 DOI: 10.1016/j.jhazmat.2022.128611] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Removing microplastics (MPs) from water has been a huge challenge due to their inherent features including small size and high stability. In this research, inspired by the active adsorption and passive adhesion mechanisms of corals to MPs, a new strategy to fabricate polydopamine enhanced magnetic chitosan (PDA-MCS) aerogels was developed with a target to match the surface properties of MPs, achieving high MPs removal efficiency. PDA-MCS aerogels were highly efficient in adsorbing polyethylene terephthalate (PET) microplastics in water at pH values of 6-9, with a removal efficiency of up to 91.6%. Even after three recycles, PDA-MCS aerogels still displayed comparatively high removal efficiency (83.4%). Kinetic and isothermal experiments showed that the adsorption process was the result of electrostatic interactions and physical adhesion between aerogels and microplastics. Moreover, PDA-MCS aerogels maintained high removal efficiency under simulated environmental conditions, and the removal efficiency of PET, polyethylene (PE) and polystyrene (PS) microplastics in waters reached 97.3%, 94.6%, and 92.3%, respectively. Therefore, high-efficiency environmentally durable aerogels adsorbent materials have the potential for the removal of MPs from the aquatic environment.
Collapse
Affiliation(s)
- Buyun Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hang Wan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaofeng Lin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
17
|
Song Y, Zhao Q, Qu M, Zhang R, Tang P, Bin Y, Li S, Zhao W, Wang H. Chitosan-based thermal insulation compressible foam enhanced with high performance of piezoelectric generation and sensing. Carbohydr Polym 2022; 294:119775. [DOI: 10.1016/j.carbpol.2022.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
18
|
Chartier C, Buwalda S, Van Den Berghe H, Nottelet B, Budtova T. Tuning the properties of porous chitosan: Aerogels and cryogels. Int J Biol Macromol 2022; 202:215-223. [PMID: 35033531 DOI: 10.1016/j.ijbiomac.2022.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023]
Abstract
Highly porous chitosan-based materials were prepared via dissolution, non-solvent induced phase separation and drying using different methods. The goal was to tune the morphology and properties of chitosan porous materials by varying process parameters. Chitosan concentration, concentration of sodium hydroxide in the coagulation bath and aging time were varied. Drying was performed via freeze-drying leading to "cryogels" or via drying with supercritical CO2 leading to "aerogels". Cryogels were of lower density than aerogels (0.03-0.12 g/cm3vs 0.07-0.26 g/cm3, respectively) and had a lower specific surface area (50-70 vs 200-270 m2/g, respectively). The absorption of simulated wound exudate by chitosan aerogels and cryogels was studied in view of their potential applications as wound dressing. Higher absorption was obtained for cryogels (530-1500%) as compared to aerogels (200-610%).
Collapse
Affiliation(s)
- Coraline Chartier
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Sytze Buwalda
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| | - Hélène Van Den Berghe
- Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Benjamin Nottelet
- Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Tatiana Budtova
- MINES ParisTech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
19
|
Liu Q, Xu K, Hu G, Zeng F, Li X, Li C, Zhang Y. Underwater superelastic MOF/polyacrylamide/chitosan composite aerogel for efficient 2, 4-dichlorophenoxyacetic acid adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Zhang Q, Lu W, Wu M, Qi G, Yuan Y, Li J, Su H, Zhang H. Preparation and properties of cellulosenanofiber (CNF) /polyvinyl alcohol (PVA) /graphene oxide (GO): Application of CO 2 absorption capacity and molecular dynamics simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114044. [PMID: 34735829 DOI: 10.1016/j.jenvman.2021.114044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/26/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
In order to solve the environmental problems caused by greenhouse gas emissions, cellulosenanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO) aerogel was obtained by step-by-step heating, tert-butanol replacement, freeze-drying, and high-temperature activation in this paper. The micromorphology, specific surface area, pore size distribution, and thermal stability of the prepared aerogels were analyzed by scanning electron microscopy, automatic surface area and porosity analysis, and thermo-gravimetric analysis. The interaction state and adsorption mechanism of CO2 and aerogel physical adsorption were described by Materials Studio simulation. The results showed that the adsorption process conformed to the Langmuir adsorption isotherm. After carbonization, the thermal stability of the aerogel was good (mass loss rate <1%). With the increase of GO content, its specific surface area increased (392.41 m2/g) and CO2 adsorption capacity increased (432.76 cm3/g at 273 K). The simulation results show that hydrogen bond energy and van der Waals adsorption are the main factors that help in adsorption of CO2 on the surface aerogel, and electrostatic adsorption is the secondary adsorption factor. The application of green material carbon-based aerogels is also in line with the concept of sustainable development.
Collapse
Affiliation(s)
- Qian Zhang
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Wei Lu
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; School of Energy and Safety Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| | - Mingyue Wu
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Guansheng Qi
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; State Key Laboratory of Mining Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Yang Yuan
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Juan Li
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Hao Su
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Huilin Zhang
- Key Lab of Mine Disaster Prevention and Control, College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
21
|
Li CG, Dang Q, Yang Q, Chen D, Zhu H, Chen J, Liu R, Wang X. Study of the microstructure of chitosan aerogel beads prepared by supercritical CO 2 drying and the effect of long-term storage. RSC Adv 2022; 12:21041-21049. [PMID: 35919839 PMCID: PMC9301543 DOI: 10.1039/d2ra01875f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
In order to investigate the pore properties and effect of storage time on the microstructure of CO2-dried aerogels, chitosan aerogel beads were obtained from chitosan hydrogels with an initial concentration in the range of 1.5–3.0 wt% through SCCO2 drying and freeze-drying (as a comparison). The SCCO2-dried chitosan aerogels showed a three-dimensional network structure, and had higher BET surface area (200 m2 g−1) and higher crystallinity (0.62/XRD, 0.80/ATR-FTIR) than the freeze-dried aerogels. The stability of the microstructure of the SCCO2-dried chitosan aerogel beads during 10 months was studied. The BET surface area of the aerogel beads at each concentration declined by 30.5% at 2 months, 56.7% at 6 months and 67.2% at 10 months. Accelerated aging tests of the chitosan aerogel beads were carried out to study the effect of humidity on the chitosan aerogel beads. The average diameter of the chitosan aerogel decreased from 2.3 mm to 0.9 mm when stored at 65 °C with 90% relative humidity (RH). In contrast, there was no obvious change during storage at 65 °C with 20% RH. The amount of adsorbed water increased from 4% to 12% at 65 °C with 90% RH for 96 h, and the bound water content of the aerogel beads gradually increased. This study demonstrates that SCCO2-dried chitosan aerogel beads could be better at maintaining their mesoporous structure, and the adsorption of water from the surrounding air had a significant effect on the microstructure and shrinkage of the chitosan aerogel beads. Chitosan aerogel beads prepared by different drying methods were compared, and the effects of long-term storage and humidity on the structure were investigated.![]()
Collapse
Affiliation(s)
- Chun-gong Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Qi Dang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Qinqin Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Hongliang Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jiachen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Runjin Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
22
|
Yang J, Liu Y, Zhang Z, Zhang X, Zhang Z, Liu T, Wang X, Zhang Z, Shen J. Preparation protocol of urea cross-linked chitosan aerogels with improved mechanical properties using aqueous aluminum ion medium. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Vasil’kov A, Rubina M, Naumkin A, Buzin M, Dorovatovskii P, Peters G, Zubavichus Y. Cellulose-Based Hydrogels and Aerogels Embedded with Silver Nanoparticles: Preparation and Characterization. Gels 2021; 7:82. [PMID: 34287283 PMCID: PMC8293180 DOI: 10.3390/gels7030082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
The paper presents the preparation and characterization of novel composite materials based on microcrystalline cellulose (MCC) with silver nanoparticles (Ag NPs) in powder and gel forms. We use a promising synthetic conception to form the novel composite biomaterials. At first MCC was modified with colloidal solution of Ag NPs in isopropyl alcohol prepared via metal vapor synthesis. Then Ag-containing MCC powder was used as precursor for further preparation of the gels. The hydrogels were prepared by dissolving pristine MCC and MCC-based composite at low temperatures in aqueous alkali solution and gelation at elevated temperature. To prepare aerogels the drying in supercritical carbon dioxide was implemented. The as-prepared cellulose composites were characterized in terms of morphology, structure, and phase composition. Since many functional properties, including biological activity, in metal-composites are determined by the nature of the metal-to-polymer matrix interaction, the electronic state of the metal was carefully studied. The studied cellulose-based materials containing biologically active Ag NPs may be of interest for use as wound healing or water-purification materials.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia; (A.V.); (A.N.); (M.B.)
| | - Margarita Rubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia; (A.V.); (A.N.); (M.B.)
| | - Alexander Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia; (A.V.); (A.N.); (M.B.)
| | - Mikhail Buzin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia; (A.V.); (A.N.); (M.B.)
| | - Pavel Dorovatovskii
- National Research Centre “Kurchatov Institute”, 1 pl. Akademika Kurchatova, 123182 Moscow, Russia; (P.D.); (G.P.)
| | - Georgy Peters
- National Research Centre “Kurchatov Institute”, 1 pl. Akademika Kurchatova, 123182 Moscow, Russia; (P.D.); (G.P.)
| | - Yan Zubavichus
- Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia;
| |
Collapse
|
24
|
Guerrero-Alburquerque N, Zhao S, Rentsch D, Koebel MM, Lattuada M, Malfait WJ. Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers (Basel) 2021; 13:1583. [PMID: 34069157 PMCID: PMC8156039 DOI: 10.3390/polym13101583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023] Open
Abstract
Ureido-functionalized compounds play an indispensable role in important biochemical processes, as well as chemical synthesis and production. Isocyanates, and KOCN in particular, are the preferred reagents for the ureido functionalization of amine-bearing compounds. In this study, we evaluate the potential of urea as a reagent to graft ureido groups onto amines at relatively low temperatures (<100 °C) in aqueous media. Urea is an inexpensive, non-toxic and biocompatible potential alternative to KOCN for ureido functionalization. From as early as 1864, urea was the go-to reagent for polyurea polycondensation, before falling into disuse after the advent of isocyanate chemistry. We systematically re-investigate the advantages and disadvantages of urea for amine transamidation. High ureido-functionalization conversion was obtained for a wide range of substrates, including primary and secondary amines and amino acids. Reaction times are nearly independent of substrate and pH, but excess urea is required for practically feasible reaction rates. Near full conversion of amines into ureido can be achieved within 10 h at 90 °C and within 24 h at 80 °C, and much slower reaction rates were determined at lower temperatures. The importance of the urea/amine ratio and the temperature dependence of the reaction rates indicate that urea decomposition into an isocyanic acid or a carbamate intermediate is the rate-limiting step. The presence of water leads to a modest increase in reaction rates, but the full conversion of amino groups into ureido groups is also possible in the absence of water in neat alcohol, consistent with a reaction mechanism mediated by an isocyanic acid intermediate (where the water assists in the proton transfer). Hence, the reaction with urea avoids the use of toxic isocyanate reagents by in situ generation of the reactive isocyanate intermediate, but the requirement to separate the excess urea from the reaction product remains a major disadvantage.
Collapse
Affiliation(s)
- Natalia Guerrero-Alburquerque
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland;
| | - Matthias M. Koebel
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| |
Collapse
|
25
|
Guastaferro M, Reverchon E, Baldino L. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Front Bioeng Biotechnol 2021; 9:688477. [PMID: 34055766 PMCID: PMC8149959 DOI: 10.3389/fbioe.2021.688477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023] Open
Abstract
In this short review, drug delivery systems, formed by polysaccharide-based (i.e., agarose, alginate, and chitosan) aerogels, are analyzed. In particular, the main papers, published in the period 2011-2020 in this research field, have been investigated and critically discussed, in order to highlight strengths and weaknesses of the traditional production techniques (e.g., freeze-drying and air evaporation) of bio-aerogels with respect to supercritical CO2 assisted drying. Supercritical CO2 assisted drying demonstrated to be a promising technique to produce nanostructured bio-aerogels that maintain the starting gel volume and shape, when the solvent removal occurs at negligible surface tension. This characteristic, coupled with the possibility of removing also cross-linking agent residues from the aerogels, makes these advanced devices safe and suitable as carriers for controlled drug delivery applications.
Collapse
|