1
|
Shao X, Xie Y, Chen A, Lan L, Zhao Q, Ma L, Chen Z, Long J, Chen W, Hu D. Sustainable lignocellulosic nanofibers-based films with sensitive humidity and pH response for UV-blocking food preservation. Int J Biol Macromol 2025; 309:143115. [PMID: 40222527 DOI: 10.1016/j.ijbiomac.2025.143115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/22/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
UV-induced photo-oxidation critically compromises food quality, necessitating advanced materials that simultaneously mitigate light degradation and enable real-time freshness monitoring. Here, the excellent UV-blocking films with sensitive humidity and pH response are developed by synergistically incorporating sodium ligninsulfonate-derived carbon quantum dots (L-CDs) via a simple microwave-assisted generation and light absorption of lignin from lignocellulosic nanofibers. The resulting films with hybrid structure can block 99.74 % (UV-C), 99.86 % (UV-B), and 87.90 % (UV-A) of radiation while maintaining 85.60 % visible light transmittance (600 nm), and has excellent mechanical strength (61.51 MPa). Under the protection of composite film, pork, strawberries and grapes all maintained longer freshness than unprotected controls. Profited from the protonation and deprotonation of L-CDs and the disconnection/reconstruction of hydrogen bonds, it shows sensitive humidity and pH response with changes in blue fluorescence. Furthermore, the conductivity of the composite film increases exponentially as the increase of humidity, showing excellent humidity response monitoring. As expected, the prepared composite film can detect changes in conductivity and resistance for monitoring the freshness of food. So, this work provides the development prospects for multi-functional composite films with UV-blocking and intelligent humidity & pH sensing for food preservation and intelligent monitoring.
Collapse
Affiliation(s)
- Xinyu Shao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yanhui Xie
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Anyang Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Longfa Lan
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qingbin Zhao
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lin Ma
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Ziyan Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiehua Long
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wang Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Dongying Hu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Sun L, Zhang J, Qin Y, Guo W, Du M, Pan G, Chang J, Fu Q, Zhang K. Green preparation of highly transparent nano-NH 2-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance. Int J Biol Macromol 2025; 300:140141. [PMID: 39863233 DOI: 10.1016/j.ijbiomac.2025.140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH2-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH2-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.2 % to 32.9 %). The film self-extinguish quickly once removed from the flame, demonstrating a prominent flame resistance. Compared to the original film, the modified films demonstrate a significant reduction in the peak heat release rate and total heat released, decreasing from 186.6 to 26.8 W/g and 19.7 to 1.2 kJ/g, respectively. Encouragingly, the incorporation of nano-NH2-UiO(Zr)-66 enabled films to achieve excellent UV to high-energy blue light (HEBL) shielding competence (90.8-100 %, 99.6-100 %, and 60.9-89 % for UVB, UVA and HEBL) meanwhile retaining low haze (1.9-2.6 %) and high transmittance (86.2-90.9 %). Furthermore, the incorporation of nano-NH2-UiO(Zr)-66 was observed to enhance the mechanical strength. Overall, this film presents a promising alternative to conventional plastics used in various applications, including electronic devices and packaging materials.
Collapse
Affiliation(s)
- Lijian Sun
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China; Mudanjiang Hengfeng Paper Co., Ltd, No.11 Hengfeng Road, Yangming District, Mudanjiang 157013, PR China.
| | - Jingyuan Zhang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Ying Qin
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Weimin Guo
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Meiling Du
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Gaofeng Pan
- Mudanjiang Hengfeng Paper Co., Ltd, No.11 Hengfeng Road, Yangming District, Mudanjiang 157013, PR China
| | - Jiang Chang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Qiu Fu
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China.
| | - Kuo Zhang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
3
|
Lv X, Jiang R, Zhang T, Wang Y, Wang H, Guo Y, Yang D, Li S, Qian X. A highly transparent cellulose film for shielding ultraviolet and high-energy visible blue light. Int J Biol Macromol 2025; 301:140510. [PMID: 39889979 DOI: 10.1016/j.ijbiomac.2025.140510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The ultraviolet (UV) and high-energy visible blue (HEVB) light can cause damage to the eyes and skin. In this study, a cellulose composite film with UV and HEVB light shielding properties was prepared through the incorporation of a shielding agent into a carboxymethyl cellulose (CMC) solution. The shielding agent was synthesized through a Schiff base reaction between vanillin (VA) and 3-aminopropyltriethoxysilane (APS). The composite films exhibited excellent shielding performance against UV and HEVB light and maintained high visible light transmittance. Additionally, the films achieved shielding ratios of 100 % for UV (200 to 400 nm) and 93 % for HEVB (400 to 450 nm), respectively. Even under prolonged UV irradiation, the composite films maintained excellent shielding stability. The composite films exhibited higher performance in blocking UV and HEVB light than commercial shielding films. Moreover, the composite films achieved 100 % antibacterial efficiency against both Staphylococcus aureus and Escherichia coli, even with minimal amounts of the shielding agent. Furthermore, the films exhibited significant improvements in thermal stability, oxidation resistance, and mechanical properties. The multifunctional UV and HEVB shielding films have broad potential applications in food packaging, anti-UV/HEVB radiation display screens, and mobile phone screens.
Collapse
Affiliation(s)
- Xingyu Lv
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ruyi Jiang
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tinghui Zhang
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yansong Wang
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Haoyi Wang
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuesong Guo
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dongmei Yang
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Shujun Li
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xueren Qian
- Key Laboratory of Biobased Materials Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Li C, Zhang X, Chen H, Wang H, Huang J, Li T, Wang S, Dong W. Thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastics enabled by dynamically reversible thia-Michael reaction. Int J Biol Macromol 2025; 295:139567. [PMID: 39778833 DOI: 10.1016/j.ijbiomac.2025.139567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, difficulty in thermoforming and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics. Herein, a thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastic (H-HEC) is fabricated by introducing thia-Michael-based reversible crosslinked structure into hydroxyethyl cellulose. This is the first instance of integrating thia-Michael-based crosslinked structure into cellulose derivatives. The resulting H-HEC can be thermoformed and remolded without adding any plasticizers. Besides, the obtained H-HEC exhibit excellent overall properties, such as a high thermal decomposition temperature of 366 °C, a high water contact angle of 108°, a high transmittance of 90 % and good mechanical properties. Additionally, H-HEC combines impressive transparency with effective UV-shielding properties. We envision that this work provides a novel method to prepare thermoformable cellulose-based bioplastics with good water resistance, thermostability, transparency and mechanical properties. The combined thermoformability and superior overall performances will promote the practical application of cellulose-based bioplastics and contribute to the replacement of petroleum-based polymer by cellulose-based bioplastics.
Collapse
Affiliation(s)
- Chongyang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Hang Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haitang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Fu Q, Qin Y, Zhang X, Sun L, Chang J. Seeking materials from nature for interrupting eye damage: Ultraviolet to blue light blocking clear cellulose films enabled by curcumin. Int J Biol Macromol 2024; 279:135325. [PMID: 39236947 DOI: 10.1016/j.ijbiomac.2024.135325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
The harms caused by ultraviolet (UV) and blue light to eyes are attracting momentous concern due to growing exposure to artificial illumination and modern IT devices. Herein, a simple and eco-friendly adsorption approach was employed to integrate curcumin, a natural bioactive compound, into the cellulose substrate for the development of flexible and biodegradable filters capable of blocking harmful light. The curcumin/cellulose films demonstrate excellent UV-screening competence and photostability, with UV-A and UV-B screening ratios ranging from 92.8 % to 100 % and 89.2 % to 100 %, respectively. The films could block >96 % of blue light in the wavelength range of 400-500 nm. Meanwhile, the films maintain high transmittance (85.2-89.4 %) and low haze (2.0-2.7 %). The films can efficiently block blue light emanated from sunlight, light-emitting diodes, lighting systems, computer and mobile phone screens. Encouragingly, the incorporation of curcumin led to a substantial increase in the water contact angle, elevating it from 41.6 to 81.3°. Furthermore, the films exhibit excellent antimicrobial properties, biodegradability, and tensile strength in excess of 72 MPa. Therefore, these films fabricated entirely from natural resources have the potential to achieve practical applications such as food packaging and spectacle lens, especially suitable for electronic screen protectors.
Collapse
Affiliation(s)
- Qiu Fu
- College of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, Heilongjiang Province, China
| | - Ying Qin
- College of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, Heilongjiang Province, China
| | - Xinjia Zhang
- College of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, Heilongjiang Province, China
| | - Lijian Sun
- College of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, Heilongjiang Province, China.
| | - Jiang Chang
- College of Light Industry and Textiles, Qiqihar University, Qiqihar 161006, Heilongjiang Province, China.
| |
Collapse
|
6
|
Xu Z, Ma Y, Yao X, Wang H, Zhang Q, Ma Q, Zhang Z, Xia G, Zhang J, Zhang F. Transparent Cellulose/Multi-Walled Carbon Nanotube Hybrids with Improved Ultraviolet-Shielding Properties Prepared from Cotton Textile Waste. Polymers (Basel) 2024; 16:1269. [PMID: 38732738 PMCID: PMC11085122 DOI: 10.3390/polym16091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Plastics offer many advantages and are widely used in various fields. Nevertheless, most plastics derived from petroleum are slow to degrade due to their stable polymer structure, posing serious threats to organisms and ecosystems. Thus, developing environmentally friendly and biodegradable plastics is imperative. In this study, biodegradable cellulose/multi-walled carbon nanotube (MCNT) hybrid gels and films with improved ultraviolet-shielding properties were successfully prepared using cotton textile waste as a resource. It was proven that MCNTs can be dispersed evenly in cellulose without any chemical or physical pretreatment. It was found that the contents of MCNTs had obvious effects on the structures and properties of hybrid films. Particularly, the averaged transmittance of cellulose/MCNT composite films in the range of 320-400 nm (T320-400) and 290-320 nm (T290-320) can be as low as 19.91% and 16.09%, when the content of MCNTs was 4.0%, much lower than those of pure cellulose films (T320-400: 84.12% and T290-320: 80.03%). Meanwhile, the water contact angles of the cellulose/MCNT films were increased by increasing the content of MCNTs. Most importantly, the mechanical performance of cellulose/MCNT films could be controlled by the additives of glycerol and MCNTs. The tensile strength of the cellulose/MCNT films was able to reach as high as 20.58 MPa, while the elongation at break was about 31.35%. To summarize, transparent cellulose/MCNT composites with enhanced ultraviolet-shielding properties can be manufactured successfully from low-cost cotton textile waste, which is beneficial not only in terms of environmental protection, but also the utilization of natural resources.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Yingying Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Xiaohui Yao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Hongxu Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Qian Zhang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Qiance Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Zhanrui Zhang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
| | - Guangmei Xia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.X.); (Y.M.); (X.Y.); (H.W.); (Q.Z.); (Q.M.); (Z.Z.)
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., Ltd., Dongying 257000, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China;
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., Ltd., Dongying 257000, China
| |
Collapse
|
7
|
Wang K, Liu K, Dai L, Si C. Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding. Int J Biol Macromol 2024; 258:129046. [PMID: 38154714 DOI: 10.1016/j.ijbiomac.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Constructing a high-performance ultraviolet shielding film is an effective way for addressing the growing problem of ultraviolet radiation. However, it is still a great challenge to achieve a combination of multifunctional, excellent mechanical properties and low cost. Here, inspired by the multiscale structure of biomaterials and features of lignin, a multifunctional composite film (CNF/CMF/Lig-Ag) is constructed via a facile vacuum-filtration method by introducing micron-sized cellulose fibers (CMF) and lignin-silver nanoparticles (Lig-Ag NPs) into the cellulose nanofibers (CNF) film network. In this composite film, the microfibers interweave with nanofibers to form a multiscale three-dimensional network, which ensures satisfactory mechanical properties of the composite film. Meanwhile, the Lig-Ag NPs are employed as a multifunctional filler to enhance the composite film's antioxidant, antibacterial and ultraviolet shielding abilities. As a result, the prepared CNF/CMF/Lig-Ag composite film demonstrates excellent mechanical properties (with tensile strength of 133.8 MPa and fracture strain of 7.4 %), good biocompatibility, high thermal stability, potent antioxidant and antibacterial properties. More importantly, such composite film achieves a high ultraviolet shielding rate of 98.2 % for ultraviolet radiation A (UVA) and 99.4 % for ultraviolet radiation B (UVB), respectively. Therefore, the prepared CNF/CMF/Lig-Ag composite film shows great potential in application of ultraviolet protection.
Collapse
Affiliation(s)
- Kuien Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Department of Military Sick and Wounded Administration, No 983 Hospital of Chinese People's Liberation Army, Tianjin 300457, China
| | - Kefeng Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Huang J, Hua L, Li J, Xu X, Song L, Lu Z. Sandwiched film of graphene/silver nanowire conductive layer reinforced by hydroxyethyl cellulose bond layer. Int J Biol Macromol 2024; 258:128883. [PMID: 38141715 DOI: 10.1016/j.ijbiomac.2023.128883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Multilayer nanocomposite film made of different materials has multifunctional properties and is applied in the field of flexible electronic devices. Herein, hydroxyethyl cellulose (HEC) and boron nitride nanosheets (BNNS) were used as the matrix and thermal conductivity material of the HEC/BNNS (HB) insulation layer and were combined with conductive blade structure graphene/silver nanowires (GA) film to prepare a three-layer HB/GA20/HB film. Using the high mechanical properties of the HEC based film, the tensile strength of the three-layer film is increased to 22.0 MPa, 633 % higher than that of the pure conductive film. The sensor prepared by multilayer film has good bending sensing performance (1500 cycles) and electromagnetic shielding performance (29.3 dB). The heating temperature of HB/GA20/HB film heater is up to 107.9 °C at 20 V. In the HB/GA20/HB film, the external HB layer provides insulation, thermal conductivity and physical support, and the internal GA layer with good conductive and sensing properties is combined to build a multi-functional sensor, which can be applied as a mobile sensor, heater and electromagnetic shielding material in the flexible wearable field.
Collapse
Affiliation(s)
- Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaoxu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lizhi Song
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
9
|
Song S, Wang Q, Ji D, Li L, Tan J, Wu Q, Lyu Y, Zhang M. Nacre-Inspired Aramid Nanofibers/Basalt Fibers Composite Paper with Excellent Flame Retardance and Thermal Stability by Constructing an Organic-Inorganic Fiber Alternating Layered Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4045-4055. [PMID: 38198227 DOI: 10.1021/acsami.3c16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The flame-retardant paper has gradually evolved into a necessary material in various industries as a result of the rising importance of fire safety, energy efficiency, and environmental preservation. Traditional cellulose paper requires the addition of a large amount of flame retardants to achieve flame retardancy, which poses a serious threat to mechanical quality and the environment. Therefore, there is an urgent need to develop inorganic fiber flame-retardant paper with good flexibility, high thermal stability, and inherent flame retardancy. Herein, inspired by the "brick-and-mortar" layered structure of nature nacre, we developed a layered composite paper with a unique alternating arrangement of organic-inorganic fibers by synergistically integrating environmentally sustainable basalt fiber (BF) and high-performance aramid nanofibers (ANFs) through a vacuum-assisted filtration process. The as-prepared ANFs/BF composite paper exhibited low thermal conductivity (0.024 W m-1 K-1), high tensile strength (54.22 MPa), and excellent flexibility. Thanks to its excellent thermal stability, the mechanical strength remains at a high level (92%) after heat treatment at 300 °C for 60 min. Furthermore, the peak heat release rate and smoke generation of ANFs/BF composite paper decreased by 44.6 and 95.3%, respectively. Therefore, the composite paper is promising for applications as a protective layer in flexible electronic devices, cables, and fire-retardant and high-temperature fields.
Collapse
Affiliation(s)
- Shunxi Song
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Qianyu Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Dexian Ji
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Linghao Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Qi Wu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Yuming Lyu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
10
|
Huang X, Zhong Y, Chen L, Ding X, Chen H, Hu Z, Zhou X, Wang M, Dai X. A novel salt-barrier method of preparation flexible temperature resistant full-component nanocellulose membranes. Int J Biol Macromol 2023; 253:127387. [PMID: 37838107 DOI: 10.1016/j.ijbiomac.2023.127387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
With the simplification and diversification of separation technologies, nanocellulose membranes have become widely used as insulating materials. Recently, study of nanocellulose membrane modification has become a hot topic. However, the application of nanocellulose membrane has been limited due to their inadequate heat resistance and flexibility. Herein, based on the pyrolytic and thermoplastic properties of cellulose, we innovatively introduced a salt barrier scheme to regulate the degree of hydrogen bonding and thermoplastic bonding between fibers. This was achieved by adding a salt barrier agent, NaCl, in the middle of the nanocellulose to prepare and obtain flexible, high-temperature-resistant nanocellulose film materials. The full-component cellulose films thus prepared exhibited high tensile strength (8 MPa), excellent flexibility (105 mN), high electrical breakdown strength (67 KV/mm), and volume resistivity meeting the standard of insulation materials (3.23 × 1013 Ω·m). This scheme adheres to the principles of low cost, green, non-toxic and non-hazardous, providing a brand new approach for the research and development of high temperature resistant cellulose membrane materials, which is of significant commercial value and industrialization prospect.
Collapse
Affiliation(s)
- Xingyu Huang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoliang Ding
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Minliang Wang
- Zhejiang Xianhe Special Paper Co., Quzhou 324000, China
| | - Xianzhong Dai
- Zhejiang Xianhe Special Paper Co., Quzhou 324000, China
| |
Collapse
|
11
|
Liu G, Chen B, Liu H, Wang X, Zhang Y, Wang C, Liu C, Zhong Y, Qiao Y. Effects of Hydroxyethyl Cellulose and Sulfated Rice Bran Polysaccharide Coating on Quality Maintenance of Cherry Tomatoes during Cold Storage. Foods 2023; 12:3156. [PMID: 37685089 PMCID: PMC10486926 DOI: 10.3390/foods12173156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cherry tomatoes are easily damaged due to their high moisture content. A composite coating was developed to delay deterioration and prolong storage by mixing antibacterial sulfated rice bran polysaccharides (SRBP) and edible hydroxyethyl cellulose (HEC) with film-forming properties. The effects of HEC, HEC-5% SRBP, and HEC-20% SRBP preservative coatings on the maintenance of the quality of cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) during cold storage were investigated. The HEC-20% SRBP coating significantly reduced tomato deterioration and weight loss, delayed firmness loss, decreased polyphenol oxidase activity, and increased peroxidase activity. Furthermore, cherry tomatoes treated with HEC-20% SRBP maintained high levels of titratable acid, ascorbic acid, total phenols, and carotenoids. Cherry tomatoes coated with HEC-SRBP also had higher levels of volatile substances and a greater variety of these substances compared to uncoated tomatoes. In conclusion, the HEC-20% SRBP coating effectively delayed deterioration and preserved cherry tomatoes' nutrient and flavor qualities during postharvest cold storage, suggesting it could be a novel food preservation method.
Collapse
Affiliation(s)
- Guige Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bingjie Chen
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Xiao Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yi Zhang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Cunfang Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Chenxia Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yaoguang Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| |
Collapse
|
12
|
Cen C, Wang F, Wang Y, Li H, Fu L, Li Y, Chen J, Wang Y. Design and characterization of an antibacterial film composited by hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and nano ZnO for food packaging. Int J Biol Macromol 2023; 231:123203. [PMID: 36623619 DOI: 10.1016/j.ijbiomac.2023.123203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
For food packaging, a novel composite film was prepared by solution casting method using hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and zinc oxide nanoparticles as raw materials. The composite film successfully compounded the nanoparticles, as deduced by spectroscopy, crystallography and morphology observation. The addition of CMCS and ZnO enhanced the solvent resistance (the water solubility of the composite film was reduced by 94.3 %) and UV shielding ability (the UV shielding capacity of the composite film was increased by 45.73 %) of the composite film, thus improving the application prospects of the composite film in water-rich foods. In addition, the synergistic effect of CMCS and ZnO helped the composite film to efficiently inhibit the pathogenic bacteria Listeria monocytogenes and Pseudomonas aeruginosa (rate of inhibition>99.99 %) in food. The addition of CMCS and ZnO also significantly improved the elasticity (improve 494.34 %) and maximum load capacity (improve 142.24 %) of the composite film.
Collapse
Affiliation(s)
- Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yifan Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yan Li
- Key Laboratory of Food Safety of Heibei Province, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Transparent cellulose-based bio-hybrid films with enhanced anti-ultraviolet, antioxidant and antibacterial performance. Carbohydr Polym 2022; 298:120118. [DOI: 10.1016/j.carbpol.2022.120118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
|
14
|
Lu Z, Li N, Geng B, Ma Q, Ning D, E S. Solvent effects on the mechanical properties of aramid nanofibers film. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Li J, Lu Z, Huang J, Hua L. ‘
Rigid‐soft
’ synergistic effects to improve the microstructure and superflexibility properties of aramid nanofiber aerogel. J Appl Polym Sci 2022. [DOI: 10.1002/app.53033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Li Hua
- College of Environmental Science and Engineering Shaanxi University of Science & Technology Xi'an China
| |
Collapse
|
16
|
Huang J, Li J, Xu X, Hua L, Lu Z. In Situ Loading of Polypyrrole onto Aramid Nanofiber and Carbon Nanotube Aerogel Fibers as Physiology and Motion Sensors. ACS NANO 2022; 16:8161-8171. [PMID: 35481375 DOI: 10.1021/acsnano.2c01540] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocomposite conductive fiber has been newly developed as a lightweight material with high flexibility and strong weavability, which can meet the requirements of flexible wearable devices. Herein, lightweight porous aramid nanofibers (ANF) and carbon nanotube (CNT) aerogel fibers coated with polypyrrole (PPy) layers are prepared by a wet spinning method for motion detection and information transmission. The ANF/CNT/PPy aerogel fiber with low density (56.3 mg/cm3), conductivity (6.43 S/m), and tensile strength (2.88 MPa) were used as motion sensors with high sensitivity (0.12) and long life (1000 cycles). At the same time, the differential conductivity of aerogel fibers is utilized to reduce the information transmission time (up to 46%). High- and low-temperature-resistant (-196 to 100 °C) aerogel fibers are also available as a quick heater and ionic solution detector. In summary, the prepared ANF/CNT/PPy aerogel fiber can be used as a multifunctional sensor for human-health detection and motion monitoring.
Collapse
Affiliation(s)
- Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiaoxu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
17
|
Hu F, Zeng J, Li J, Wang B, Cheng Z, Wang T, Chen K. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14640-14653. [PMID: 35290013 DOI: 10.1021/acsami.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zhang S, Luo J, Zhang F, Du M, Hui H, Zhao F, He X, Sun Z. A porous, mechanically strong and thermally stable zeolitic imidazolate framework-8@bacterial cellulose/aramid nanofibers composite separator for advanced lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Ullah A, Sarwar MN, Wang FF, Kharaghani D, Sun L, Zhu C, Yoshiko Y, Mayakrishnan G, Lee JS, Kim IS. In vitro biocompatibility, antibacterial activity, and release behavior of halloysite nanotubes loaded with diclofenac sodium salt incorporated in electrospun soy protein isolate/hydroxyethyl cellulose nanofibers. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Xia G, Zhou Q, Xu Z, Zhang J, Zhang J, Wang J, You J, Wang Y, Nawaz H. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohydr Polym 2021; 273:118569. [PMID: 34560980 DOI: 10.1016/j.carbpol.2021.118569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
Abstract
Cellulose films with biodegradability and intrinsically antistatic property have many applications. However, conventional cellulose films show poor toughness and UV-shielding property, and the major sources are high-grade cotton linter or wood pulp. Herein, by using low-cost waste cotton textiles as the raw materials, we successfully fabricated transparent cellulose/aramid nanofibers (ANFs) films, in which in-situ retained ANFs had a diameter of 20-30 nm and a length of several micrometers. Because ANFs and cellulose chains formed strong hydrogen bonding interactions, the tensile strength and elongation of the resultant cellulose/ANFs film with 1.0 wt% ANFs could reach 54.4 MPa and 15.8%, respectively, increased by 63.4% and 154% compared to those of pure cellulose film (33.3 MPa and 6.2%). Meanwhile, the cellulose/ANFs films show excellent UV-shielding properties and irradiation stability. Hence, the novel cellulose/ANFs films with improved mechanical and UV-shielding performance were in-situ prepared leading to enhance the valorization of waste cotton textiles.
Collapse
Affiliation(s)
- Guangmei Xia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Qiwen Zhou
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Zhen Xu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jie Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Jiuhao You
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yuanhang Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Haq Nawaz
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
22
|
E S, Ma Q, Huang J, Ning D, Lu Z. Polyvinyl alcohol-mediated splitting of Kevlar fibers and superior mechanical performances of the subsequently assembled nanopapers. NANOSCALE 2021; 13:18201-18209. [PMID: 34708855 DOI: 10.1039/d1nr05362k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a composite of aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) was prepared by PVA-assisted splitting of macro Kevlar fibers, which assures the uniform wrapping of PVA chains on the surface of ANFs, thus leading to an enhanced interfacial bonding strength between ANFs and PVA. The morphological characterizations manifest the enhanced diameters of the ANFs after PVA wrapping. The subsequently assembled ANFs/PVA paper shows a strength of 283.25 MPa and a toughness of 32.41 MJ m-3, which are increased by 57% and 152% compared to the pure ANF paper, respectively. The superior mechanical properties are attributed to the strong interfacial bonding strength, enhanced hydrogen bonding interactions, the densification of the materials, and curved fracture paths. Meanwhile, the ANFs/PVA paper also shows robust UV shielding and visible transparency properties, as well as excellent environmental stabilities, especially at high and low temperatures.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|