1
|
Xiao R, Yu S, Tang Z, Tang J, Zhang H, Zhong S. Monodisperse Silica Microsphere with Extremely Large Specific Surface Area: Preparation and Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40275772 DOI: 10.1021/acs.langmuir.5c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Monodisperse SiO2 microspheres are widely used in catalysis, separation, adsorption, and drug delivery. Their particle size, uniformity, and specific surface area are crucial for these applications. This study reports the novel preparation of monodisperse SiO2 microspheres using cetyltrimethylammonium bromide as the template agent, employing hexadecylamine serving concurrently as a pore-expanding agent and catalyst. By controlling the reactant quantities and reaction conditions, we achieved monodisperse SiO2 microspheres with tunable particle sizes ranging from 800 nm to 2.5 μm with exceptionally large specific surface areas. It is worth mentioning that microspheres with a particle size of 2 μm and extremely uniform size distribution were produced at room temperature. Excitingly, it has a BET specific surface area of 1543 m2/g. Various effects on the preparation of the microspheres were investigated in detail, and the growth mechanism of these microspheres was elucidated.
Collapse
Affiliation(s)
- Ruicheng Xiao
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Siming Yu
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Zhongsheng Tang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jianping Tang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hang Zhang
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Shengliang Zhong
- Key Lab of Porous Functional Materials of Jiangxi Province/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
2
|
Jiang T, Yang Z, Jiang Y, Xie B, Huang C, Yu J, Yuan H, Duan J. Regulating the dynamic wetting behavior of pesticide on banana leaves at different growth stages with surfactants. PEST MANAGEMENT SCIENCE 2025; 81:93-110. [PMID: 39279653 DOI: 10.1002/ps.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Pesticide spraying constitutes an essential component of the production and management regimen within banana orchards, extending throughout the entire growth cycle of the banana plants. Exploring the intricate interplay between surfactants, pesticide formulations, and the evolving surface properties of banana leaves throughout their growth stages is critical to the enhancement of pesticide application methods and the elevation of agricultural productivity. RESULTS Through investigating the regulatory impact of surfactants on the physicochemical properties of medicinal solutions, this study elucidates the interaction mechanism between the physicochemical properties of pesticides and the surface characteristics of banana leaves. The findings reveal that the energy dissipation rate of pesticide droplets exhibits a natural exponential rise in correlation with the increase in both the We number and the concentration of surfactant present. Comparatively, the adaxial surface of banana leaves demonstrates superior spreading and adhesion properties for droplets than the abaxial surface. Specifically, droplets containing the anionic surfactant sodium dodecyl sulfate on the adaxial surface of banana leaves are found to spread well with a reduced retraction effect. Conversely, the application of the non-ionic surfactant fatty acid polyoxyethylene ether (AEO-3) on the abaxial surface of banana leaves is more beneficial for the wetting and retention of droplets. As banana leaves grow, there is a noted decline in the spreading and retraction properties of droplets. However, droplets have a higher propensity to wet and adhere to the surfaces of mature banana leaves. CONCLUSION To bolster the adherence of pesticide droplets to leaf surfaces, it is imperative to ensure they possess superior spreading properties and a controlled retraction pace. This facilitates an extended period of contact and enhanced stability, thereby optimizing the spray's deposition efficacy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingting Jiang
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhou Yang
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Yinlong Jiang
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Bowei Xie
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chaowei Huang
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaxiang Yu
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Haotian Yuan
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jieli Duan
- College of Engineering, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Xu X, Fan L, Li J. Freeze-thaw stability of high-internal-phase emulsion stabilized by chickpea protein microgel particles and its application in surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8621-8633. [PMID: 39011982 DOI: 10.1002/jsfa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Future applications of high-internal-phase emulsions (HIPEs) are highly regarded, but poor freeze-thaw stability limits their utilization in frozen products. This study aimed to characterize the structure of chickpea protein microgel particles (HCPI) induced by NaCl and to assess its impact on the freeze-thaw stability of HIPEs. RESULTS The results showed that NaCl induction (0-400 mmol L-1) increased the surface hydrophobicity (175.9-278.9) and interfacial adsorbed protein content (84.9%-91.3%) of HCPI. HIPEs prepared with HCPI induced by high concentration of NaCl exhibited superior flocculation index and centrifugal stability, and their freeze-thaw stability was better than that of natural chickpea protein. The increase in NaCl concentration reduced the droplet aggregation and coalescence index of the freeze-thaw emulsions, diminishing the precipitation of oil from the emulsion. Linear and nonlinear rheology showed that the strengthened gel structure (higher G' values) restricted water flow and counteracted the damage to the interfacial film by ice crystals at 100-400 mmol L-1 NaCl, thus improving the viscoelasticity of the freeze-thaw emulsions. Finally, the thawing loss of surimi gel with HCPI-200 HIPE was reduced by 2.04% compared to directly adding oil. CONCLUSION This study provided a promising strategy to improve the freeze-thaw stability of HIPEs and reduce the thawing loss of frozen products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Sarker P, Su X, Rojas OJ, Khan SA. Colloidal interactions between nanochitin and surfactants: Connecting micro- and macroscopic properties by isothermal titration calorimetry and rheology. Carbohydr Polym 2024; 341:122341. [PMID: 38876727 DOI: 10.1016/j.carbpol.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
This study elucidates the intricate interactions between chitin nanocrystals (ChNC) and surfactants of same hydrophobic tail (C12) but different head groups types (anionic, cationic, nonionic): sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and polyoxyethylene(23)lauryl ether (Brij-35). Isothermal Titration Calorimetry (ITC) and rheology are used to study the complex ChNC-surfactant interactions in aqueous media, affected by adsorption, self-assembly and micellization. The ITC results demonstrate that the surfactant head group significantly influences the dynamics and nature of the involved phenomena. Cationic DTAB's reveal minimal interaction with ChNC, non-ionic Brij-25's interact moderately at low concentrations driven by hydrophobic effects while SDS's interacts strongly and show complex interaction patterns that fall across four distinct regimes with SDS addition. We attribute such behavior to initiate through electrostatic attraction and terminate in surfactant micelle formation on ChNC surfaces. ITC also elucidates the impact of ChNC concentration on key parameters including critical aggregation concentration (CAC) and saturation concentration (C2). Dynamic rheological analysis indicates the molecular interactions translate to non-linear variations in the elastic modulus (G') upon SDS addition mirroring that observed in ITC experiments. Such a direct correlation between molecular interactions and macroscopic rheological properties provides insights to aid in the creation of nanocomposites with tailored properties.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaoya Su
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
5
|
Su X, Wan Z, Lu Y, Rojas O. Control of the Colloidal and Adsorption Behaviors of Chitin Nanocrystals and an Oppositely Charged Surfactant at Solid, Liquid, and Gas Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4881-4892. [PMID: 38386001 DOI: 10.1021/acs.langmuir.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chitin has a unique hierarchical structure, spanning the macro- and nanoscales, and presents chemical characteristics that make it a suitable component of multiphase systems. Herein, we elucidate the colloidal interactions between partially deacetylated chitin nanocrystals (cationic ChNC) and an anionic surfactant, sodium dodecyl sulfate (SDS). We investigate charge neutralization and association (electrophoretic mobility, surface tensiometry, and quartz crystal microgravimetry) and their role in the stabilization of Pickering emulsions. We find SDS adsorption and association with ChNC under distinctive regimes: At low SDS concentration, submonolayer assemblies form on ChNC, driven by the hydrophobic effect and electrostatic interactions. With the increased SDS concentration, bilayers or patchy bilayers form, followed by adsorbed hemimicelles and micelles. We further suggested the role of hydrophobic effects in the observed colloidal transitions and complex conformations. At the highest SDS concentration tested, charge neutralization and SDS/ChNC flocculation take place. Remarkably, at given concentrations, adsorbed SDS endows the chitin nanoparticles with an effective hydrophobicity that opens the opportunity to achieve tailorable Pickering stabilization. Hence, a facile route is proposed by in situ modification by SDS physisorption, which extends the potential of renewable nanoparticles in the formulation of complex fluids, for instance, those relevant to household and healthcare products.
Collapse
Affiliation(s)
- Xiaoya Su
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, University of British Columbia, Vancouver, 2424 Main Mall 2900, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
6
|
Prasad C, Jeong SG, Won JS, Ramanjaneyulu S, Sangaraju S, Kerru N, Choi HY. Review on recent advances in cellulose nanofibril based hybrid aerogels: Synthesis, properties and their applications. Int J Biol Macromol 2024; 261:129460. [PMID: 38237829 DOI: 10.1016/j.ijbiomac.2024.129460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
With the depletion of fossil fuels and growing environmental concerns, the modernized era of technology is in desperate need of sustainable and eco-friendly materials. The industrial sector surely has enough resources to produce cost-effective, renewable, reusable, and sustainable raw materials. The family of very porous solid materials known as aerogels has a variety of exceptional qualities, such as high porosity, high specific surface area, ultralow density, and superior thermal, acoustic, and dielectric properties. As a result, aerogels have the potential to be used for many different purposes, such as absorbents, supercapacitors, energy storage, and catalytic supports. Recently, cellulose nanofibril (CNF) aerogels have attracted remarkable attention for their large-scale utilization because of their high absorption capacity, low density, biodegradability, large surface area, high porosity, and biocompatibility. Recent advancements have confirmed that CNF-based hybrid aerogels can be proposed as the most privileged and promising novel material in various applications. This comprehensive review highlights the recent reports of the CNF-based hybrid aerogels, including their properties and frequent preparation approaches, in addition to their new applications in the areas of fire retardant, water and oil separation, supercapacitors, environmental, and CO2 capture. It is also assumed that this article will promote additional investigation and establish innovative capabilities to enhance novel CNF-based hybrid aerogels with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong Sung Won
- Defense Materials & Energy Technology Center, Agency for Defense Development, Daejeon 34060, Republic of Korea
| | | | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Nagaraju Kerru
- Department of Chemistry, GITAM School of Sciences, GITAM Deemed-to-be-University, Bengaluru, Karnataka 562163, India
| | - Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
7
|
Wei W, Wu M, Xu H, Zhang X, Ren W. Modulation of the properties of starch gels by a one-step extrusion modification method based on Ca 2+-citric acid synergistic crosslinking. Int J Biol Macromol 2024; 257:128607. [PMID: 38061512 DOI: 10.1016/j.ijbiomac.2023.128607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/04/2023] [Accepted: 11/25/2023] [Indexed: 01/26/2024]
Abstract
Citric acid (CA) is a green and safe food-grade crosslinking agent for starch, but its high crosslinking temperature limits its application. In this study, a "one-step" extrusion modification method based on Ca2+-esterification synergistic crosslinking was proposed for the preparation of high gel performance crosslinked starch at low temperatures (90 °C). The linear and nonlinear rheological properties of crosslinked starch were comprehensively characterized, and the enhancement effect of synergistic crosslinking reactions on starch gel properties was quantitatively studied. The results show that the elastic modulus of the synergistically crosslinked starch (SC-0.5Ca2+, G' = 3116 ± 36) was significantly increased by 879 % compared to the elastic modulus of starch without synergistically crosslinked modification (SC, G' = 318 ± 9). The elastic modulus of starch gels can be adjusted by changing the ion concentration. Nonlinear rheological Lissajous curve analysis results show that the synergistic crosslinked gel system has a stronger anti-deformation ability. In addition, the honeycomb porous structure and smaller pore size distribution of the synergistic crosslinked gels were characterized using scanning SEM. The XPS, FTIR and XRD results suggest that the synergistic crosslinking enhancement effect may involve various molecular forces such as electrostatic attraction, hydrogen bonding and ester bonding.
Collapse
Affiliation(s)
- Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xun Zhang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
8
|
Wei W, Wu M, Ren W, Yu H, Sun D. Preparation of crosslinked starches with enhanced and tunable gel properties by the cooperative crosslinking-extrusion combined modification. Carbohydr Polym 2024; 324:121473. [PMID: 37985039 DOI: 10.1016/j.carbpol.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Due to its safety and palatability, the citric acid crosslinking modification is an excellent way to modify the properties of starch gels. However, the application of this method is restricted by the low degree of crosslinking of gels produced by this method in the hydrogel system. To produce citric acid-crosslinked starch with improved strength and tunable gel characteristics, a novel ion-esterification cooperative crosslinking-extrusion combined (CCEC) modification approach is presented in this study. The linear and nonlinear rheological characteristics of the samples were measured to evaluate the effectiveness of CCEC modification. Findings disclosed that at 0.1 % strain, the elastic modulus of the CCEC-modified starch (SC-0.5Zn2+, G' = 1522.29 ± 36.31) exhibited a significant rise of 387.27 % as compared to the elastic modulus of citric acid-crosslinked starch (SC, G' = 318.29 ± 11.62). Furthermore, changing the cation concentration allowed for efficient control of the gel's rheological characteristics. The samples were characterized by SEM, FTIR, XRD, and XPS. The CCEC-modified gels had a smaller pore size distribution and a denser honeycomb porous structure. The CCEC modification reaction involves ester bonds and electrostatic attraction. This research is essential to elucidate how coupled physicochemical modification techniques affect the manipulation of starch gel characteristics.
Collapse
Affiliation(s)
- Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Haoze Yu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Dongyu Sun
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
9
|
Enoch K, Somasundaram AA. Rheological insights on Carboxymethyl cellulose hydrogels. Int J Biol Macromol 2023; 253:127481. [PMID: 37865366 DOI: 10.1016/j.ijbiomac.2023.127481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Hydrogels are copiously studied for tissue engineering, drug delivery, and bone regeneration owing to their water content, mechanical strength, and elastic behaviour. The preparation of stable and mechanically strengthened hydrogels without using toxic crosslinkers and expensive approaches is immensely challenging. In this study, we prepared Carboxymethyl cellulose based hydrogels with different polymer concentration via a less expensive physical crosslinking approach without using any toxic crosslinkers and evaluated their mechanical strength. In this hydrogel system, the carbopol concentration was fixed at 1 wt/v% and the Carboxymethyl cellulose concentration was varied between 1 and 5 wt/v%. In this hydrogel system, Carbopol serves as the crosslinker to bridge Carboxymethyl cellulose polymer through hydrogen bonds. Rheological analysis was employed in assessing the mechanical properties of the prepared hydrogel, in particular, the viscoelastic behaviour of the hydrogels. The viscoelastic nature and mechanical strength of the hydrogels increased with an increase in the Carboxymethyl cellulose polymer concentration. Further, our results suggested that gels with Carboxymethyl cellulose concentration between 3 wt/v % and 4 wt/v % with yield stresses of 58.83 Pa and 81.47 Pa, respectively, are potential candidates for use in transdermal drug delivery. The prepared hydrogels possessed high thermal stability and retained their gel network structure even at 50 °C. These findings are beneficial for biomedical applications in transdermal drug delivery and tissue engineering owing to the biocompatibility, stability, and mechanical strength of the prepared hydrogels.
Collapse
Affiliation(s)
- Karolinekersin Enoch
- Soft Matter Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu, India
| | - Anbumozhi Angayarkanni Somasundaram
- Soft Matter Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Wei W, Wu M, Zhang T, Zhang X, Ren W, He T. Enhancement of Starch Gel Properties Using Ionic Synergistic Multiple Crosslinking Extrusion Modification. Foods 2023; 13:24. [PMID: 38201055 PMCID: PMC10777953 DOI: 10.3390/foods13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Crosslinking is a promising method to modulate the gel properties of food-grade starch gels. Still, the poor crosslinking effect of a single type of crosslinker limits the application of this method in starch gel modification. In this study, an Ca2+ synergistic multiple crosslinking modification method was proposed to prepare crosslinked starches with good gel properties and setting. The rheological properties of the samples were tested. The modified sample (SC-Ca-N3, G' = 1347 ± 27) showed a 79% improvement compared to the starch without synergistic crosslinking modification (SC-N, G' = 752 ± 6). The elastic modulus of starch gels can be adjusted by changing the degree of the crosslinking reaction. The results of nonlinear rheological Lissajous curve analysis showed that the synergistically crosslinked gel system strongly resisted deformation. In addition, the microstructure of the modified samples was characterized using scanning electron microscopy. The XPS, FTIR, and XRD results indicated that multiple molecular forces participate in the synergistic crosslinking reaction.
Collapse
Affiliation(s)
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | | | | | | | | |
Collapse
|
11
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Wang SC, Du ST, Hashmi S, Cui SM, Li L, Handschuh-Wang S, Zhou X, Stadler FJ. Understanding Gel-Powers: Exploring Rheological Marvels of Acrylamide/Sodium Alginate Double-Network Hydrogels. Molecules 2023; 28:4868. [PMID: 37375423 DOI: 10.3390/molecules28124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.
Collapse
Affiliation(s)
- Shi-Chang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Shu-Tong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Saud Hashmi
- Department of Polymer & Petrochemical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Shu-Ming Cui
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Ling Li
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
13
|
Setter C, Dias MC, Mascarenhas ARP, Tonoli GHD, de Oliveira TJP. Effect of different pre-treatments on the redispersion capacity of spray-dried microfibrillated cellulose: Elaboration and characterization of biofilms. Int J Biol Macromol 2023:125279. [PMID: 37301348 DOI: 10.1016/j.ijbiomac.2023.125279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to evaluate the influence of the addition of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in microfibrillated cellulose (MFC/CNFs) suspensions submitted to different pretreatments to produce redispersible spray-dried (SD) MFC/CNFs. Suspensions pretreated with 5 % and 10 % sodium silicate and oxidized with 2,2,6,6,-tetramethylpiperidinyl-1-oxyl (TEMPO) were modified with CTAB surfactant and subsequently dried by SD. The SD-MFC/CNFs aggregates were redispersed by ultrasound to produce cellulosic films by the casting method. In summary, the results demonstrated that the addition of CTAB surfactant to the TEMPO-oxidized suspension was critical to achieving the most effective redispersion. The experimental results obtained using micrographs, optical (UV-Vis), mechanical, water vapor barrier properties, and the quality index confirmed that the addition of CTAB to the TEMPO-oxidized suspension favored the redispersion of spray-dried aggregates, development of cellulosic films with attractive properties, offering possibilities for the elaboration of new products, for example, in the production of bionanocomposites with higher mechanical performance. This research brings interesting insights into the redispersion and application of SD-MFC/CNFs aggregates, strengthening the commercialization of MFC/CNFs for industrial use.
Collapse
Affiliation(s)
- Carine Setter
- Department of Forest Sciences, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| | - Matheus Cordazzo Dias
- Department of Forest Engineering, State University of Amapá, AP. Av. Pres. Vargas, 650- Central, Macapá, AP 68900-070, Brazil
| | | | | | | |
Collapse
|
14
|
Huang S, Zou S, Wang Y. Construction of compostable packaging with antibacterial property and improved performance using sprayed coatings of modified cellulose nanocrystals. Carbohydr Polym 2023; 305:120539. [PMID: 36737191 DOI: 10.1016/j.carbpol.2023.120539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Increasing concerns about food safety and the environment have facilitated the development of eco-friendly antibacterial packaging. This study aimed to demonstrate a facile way to fabricate active packaging materials with modified cellulose nanocrystals (CNCs) and compare the effects of different modified CNCs on the performance of compostable materials. Polylactic acid (PLA) film was selected as a model, and CNCs were modified with methacrylamide, cetyltrimethylammonium bromide, and zinc oxide, respectively, and then applied on the surface of PLA films by spray-coating. All modified CNCs showed excellent antibacterial activity against S. aureus and E. coli (>99.999 %). The effects of different CNC modifications on the performance of PLA films were investigated. Compared to neat PLA films, PLA/CNC films exhibited improved mechanical strength with maintained flexibility, lower gas permeability, and faster compost disintegration rate, and extended the shelf life of wrapped pork samples from 3 days to >10 days. Therefore, this work will also facilitate the applications of PLA materials in eco-friendly packaging.
Collapse
Affiliation(s)
- Shuting Huang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Sheng Zou
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
15
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
16
|
Exploring the mechanism of variation in 3D printing accuracy of cassava starch gels during freezing process. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Xu Q, Bu F, Sun C, Huang X, Luo H. Rheological studies of cellulose nanocrystal/dimethyl sulfoxide organogels. Carbohydr Polym 2023; 312:120830. [PMID: 37059557 DOI: 10.1016/j.carbpol.2023.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Cellulose nanocrystals (CNCs)/H2O gels have received significant interest in various applications for the past decades. And yet CNCs organogels, which are important to their wider application, are less explored. In this work, CNCs/Dimethyl sulfoxide (DMSO) organogels are carefully investigated by rheological methods. It is found that metal ions also can facilitate the organogel formation as in hydrogel. Charge screening and coordination effects play vital roles in the organogel formation and their mechanical strength. CNCs/DMSO gels with different cations display similar mechanical strength, while CNCs/H2O gels show increasing mechanical strength with the increasing valence of cations. It seems that the coordination between cations and DMSO alleviate the influence of valence on gel mechanical strength. Due to weak, fast and reversible electrostatic interactions among CNCs particles, both CNCs/DMSO and CNCs/H2O gels show instant thixotropic behavior, which may find some interesting applications in the field of drug delivery. The morphological changes observed in polarized optical microscope appear to be consistent with rheological results.
Collapse
Affiliation(s)
- Qingmeng Xu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Fanxing Bu
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Chen Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
| | - Xiao Huang
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China.
| | - Hongjie Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Nyamayaro K, Mehrkhodavandi P, Hatzikiriakos SG. Impact of counterion valency on the rheology of sulfonated cellulose nanocrystal hydrogels. Carbohydr Polym 2023; 302:120378. [PMID: 36604056 DOI: 10.1016/j.carbpol.2022.120378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A systematic rheological study on the influence of valency of different counterions on the properties of CNC hydrogels was carried out. Rheo-polarized microscopy was used to prove that preshear of 500 s-1 for 1 min is adequate to completely breakdown agglomerates in the suspension. Furthermore, a rest period of 30 min is sufficient to recover the equilibrium structure of hydrogels. Changing counterions from monovalent (Na+, K+, Li+), to divalent (Mg2+, Ca2+) and to trivalent (Al3+) influenced the network formation. CNC suspensions with monovalent counterions are isotropic at 3 wt%, anisotropic with chiral nematic structures at 5 wt% and form birefringent gels at 7 wt%. Conversely, divalent and trivalent counterions facilitate network formation, leading to gel like behavior at all concentrations. Sonication of CNC samples with monovalent counterions lowers the viscosity by two orders of magnitude while the opposite is true for multivalent counterions due to the formation of strong networks. The varying rheological properties displayed from CNCs with different counter ions may influence the use of CNC as rheological modifiers in fluid-based applications.
Collapse
Affiliation(s)
- Kudzanai Nyamayaro
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Keshanidokht S, Kumar S, Thulstrup PW, Via MA, Clausen MP, Risbo J. Thermo-responsive behavior of glycerol-plasticized oleogels stabilized by zein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Eivazi Zadeh Z, Eskandari F, Shafieian M, Solouk A, Haghbin Nazarpak M. The importance of polyurethane/carbon nanotubes composites fabrication method to mimic mechanical behavior of different types of soft tissues. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Yu J, Li D, Wang LJ, Wang Y. Improving freeze-thaw stability and 3D printing performance of soy protein isolate emulsion gel inks by guar & xanthan gums. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Vrabič-Brodnjak U, Možina K. Invasive Alien Plant Species for Use in Paper and Packaging Materials. FIBERS 2022; 10:94. [DOI: 10.3390/fib10110094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Invasive plant species can impede the establishment and growth of native plants and affect several ecosystem properties. These properties include soil cover, nutrient cycling, fire regimes, and hydrology. Controlling invasive plants is therefore a necessary, but usually expensive, step in restoring an ecosystem. The sustainability of materials with an emphasis on the use of local resources plays an important role in the circular economy. The use of alternative fibers from invasive plants promotes local production in smaller paper mills that offer the protection of local species and the reduction of waste and invasive plants. A synthesis of the literature is needed to understand the various impacts of invasive plants and their practical control in the context of papermaking applications and to identify associated knowledge gaps. To improve our understanding of the practical application of invasive species in the paper industry, we reviewed the existing literature on invasive plant species in the area of fiber production, printability, coating solution production, dyes, and extracts, and collected information on the major invasive plant species in Europe and the methods used for various applications.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, SI-1000 Ljubljana, Slovenia
| | - Klemen Možina
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Fast and Reversible Photoresponsive Self-Assembly Behavior of Rosin-Based Amphiphilic Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12885-12896. [PMID: 36175382 DOI: 10.1021/acs.jafc.2c04389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing stimulus-responsive amphiphilic polymers with a fast photoresponsive self-assembly behavior remains a challenge. Two series of rosin-terminated and azobenzene-terminated amphiphilic polymers (PAMn and PMAn) with fast and reversible photoresponsive properties were prepared using rosin-based azobenzene groups and polyethylene glycol, respectively. Under 5-10 s of UV irradiation, the polymers showed trans-to-cis isomerization and reached a photosteady state. For the PAMn polymer, the absorbance of the absorption peak at 325 nm recovered to more than 95% of the initial value under visible light for 5-10 s, whereas that of the PMAn polymer recovered completely. Notably, the PAMn and PMAn polymers initially self-assembled to vesicles or spherical micelles, and various morphological changes were achieved by manipulating UV irradiation time, with the initial morphology again recovered under dark conditions or visible-light irradiation. Remarkably, vesicles of the PAM34 and PMA34 polymers presented an intermediate open-vesicle state before being completely deformed under UV irradiation because of the existence of a π-π interaction. Finally, the ability of PAM34 and PMA34 polymer vesicles to perform the controlled release and reversible loading of a fluorescent probe was evaluated.
Collapse
Affiliation(s)
- Wanbing Li
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Haibo Zhang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhaolan Zhai
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng, Jiangsu Province210042, P. R. China
| | - Shibin Shang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhanqian Song
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| |
Collapse
|
24
|
Petschacher P, Ghanbari R, Sampl C, Wiltsche H, Kádár R, Spirk S, Nypelö T. Dynamic and Static Assembly of Sulfated Cellulose Nanocrystals with Alkali Metal Counter Cations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3131. [PMID: 36144921 PMCID: PMC9502719 DOI: 10.3390/nano12183131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Sulfate groups on cellulose particles such as cellulose nanocrystals (CNCs) provide colloidal stability credit to electrostatic repulsion between the like-charged particles. The introduction of sodium counter cations on the sulfate groups enables drying of the CNC suspensions without irreversible aggregation. Less is known about the effect of other counter cations than sodium on extending the properties of the CNC particles. Here, we introduce the alkali metal counter cations, Li+, Na+, K+, Rb+, and Cs+, on sulfated CNCs without an ion exchange resin, which, so far, has been a common practice. We demonstrate that the facile ion exchange is an efficient method to exchange to any alkali metal cation of sulfate half esters, with exchange rates between 76 and 89%. The ability to form liquid crystalline order in rest was observed by the presence of birefringence patterns and followed the Hofmeister series prediction of a decreasing ability to form anisotropy with an increasing element number. However, we observed the K-CNC rheology and birefringence as a stand-out case within the series of alkali metal modifications, with dynamic moduli and loss tangent indicating a network disruptive effect compared to the other counter cations, whereas observation of the development of birefringence patterns in flow showed the absence of self- or dynamically-assembled liquid crystalline order.
Collapse
Affiliation(s)
- Patrick Petschacher
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Reza Ghanbari
- Department of Industrial Materials Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Carina Sampl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Helmar Wiltsche
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Roland Kádár
- Department of Industrial Materials Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
25
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Chen Q, Chen K, Yu F, Guo A, Zou S, Zhou M, Li J, Dan J, Li Y, Dai B, Guo X. Confined Jet Impingement Continuous Microchannel Reactor Synthesis of Ultrahigh-Quality Mesoporous Silica Nanospheres for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiang Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
- Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China
| | - Aixia Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Siqing Zou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Mei Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Jiangwei Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Yongsheng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xuhong Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
27
|
|
28
|
Lei YC, Zhao X, Li D, Wang LJ, Wang Y. Effects of κ-Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods 2022; 11:foods11050734. [PMID: 35267367 PMCID: PMC8908979 DOI: 10.3390/foods11050734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of two polysaccharides on the performance and microstructure of phycocyanin gels were studied by choosing anionic polysaccharides (κ-carrageenan) and neutral polysaccharides (guar gum). The linear and nonlinear rheological properties and microstructure of the phycocyanin-polysaccharide composite gel were evaluated. The results show that both κ-carrageenan and guar gum can enhance the network structure of phycocyanin gel and weaken the frequency dependence. The sample with 0.4% κ-carrageenan has the highest gel strength. All samples exhibited Type I behavior (inter-cycling strain-thinning) and mainly elastic behavior. As the concentration of κ-carrageenan increases, hydrophobic interactions and disulfide bonds play an essential role in maintaining the three-dimensional structure of the gel. Too high a concentration of guar gum hinders the formation of protein disulfide bonds. This research can provide a theoretical basis for designing and developing new food products based on phycocyanin and different polysaccharides with ideal texture in the food industry.
Collapse
Affiliation(s)
- Yu-chen Lei
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (Y.-c.L.); (X.Z.)
| | - Xia Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (Y.-c.L.); (X.Z.)
| | - Dong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Li-jun Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (Y.-c.L.); (X.Z.)
- Correspondence: ; Tel./Fax: +86-10-6273-7351
| | - Yong Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
29
|
Yu J, Wang Y, Li D, Wang LJ. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 2021; 274:118660. [PMID: 34702479 DOI: 10.1016/j.carbpol.2021.118660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
In this work, the effects of calcium chloride (CaCl2) concentration on the creep-recovery, linear and nonlinear rheological behavior of nanocellulose gels had been investigated to quantify gel properties. The absolute zeta potential of nanocellulose gels were decreased as the CaCl2 concentration increased, which was related to the electrostatic repulsion that origin from carboxyl group could be effectively screened with increasing CaCl2 concentration. Rheological measurements further confirmed this result for nanocellulose gels, which revealed that the increased modulus and viscoelastic properties were obtained in the presence of CaCl2. The rheological properties of nanocellulose gels were showed to depend on CaCl2 concentration. The enhanced gel network structure was related to the Ca2+ ions that promoted crosslink between nanocellulose by salt bridge. This work highlighted the potential of using electrostatic complexation between nanocellulose and Ca2+ ions to form gels, and demonstrated the tunability of the rheological behavior by adjusting the concentration of CaCl2.
Collapse
|