1
|
Qu Y, Xu M, Yuan F, Zhang H, Li H, Guo R, Yu J, Ren Q, Wang R, Wang P, Wang H. Hypoglycemic effects of a new heteropolysaccharide from common bean (Phaseolus vulgaris L.) seeds in type 2 diabetes mellitus mice via modulating gut microbiota. Int J Biol Macromol 2024; 283:137825. [PMID: 39571858 DOI: 10.1016/j.ijbiomac.2024.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Type 2 diabetes poses significant health issues worldwide; however, relatively few effective treatment strategies are currently available. This research seeks to explore the potential hypoglycemic impact of compounds derived from common bean (Phaseolus vulgaris L.) by structurally characterizing a new type of heteropolysaccharide (CIE2-F) and evaluating its hypoglycemic effects in a murine model. CIE2-F primarily comprises 10 monosaccharides, Mw: 9.25 × 105 Da. The polysaccharide exhibited significant anti-obesity effects, alleviated pathological liver damage, and reduced hyperglycemia. In addition, the polysaccharide mitigated insulin resistance and regulated dyslipidemia by increasing serum HDL-C and reducing LDL-C, total cholesterol, and triglycerides in diabetic mice. Furthermore, 16S rRNA sequencing revealed that CIE2-F enriched beneficial gut microbiota, including Akkermansia and Verrucomicrobia, while decreasing pathogenic bacteria.
Collapse
Affiliation(s)
- Yaning Qu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Mengyue Xu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Fahu Yuan
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Hongxing Zhang
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Hui Li
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Rui Guo
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Hubei Province Engineering Research Center for Legume Plants, Wuhan 430056, Hubei, China
| | - Jinyi Yu
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China
| | - Qinai Ren
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Runkui Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Peng Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Hongbo Wang
- School of Life Sciences, Jianghan University, Wuhan 430056, China; Innovation Center for Comprehensive Utilization of Food and Medicine Homologous Specialty Resources, Wuhan 430056, China; Hubei Province Engineering Research Center for Legume Plants, Wuhan 430056, Hubei, China.
| |
Collapse
|
2
|
Chandrasekar CM, Carullo D, Saitta F, Krishnamachari H, Bellesia T, Nespoli L, Caneva E, Baschieri C, Signorelli M, Barbiroli AG, Fessas D, Farris S, Romano D. Valorization of citrus peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: An in-depth investigation. Carbohydr Polym 2024; 344:122539. [PMID: 39218557 DOI: 10.1016/j.carbpol.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.
Collapse
Affiliation(s)
- Chandra Mohan Chandrasekar
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Daniele Carullo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Francesca Saitta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | | | - Tommaso Bellesia
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Luca Nespoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Carlo Baschieri
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Alberto Giuseppe Barbiroli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
3
|
Fu YP, Li CY, Zou YF, Peng X, Paulsen BS, Wangensteen H, Inngjerdingen KT. Bioactive polysaccharides in different plant parts of Aconitum carmichaelii. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:746-758. [PMID: 37670420 DOI: 10.1002/jsfa.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Butt HS, Ulriksen ES, Rise F, Wangensteen H, Duus JØ, Inngjerdingen M, Inngjerdingen KT. Structural elucidation of novel pro-inflammatory polysaccharides from Daphne mezereum L. Carbohydr Polym 2024; 324:121554. [PMID: 37985118 DOI: 10.1016/j.carbpol.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Daphne mezereum L., an important medicinal plant in Scandinavian folk medicine, was used to treat ailments such as diarrhea, swelling and stomach pain. A range of natural compounds have been isolated, but little attention has been given to the polysaccharides in this plant. Previous work in our group have shown that a polysaccharide enriched fraction from the bark of D. mezereum exhibited pro-inflammatory effects. To pursue this further, the aim of the present work was to isolate and characterize these polysaccharides. From the ethanol-precipitate of a water extract, one neutral (DMP-NF) and one acidic (DMP-AF) fraction was isolated by anion-exchange chromatography. GC, GC-MS and 1D- and 2D-NMR were used to characterize the polysaccharide structures. DMP-NF appeared to be a mixture of arabinan, arabinogalactan and hemicelluloses such as xyloglucan, mannan and xylan. DMP-AF contained a pectic polysaccharide mainly consisting of an unusually long homogalacturonan backbone. Enzymatic treatment by pectinase of DMP-AF yielded DMP-ED, which contained a rhamnogalacturonan-I backbone with arabinan, galactan and arabinogalactan side chains. Both DMP-NF and DMP-ED induced IFN-γ and TNF-α secretion in peripheral blood mononuclear cells (PBMCs), DMP-ED being the most potent fraction. DMP-AF was less active, which might be due to a less sterically available rhamnogalacturonan-I domain.
Collapse
Affiliation(s)
- Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Emilie Steinbakk Ulriksen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| | - Jens Øllgaard Duus
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
5
|
Pedrosa LDF, de Vos P, Fabi JP. Nature's soothing solution: Harnessing the potential of food-derived polysaccharides to control inflammation. Curr Res Struct Biol 2023; 6:100112. [PMID: 38046895 PMCID: PMC10692654 DOI: 10.1016/j.crstbi.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Reducing inflammation by diet is a major goal for prevention or lowering symptoms of a variety of diseases, such as auto-immune reactions and cancers. Natural polysaccharides are increasingly gaining attention due to their potential immunomodulating capacity. Structures of those molecules are highly important for their effects on the innate immune system, cytokine production and secretion, and enzymes in immune cells. Such polysaccharides include β-glucans, pectins, fucoidans, and fructans. To better understand the potential of these immunomodulatory molecules, it is crucial to enhance dedicated research in the area. A bibliometric analysis was performed to set a starting observation point. Major pillars of inflammation, such as pattern recognition receptors (PRRs), enzymatic production of inflammatory molecules, and involvement in specific pathways such as Nuclear-factor kappa-B (NF-kB), involved in cell transcription, survival, and cytokine production, and mitogen-activated protein kinase (MAPK), a regulator of genetic expression, mitosis, and cell differentiation. Therefore, the outcomes from polysaccharide applications in those scenarios are discussed.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (ForC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Kang J, Sha XX, Geng CJ, Li LX, Chen J, Ren FC, Tian ML. Ultrasound-assisted extraction and characterization of Penthorum chinense polysaccharide with anti-inflammatory effects. ULTRASONICS SONOCHEMISTRY 2023; 99:106593. [PMID: 37696214 PMCID: PMC10498194 DOI: 10.1016/j.ultsonch.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Penthorum chinense has been used in both food and medication for many years, and polysaccharide of which was considered as one of the bioactive compounds. However, the extraction process of polysaccharide from P. chinense (PCP) was not well optimized. Ultrasound-assisted extractionhas been widely employed in the extraction of natural products for its compliance with the concept of green and economic chemistry. To better investigate the structure and biology activity of PCP, response surface methodology was employed to optimize the ultrasound-assisted extraction conditions of PCP. The optimum extraction for the ultrasound-assisted extraction of PCP were obtained as ratio of solvent to material 40 mL/g, ultrasonic power 380 W, and extraction time of 50 min. The yield of PCP reached 8.71% under these optimized conditions. PCP was further purified by using anion exchange chromatography and gel filtration, an acidic fraction PCP-AP-1 was hereby obtained. The results of structural elucidation indicated that PCP-AP-1 was a typical pectic polysaccharide with a molecular weight of 66360 Da, mainly composed of galacturonic acid (68.5 mol%), followed by arabinose (9.8 mol%), rhamnose (9.4 mol%), glucose (7.7 mol%), with homogalacturonan region and rhamnogalacturonan I regions. In vitro study showed that PCP-AP-1 could improve the inflammation induced by lipopolysaccharide in intestinal epithelial cells, which was probably performed through the inhibition of multiple signaling pathways including the inhibition of TLR4, NOD1/2 and NF-κB pathway, as well as the reduction of NLRP3 inflammasome. This study defined the type of polysaccharide present in P. chinense and revealed a potential of application this plant in the prevention of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jia Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Xiao-Xi Sha
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Cai-Juan Geng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Feng-Chun Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
7
|
Fu YP, Malterud KE, Hamre AG, Inngjerdingen KT, Wangensteen H. Polysaccharides and Bioactive Phenolics from Aconitum septentrionale Roots. Chem Biodivers 2023; 20:e202300161. [PMID: 37337851 DOI: 10.1002/cbdv.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Aconitum septentrionale is known to contain toxic diterpene alkaloids, while other bioactive compounds in the plant remain unclear. The aim of this study was to explore the phenolic compounds and polysaccharides from the water extract of A. septentrionale roots. Fifteen phenolic compounds were isolated and identified by NMR and MS, including fourteen known and one new dianthramide glucoside (2-[[2-(β-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-4,5-dihydroxybenzoic acid methyl ester, 14). One neutral (complex of glucans with minor amounts of mannans) and two acidic polysaccharide fractions (complexes of pectic polysaccharides and glucans) were also obtained. Hydroxytyrosol (1), hydroxytyrosol-1-O-β-glucoside (2) and bracteanolide A (7) inhibited the release of nitric oxide by dendritic cells. Magnoflorine (8) and 2-[[2-(β-D-glucopyranosyloxy)-5-hydroxybenzoyl]amino]-5-hydroxybenzoic acid methyl ester (12) inhibited 15-lipoxygenase, and bracteanolide A (7) was a moderate inhibitor of xanthine oxidase. This study is the first to describe the diversity of phenolics and polysaccharides from A. septentrionale and their anti-inflammatory and anti-oxidant activities.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Karl Egil Malterud
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Anne Grethe Hamre
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316, Oslo, Norway
| |
Collapse
|
8
|
Ripanda A, Luanda A, Mtabazi GS, Makangara JJ. Senna singueana (Delile) lock: Ethnomedicinal uses and medicinal properties. Heliyon 2023; 9:e14098. [PMID: 36923862 PMCID: PMC10008984 DOI: 10.1016/j.heliyon.2023.e14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Senna singueana (Delile) Lock is a potential medicinal plant commonly used to mitigate various infectious and non-infectious diseases including malaria, typhoid, gonorrhoea, bilharzia, cancer, epilepsy and ulcer. The phytochemical profile of S. singueana indicates the presence of different phytoconstituents corresponding to the pharmacological properties. The pharmacological potentials such as antibacterial, antifungal, antioxidant, antimalarial and antidiabetics are possessed by S. singueana. This review comprehensively discusses the potential of S. singueana for the mitigation of medical conditions. The information is collected from various online databases such as Google scholar, ScienceDirect, Springer, Web of Science and PubMed. Among other information, ethnomedicinal uses, phytochemistry, pharmacology and mechanisms of action are extensively presented. A review concluded by highlighting the challenges and potential future outlooks.
Collapse
Affiliation(s)
- Asha Ripanda
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338 Dodoma, Tanzania
| | - Amos Luanda
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338 Dodoma, Tanzania
| | - Geofrey S Mtabazi
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338 Dodoma, Tanzania
| | - John J Makangara
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338 Dodoma, Tanzania
| |
Collapse
|
9
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|
10
|
Fu YP, Li CY, Peng X, Zou YF, Rise F, Paulsen BS, Wangensteen H, Inngjerdingen KT. Polysaccharides from Aconitum carmichaelii leaves: Structure, immunomodulatory and anti-inflammatory activities. Carbohydr Polym 2022; 291:119655. [DOI: 10.1016/j.carbpol.2022.119655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
11
|
Nikiforova AV, Golovchenko VV, Mikshina PV, Patova OA, Gorshkova TA, Bovin NV, Shilova NV. Plant Polysaccharide Array for Studying Carbohydrate-Binding Proteins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:890-902. [PMID: 36180984 DOI: 10.1134/s0006297922090036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
The specificity of the most plant carbohydrate-binding proteins (CBP), many of which are known only through bioinformatic analysis of the genome, has either not been studied at all or characterized to a limited extent. The task of deciphering the carbohydrate specificity of the proteins can be solved using glycoarrays composed of many tens or even hundreds of glycans immobilized on a glass surface. Plant carbohydrates are the most significant natural ligands for plant proteins; this work shows that plant polysaccharides without additional modification can be immobilized on the surface, bearing N-hydroxysuccinimide activated carboxyl groups. As a result, an array of 113 well-characterized polysaccharides isolated from various plant cell walls, 23 mono- and oligosaccharides - components of polysaccharides, and glycans - ligands for widely known plant lectins was designed. Upon chemical immobilization of polysaccharides, their functional activity was preserved, which was confirmed by the results of interaction with antibodies and the plant lectin ricin. Using the constructed array, a previously unknown ability of ricin to bind polysaccharides was found, which significantly expands the knowledge of its specificity, and it was also found that a large variety of antibodies to plant polysaccharides are present in human peripheral blood.
Collapse
Affiliation(s)
- Anna V Nikiforova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, 167982, Russia
| | - Polina V Mikshina
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Olga A Patova
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, 167982, Russia
| | - Tatyana A Gorshkova
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Nikolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
12
|
Miao W, Li N, Wu JL. Food polysaccharides utilization via in vitro fermentation: microbiota, structure, and function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zhang W, Xu S, Gao M, Peng S, Chen L, Lao F, Liao X, Wu J. Profiling the water soluble pectin in clear red raspberry (Rubus idaeus L. cv. Heritage) juice: Impact of high hydrostatic pressure and high-temperature short-time processing on the pectin properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Dimopoulou M, Alba K, Sims IM, Kontogiorgos V. Structure and rheology of pectic polysaccharides from baobab fruit and leaves. Carbohydr Polym 2021; 273:118540. [PMID: 34560952 DOI: 10.1016/j.carbpol.2021.118540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022]
Abstract
Linkage patterns and relaxation dynamics of baobab (Adansonia digitata) polysaccharides have been investigated by means of linkage analysis and rheometry. The fruit polysaccharide was mostly xylogalacturonan, with co-extracted α-glucan. The leaf polysaccharide consists predominantly of two domains, one branched at O-4 of the →2)-Rhap-(1→ residues and another branched at O-3 of the →4)-GalpA-(1→ backbone to single GlcpA-(1→ residues. Master curves of viscoelasticity of fruit polysaccharides manifested strong pH-dependency. At pH below the dissociation constant of galacturonic acid, dispersions showed liquid-like behaviour. In contrast, at neutral pH, a weak gel network formation was observed that destabilised rapidly under the influence of flow fields. The present work identifies xylogalacturonans from baobab fruit as polysaccharides with unique rheological characteristics that may point to new directions in food and pharmaceutical formulation.
Collapse
Affiliation(s)
- Maria Dimopoulou
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Katerina Alba
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Vassilis Kontogiorgos
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia.
| |
Collapse
|