1
|
Muhammed AP, Thangarasu S, Raorane CJ, Kim SC, Oh TH. Integrating hexagonal boron nitride-ZnO nanohybrids as multifunctional active fillers in PLA matrices to extend the shelf-life of fresh strawberries. Food Chem 2025; 485:144539. [PMID: 40319591 DOI: 10.1016/j.foodchem.2025.144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
PLA is a promising sustainable alternative to petroleum-based polymers. However, its suboptimal functional properties and lack of inherent bioactivity limit its applications in active food packaging. This study addresses these constraints and improves PLA's active functionalities through reinforcement with hexagonal boron nitride-ZnO (hBN-ZnO) binary inorganic nanofillers. PLA was fine-tuned with various ratios of hBN, and found that PLA-hBN1.5 film exhibits the optimum characteristics such as excellent film formation, highest tensile strength (62.14 MPa, 19.75 % increase), lowest water vapor permeability (1.23 ± 0.03 × 10-11 g.m-1.s-1.Pa-1, 32.04 % decrease), and improved UV-blocking and thermal resistance. Subsequently, a hydrothermally synthesized hBN-ZnO composite was incorporated into optimal PLA-hBN1.5 films, replacing pure hBN. The ZnO inclusion boosted the films antibacterial, antibiofilm, and antioxidant functionalities without significantly compromising mechanical or moisture barrier properties. Packaging studies on fresh strawberries demonstrated the superior potential of the PLA-hBN-ZnO film, making it a promising material for sustainable and active food packaging.
Collapse
Affiliation(s)
- Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Zeng J, Wu C, Wang S, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties. Int J Biol Macromol 2025; 303:140308. [PMID: 39864706 DOI: 10.1016/j.ijbiomac.2025.140308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC). The chitosan's -NH₂ groups were chlorinated to form N-halamine groups, significantly enhancing the membrane's bactericidal properties. Experimental results demonstrated that the CS/PEO-CNC-2-Cl membrane achieved complete inactivation of E. coli (108 CFU/mL) and S. aureus within 1 min of contact. Furthermore, under a filtration rate of up to 1273 L·m-2·h-1, the membrane fully inactivated a 106 CFU/mL S. aureus bacterial solution. These findings indicate that the superhydrophilic, antibacterial membrane developed in this study holds considerable promise for applications in water treatment, particularly in addressing oil and microbial contamination.
Collapse
Affiliation(s)
- Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Chen Wu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Shuxiu Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
3
|
Fang S, Xu X, Wei Y, Qiu F, Huang W, Jiang H, Zhang N, Song Y, Gao M, Liu H, Liu Y, Cheng B. Super-elastic, hydrophobic composite aerogels for triboelectric nanogenerators. NANOSCALE 2025; 17:8047-8056. [PMID: 40034044 DOI: 10.1039/d4nr04831h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Progress toward the advancement of environmentally friendly energy harvesting devices is critical for eco-environmental protection. There is an urgent need for developing energy harvesting devices from biobased materials. However, it is still a challenge to utilize biobased cellulose nanofiber (CNF) aerogels in triboelectric nanogenerators (TENGs) due to their poor mechanical properties, hydrophilicity, and weak polarization capability. Here, we demonstrate a facile strategy to fabricate a super-elastic, hydrophobic CNF/MXene composite aerogel for TENGs through fluorosilane crosslinking and a directional freeze-dried assembled structure. This aerogel can withstand up to 80% compressive strain, rebound to 95.33% of its original height, and exhibit hydrophobicity (water contact angle = 137.65°). In addition, the induction of MXene and the silane coupling agent endows the aerogel with enhanced electronegativity and charge density. These properties enable the CNF/MXene aerogel to harvest energy with an output voltage of 100 V and a short-circuit charge density of ∼900 nC cm-3, while maintaining stability for 1000 cycles. This aerogel holds great application potential in the field of self-powered sensing and raindrop energy harvesting.
Collapse
Affiliation(s)
- Shize Fang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| | - Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fangcheng Qiu
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Weixin Huang
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Hong Jiang
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
- School of Fashion Design, Jiangxi Institute of Fashion Technology, Jiangxi 330201, China
| | - Ning Zhang
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
- School of Fashion Design, Jiangxi Institute of Fashion Technology, Jiangxi 330201, China
| | - Yufeng Song
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650011, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
- Technical Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co., Jiangxi 335500, China
| |
Collapse
|
4
|
Saleh AK, El-Sayed MH, El-Sakhawy MA, Alshareef SA, Omer N, Abdelaziz MA, Jame R, Zheng H, Gao M, Du H. Cellulose-based Conductive Materials for Bioelectronics. CHEMSUSCHEM 2025; 18:e202401762. [PMID: 39462209 DOI: 10.1002/cssc.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The growing demand for electronic devices has led to excessive stress on Earth's resources, necessitating effective waste management and the search for renewable materials with minimal environmental impact. Bioelectronics, designed to interface with the human body, have traditionally been made from inorganic materials, such as metals, which, while having suitable electrical conductivity, differ significantly in chemical and mechanical properties from biological tissues. This can cause issues such as unreliable signal collection and inflammatory responses. Recently, natural biopolymers such as cellulose, chitosan, and silk have been explored for flexible devices, given their chemical uniqueness, shape flexibility, ease of processing, mechanical strength, and biodegradability. Cellulose is the most abundant natural biopolymer, has been widely used across industries, and can be transformed into electronically conductive carbon materials. This review focuses on the advancements in cellulose-based conductive materials for bioelectronics, detailing their chemical properties, methods to enhance conductivity, and forms used in bioelectronic applications. It highlights the compatibility of cellulose with biological tissues, emphasizing its potential in developing wearable sensors, supercapacitors, and other healthcare-related devices. The review also addresses current challenges in this field and suggests future research directions to overcome these obstacles and fully realize the potential of cellulose-based bioelectronics.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, 91431, Saudi Arabia
| | - Mohamed A El-Sakhawy
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, 11753, Egypt
| | | | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hongjun Zheng
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Mengge Gao
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Haishun Du
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Li W, Zhu L, Xu Y, Wang G, Xu T, Si C. Lignocellulose-Mediated Functionalization of Liquid Metals toward the Frontiers of Multifunctional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415761. [PMID: 39573839 DOI: 10.1002/adma.202415761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Indexed: 03/27/2025]
Abstract
Lignocellulose-mediated liquid metal (LM) composites, as emerging functional materials, show tremendous potential for a variety of applications. The abundant hydroxyl, carboxyl, and other polar groups in lignocellulose facilitate the formation of strong chemical bonds with LM surfaces, enhancing wettability and adhesion for improved interface compatibility. Beyond serving as a supportive matrix, lignocellulose can be tailored to optimize the microstructure of the composites, adapting them for diverse applications. This review comprehensively summarizes the fundamental principles and recent advancements in lignocellulose-mediated LM composites, highlighting the advantages of lignocellulose in composite fabrication, including facile synthesis, versatile interactions, and inherent functionalities. Key modulation strategies for LMs and innovative synthesis methods for functionalized lignocellulose composites are discussed. Furthermore, the roles and structure-performance relationships of these composites in electromagnetic shielding, flexible sensors, and energy storage devices are systematically summarized. Finally, the obstacles and prospective advancements pertaining to lignocellulose-mediated LM composites are thoroughly scrutinized and deliberated upon. This review is expected to provide basic guidance for researchers to boost the popularity of LMs in diverse applications and provide useful references for design strategies of state-of-the-art LMs.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ying Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
6
|
Zhang Y, Tao L, Zhao L, Dong C, Liu Y, Zhang K, Liimatainen H. Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals. J Colloid Interface Sci 2024; 676:61-71. [PMID: 39018811 DOI: 10.1016/j.jcis.2024.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Biogenic, sustainable two-dimensional architectures, such as films and nanopapers, have garnered considerable interest because of their low carbon footprint, biodegradability, advanced optical/mechanical characteristics, and diverse potential applications. Here, bio-based nanopapers with tailored characteristics were engineered by the electrostatic complexation of oppositely charged colloidal phosphorylated cellulose nanofibers (P-CNFs) and deacetylated chitin nanocrystals (ChNCs). The electrostatic interaction between anionic P-CNFs and cationic ChNCs enhanced the stretchability and water stability of the nanopapers. Correspondingly, they exhibited a wet tensile strength of 17.7 MPa after 24 h of water immersion. Furthermore, the nanopapers exhibited good thermal stability and excellent self-extinguishing behavior, triggered by both phosphorous and nitrogen. These features make the nanopapers sustainable and promising structures for application in advanced fields, such as optoelectronics.
Collapse
Affiliation(s)
- Yutong Zhang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Lixue Tao
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Lebin Zhao
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Chaohong Dong
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yun Liu
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Kaitao Zhang
- Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), College of Textiles and Clothing, Qingdao University, Ningxia Road, 308, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China.
| | - Henrikki Liimatainen
- Fibre and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, FI-90014, Finland
| |
Collapse
|
7
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
8
|
He Q, Ding X, Deng J, Zhang Y, Wang X, Zhan D, Okoro OV, Yan L, Shavandi A, Nie L. Fabrication of injectable, adhesive, self-healing, superabsorbent hydrogels based on quaternary ammonium chitosan and oxidized pullulan. Heliyon 2024; 10:e38577. [PMID: 39435091 PMCID: PMC11491910 DOI: 10.1016/j.heliyon.2024.e38577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Injectable hydrogels, which are polymeric materials that are characterized by their ability to be injected in a liquid form into cavities and subsequently undergo in situ solidification, have garnered significant attention. These materials are extensively used in a range of biomedical applications. This study synthesized several injectable composite hydrogels through the mild Schiff base reaction while imposing different concentrations of quaternary ammonium chitosan and oxidized pullulan. Subsequent characterizations revealed a consistent and coherent porous structure within the hydrogels with smooth inner walls. The hydrogels were also determined to possess good adhesion, mechanical properties, self-healing ability, and injectability. Furthermore, antimicrobial tests against Escherichia coli and Staphylococcus aureus demonstrated antibacterial properties, which improved with increasing concentrations of quaternary ammonium chitosan. Co-culturing with skin fibroblasts demonstrated that the injectable hydrogels exhibited favourable biocompatibility and the capacity to boost cellular activity, thus underscoring its potential for use in biomedical applications.
Collapse
Affiliation(s)
- Qian He
- Emergency Department, Wuhan No.7 Hospital, Wuchang District, 430061, Wuhan, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Jun Deng
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Yanze Zhang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Xiaoyi Wang
- Department of Nutrition, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Dan Zhan
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| |
Collapse
|
9
|
Guan Y, Yan L, Liu H, Xu T, Chen J, Xu J, Dai L, Si C. Cellulose-derived raw materials towards advanced functional transparent papers. Carbohydr Polym 2024; 336:122109. [PMID: 38670767 DOI: 10.1016/j.carbpol.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Pulp and paper are gradually transforming from a traditional industry into a new green strategic industry. In parallel, cellulose-derived transparent paper is gaining ground for the development of advanced functional materials for light management with eco-friendly, high performance, and multifunctionality. This review focuses on methods and processes for the preparation of cellulose-derived transparent papers, highlighting the characterization of raw materials linked to responses to different properties, such as optical and mechanical properties. The applications in electronic devices, energy conversion and storage, and eco-friendly packaging are also highlighted with the objective to showcase the untapped potential of cellulose-derived transparent paper, challenging the prevailing notion that paper is merely a daily life product. Finally, the challenges and propose future directions for the development of cellulose-derived transparent paper are identified.
Collapse
Affiliation(s)
- Yanhua Guan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinghuan Chen
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co. Ltd., 100102 Beijing, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
10
|
Lin L, Chen L, Lu C, Chen G, Hong FF. Chitosan particles embedded bacterial nanocellulose flat membrane for hemodialysis. Int J Biol Macromol 2024; 266:130646. [PMID: 38460632 DOI: 10.1016/j.ijbiomac.2024.130646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The development of bio-based hemodialysis membranes continues to be a challenge. Bacterial nanocellulose (BNC) membranes show potential in hemodialysis but can hardly retain beneficial proteins. Here, chitosan particles/bacterial nanocellulose (CSP/BNC) membranes were designed to efficiently remove uremic toxins and retain beneficial proteins. First, CSPs were synthesized in situ within a BNC membrane by ionic gelation following negative pressure impregnation. Subsequently, these membranes were thoroughly characterized. Compared with the BNC membrane, the pore volume and pore size of the 3 % CSP/BNC membrane decreased by 42.2 % and 32.1 %, respectively. The increased 22.2 times of Young's modulus and 88.9 % of tensile strength in the 3 % CSP/BNC membrane confirmed enhanced mechanical property. The sieving coefficient of bovine serum albumin decreased to 0.05 ± 0.03 in the 3 % CSP/BNC membrane. Moreover, the CSP/BNC membrane exhibited good hemocompatibility and cytocompatibility. The simulated dialysis results showed that the 3 % CSP/BNC membrane exhibited high clearance of urea (16.37 %/cm2) and lysozyme (3.54 %/cm2), while efficiently retaining bovine serum albumin (98.04 %/cm2). This is the first demonstration of the construction of a BNC-based hemodialysis membrane with in situ CSP formation to effectively regulate the pore properties of the membrane, making the CSP/BNC membrane a promising candidate for hemodialysis applications.
Collapse
Affiliation(s)
- Lulu Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Ren Min Road, Shanghai 201620, China
| | - Lin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; National Advanced Functional Fiber Innovation Center, Wu Jiang, Su Zhou, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Ren Min Road, Shanghai 201620, China
| | - Genqiang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Ren Min Road, Shanghai 201620, China.
| | - Feng F Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Ren Min Road, Shanghai 201620, China; National Advanced Functional Fiber Innovation Center, Wu Jiang, Su Zhou, China.
| |
Collapse
|
11
|
Wang F, Hu Z, Ouyang S, Wang S, Liu Y, Li M, Wu Y, Li Z, Qian J, Wu Z, Zhao Z, Wang L, Jia C, Ma S. Application progress of nanocellulose in food packaging: A review. Int J Biol Macromol 2024; 268:131936. [PMID: 38692533 DOI: 10.1016/j.ijbiomac.2024.131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.
Collapse
Affiliation(s)
- Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Suyang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhen Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Zhao
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Lin H, Kehinde O, Lin C, Fei M, Li R, Zhang X, Yang W, Li J. Mechanically strong micro-nano fibrillated cellulose paper with improved barrier and water-resistant properties for replacing plastic. Int J Biol Macromol 2024; 263:130102. [PMID: 38342270 DOI: 10.1016/j.ijbiomac.2024.130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Replacing nonbiodegradable plastics with environmentally friendly cellulose materials has emerged as a key trend in environmental protection. This study highlights the development of a strong and hydrophobic micro-nano fibrillated cellulose paper (MNP) through the incorporation of micro-nano fibrillated cellulose fiber (MNF) and chitin nanocrystal (Ch), followed by the impregnation of polymethylsiloxane (PMHS). A low-acid, heat-assisted colloidal grinding strategy was employed to prepare MNF with a high aspect ratio effectively. Ch was incorporated as a reinforcing matrix into the cellulose fiber scaffold through straightforward mechanical mixing and mechanical hot-pressing treatments. Compared to pure MNP, the 5Ch-MNP exhibited a 25 % improvement in tensile strength, reaching 170 MPa, and showed enhanced barrier properties against oxygen and water vapor. The impregnation of PMHS rapidly confers environmentally resistant hydrophobic properties to 1 % PMHS-5Ch-MNP, leading to a water contact angle exceeding 112°, and a 290 % increase in tensile strength under wet conditions. Additionally, the paper demonstrated excellent antibacterial adhesion properties, with the adhesion rates for E. coli and S. aureus exceeding 98 %. This study successfully produced functional cellulose paper with remarkable mechanical properties and barrier properties, as well as hydrophobicity, using a simple, efficient, and environmentally friendly method, making it a promising substitute for petroleum-based plastics.
Collapse
Affiliation(s)
- Huiping Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Olonisakin Kehinde
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Chengwei Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Mingen Fei
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Ran Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xinxiang Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Wenbin Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| | - Jian Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; Northeast Forestry University, Haerbin 150040, China.
| |
Collapse
|
13
|
Lin H, Hong G, Fei M, Shen Y, Zhang X, Li J, Yang W, Li R. Micro- and nano-hybrid cellulose fibers prepared by straightforward and high-efficiency hot water soaking-assisted colloid grinding for high-performance cellulose paper. Carbohydr Polym 2024; 327:121688. [PMID: 38171695 DOI: 10.1016/j.carbpol.2023.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Micro- and nano-hybrid cellulose fiber (MNCF) stands out as a versatile cellulosic nanomaterial with promising applications in various fields owing to its excellent intrinsic nature and outstanding characteristics. However, the inefficiency in preparing MNCF, attributed to a complex multi-step processing, hinders its widespread adoption. In this study, a straightforward and highly efficient method for MNCF preparation was developed via a hot water soaking-assisted colloid grinding strategy. Active water molecules in hot water facilitating stronger transverse shrinkage and longitudinal expansion in fiber crystallized region, and thus improving the fibrillation degree of cellulose fibers. As a result, MNCFs with a mean diameter of 37.5 ± 22.2 nm and high concentration (2 wt%) were successfully achieved though pure mechanical method. The micro and nano-hybrid structure leads to the corresponding resulting cellulose paper with micro- and nano-hybrid structure possesses a compact stacking and fewer defects, leading to extraordinary mechanical properties including tensile strength of 204.5 MPa, Young's modulus of 6.3 GPa and elongation of 10.1 %. This work achieves significant progress towards straightforward and highly efficient production of MNCFs, offering an appreciable prospect for the development of multifunctional MNCF-based materials.
Collapse
Affiliation(s)
- Huiping Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Guolong Hong
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Mingen Fei
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Yiqin Shen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xinxiang Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Jian Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; Northeast Forestry University, Haerbin 150040, China
| | - Wenbin Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| | - Ran Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| |
Collapse
|
14
|
Wang S, Zeng J, Li P, Li J, Wang B, Gao W, Xu J. High-strength hydrophilic N-halamines chitosan and cellulose nanofibers membranes with repeated bactericidal properties. Int J Biol Macromol 2023; 253:127065. [PMID: 37748591 DOI: 10.1016/j.ijbiomac.2023.127065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Direct addition of disinfectants and membrane separation techniques have been common methods to address microbial contamination in water. However, disinfectants may generate toxic by-products, and even minor damage or biofilm formation on filtration membranes can lead to a heightened risk of microbial contamination. Consequently, how to quickly and safely disinfect microbial contaminated water sources remains a huge challenge. In this study, the high-strength broad-spectrum antibacterial CNF/CS composite membrane was fabricated by utilizing cellulose nanofibers (CNF) to reinforce the structure of chitosan (CS). The resulting CNF/CS composite membrane exhibits an impressive tensile strength of 148 MPa and boasts an active chlorine content of 5.29 %. Notably, even after undergoing 50 washing cycles and 10 repeated chlorination procedures, the structural integrity and high active chlorine content of the composite membrane remain preserved, validating its exceptional strength, stability, and chlorine rechargeability. Additionally, the CNF/CS antibacterial materials demonstrate remarkable attributes in terms of rapid sterilization, sustained and consistent release of active chlorine, and efficient inhibition of biofilm formation, demonstrating great potential in efficient, green, and safe sterilization.
Collapse
Affiliation(s)
- Shuxiu Wang
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jinsong Zeng
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Pengfei Li
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
15
|
Muhammed AP, Thangarasu S, Oh TH. Green interconnected network structure of chitosan-microcrystalline cellulose-lignin biopolymer film for active packaging applications. Int J Biol Macromol 2023; 253:127471. [PMID: 37863142 DOI: 10.1016/j.ijbiomac.2023.127471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
As an excellent alternative to petroleum-based food packaging materials, a novel green hybrid composite film with an excellent interconnected network structure was successfully fabricated by integrating chitosan (chi), microcrystalline cellulose (MCC), and lignin nanoparticles (LNP), including the desired amount of plasticizer glycerol (gly). Overall, 36 combinations were developed and investigated for superior biocomposite film formation. Among the various concentration ratios, the 40:35:25 chi-MCC-gly film provided well-organized film formation, good physicochemical properties, mechanical stability, efficient water contact angle, reduced water solubility, and lower water vapor permeability (11.43 ± 0.55 × 10-11 g.m-1.s-1.Pa-1). The performance of the chi-MCC-gly film further enhanced by the homogeneous incorporation of ∼100 nm LNP. With 1 % LNP addition, the tensile strength of the film increased (28.09 MPa, 47.10 % increase) and the water vapor permeability reached a minimum of 11.43 × 10-11 g.m-1.s-1.Pa-1, which proved the impact of LNP in composite films. Moreover, the films showed excellent resistance to thermal shrinkage even at 100 °C and exhibited nearly 100 % UV blocking efficiency at higher LNP concentrations. Interestingly, the green composite films extended the shelf life of freshly cut cherry tomatoes to seven days without spoilage. Overall, the facile synthesis of strong, insoluble, UV-blocking, and thermally stable green composite films realized for food packaging applications.
Collapse
Affiliation(s)
- Ajmal P Muhammed
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadhasivam Thangarasu
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
17
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
18
|
Worajittiphon P, Santiwongsathit N, Bai SL, Daranarong D, Punyodom W, Sriyai M, Jantanasakulwong K, Rachtanapun P, Ross S, Tipduangta P, Srithep Y, Amnuaypanich S. Carboxymethyl cellulose/poly(vinyl alcohol) blended films reinforced by buckypapers of carbon nanotubes and 2D material (MoS 2): Enhancing mechanical strength, toughness, and barrier properties. Int J Biol Macromol 2023; 242:124726. [PMID: 37172702 DOI: 10.1016/j.ijbiomac.2023.124726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.
Collapse
Affiliation(s)
- Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Shu-Lin Bai
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| | - Donraporn Daranarong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Yi C, Yuan T, Xiao H, Ren H, Zhai H. Hydrophobic-modified cellulose nanofibrils (CNFs) /chitosan/zein coating for enhancing multi-barrier properties of heat-sealable food packaging materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
20
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
21
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
22
|
Xu Y, Liu K, Yang Y, Kim MS, Lee CH, Zhang R, Xu T, Choi SE, Si C. Hemicellulose-based hydrogels for advanced applications. Front Bioeng Biotechnol 2023; 10:1110004. [PMID: 36698644 PMCID: PMC9868175 DOI: 10.3389/fbioe.2022.1110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Hemicellulose-based hydrogels are three-dimensional networked hydrophilic polymer with high water retention, good biocompatibility, and mechanical properties, which have attracted much attention in the field of soft materials. Herein, recent advances and developments in hemicellulose-based hydrogels were reviewed. The preparation method, formation mechanism and properties of hemicellulose-based hydrogels were introduced from the aspects of chemical cross-linking and physical cross-linking. The differences of different initiation systems such as light, enzymes, microwave radiation, and glow discharge electrolytic plasma were summarized. The advanced applications and developments of hemicellulose-based hydrogels in the fields of controlled drug release, wound dressings, high-efficiency adsorption, and sensors were summarized. Finally, the challenges faced in the field of hemicellulose-based hydrogels were summarized and prospected.
Collapse
Affiliation(s)
- Ying Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yanfan Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Min-Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Chan-Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Rui Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,Department of Finance, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China,State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China,*Correspondence: Ting Xu, ; Sun-Eun Choi, ; Chuanling Si,
| |
Collapse
|
23
|
Li Z, Xie D, Zhu W, Wang H, Ouyang T, Sun J, Wu Y, Cheng F. Bleaching-free, lignin-tolerant, high-yield production of nanocrystalline cellulose from lignocellulosic biomass. iScience 2022; 26:105771. [PMID: 36636346 PMCID: PMC9830227 DOI: 10.1016/j.isci.2022.105771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nanocrystalline cellulose (NCC) preparation in an integrated fractionation manner is expected to solve the problems of low yield and environmental impact in the traditional process. An integrated fractionation strategy for NCC production from wood was developed through catalytic biomass fractionation, the partial dissolution of cellulose-rich materials (CRMs) in aqueous tetrabutylphosphonium hydroxide, and short-term ultrasonication. The presented process could tolerate a high CRM lignin content of 21.2 wt % and provide a high NCC yield of 76.6 wt % (34.3 wt % of the original biomass). The increase in the CRM lignin content decreased the NCC yield, facilitated the crystal transition of NCC from cellulose I to cellulose II, and showed no apparent effects on the NCC morphology. A partial/selective dissolution mechanism is proposed for the presented strategy. This study provided a promising efficient fractionation-based method toward comprehensive and high-value utilization of lignocellulosic biomass through effective delignification and high-yield NCC production.
Collapse
Affiliation(s)
- Zipeng Li
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Di Xie
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Weizhi Zhu
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongjie Wang
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Tulong Ouyang
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianping Sun
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fangchao Cheng
- Guangxi Key Laboratory of Processing for Nonferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China,College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China,Corresponding author
| |
Collapse
|
24
|
Lan G, Chu X, Li C, Zhang C, Miao G, Li W, Peng F, Zhao X, Li M. Surface modification of titanium with antibacterial porous N-halamine coating to prevent peri-implant infection. Biomed Mater 2022; 18. [PMID: 36317281 DOI: 10.1088/1748-605x/ac9e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Peri-implant infection remains one of the greatest threats to orthopedics. The construction of bone implants with good antibacterial and osteogenic properties is beneficial for reducing the risk of implant-related infections and healing bone defects. In this study, N-halamine coating (namely N-Cl) was grafted onto alkali-heat treated titanium (Ti) using polydopamine to endow Ti-based orthopedic implants with strong bactericidal activity. Surface characterization revealed that the N-Cl coating has porous structure loaded with active chlorine (Cl+). The N-Cl coating also provided micro/nano-structured Ti surfaces with excellent antibacterial ability via transformation between N-H and N-Cl, and approximately 100% disinfection was achieved. Furthermore, the as-prepared N-Cl coating exhibited good biocompatibility and osteogenesis abilityin vitro. These results indicate that applying N-Cl coatings on Ti could prevent and treat peri-implant infections.
Collapse
Affiliation(s)
- Guobo Lan
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Xiao Chu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China.,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chaohui Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Chi Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Guiqiang Miao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Wenyong Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Xiaodong Zhao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| |
Collapse
|
25
|
Liang Q, Wang Y, Yang Y, Xu T, Xu Y, Zhao Q, Heo SH, Kim MS, Jeong YH, Yao S, Song X, Choi SE, Si C. Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes. Front Bioeng Biotechnol 2022; 10:1024453. [PMID: 36267450 PMCID: PMC9578560 DOI: 10.3389/fbioe.2022.1024453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
With the emerging of the problems of environmental pollution and energy crisis, the development of high-efficiency energy storage technology and green renewable energy is imminent. Supercapacitors have drawn great attention in wearable electronics because of their good performance and portability. Electrodes are the key to fabricate high-performance supercapacitors with good electrochemical properties and flexibility. As a biomass based derived material, nanocellulose has potential application prospects in supercapacitor electrode materials due to its biodegradability, high mechanical strength, strong chemical reactivity, and good mechanical flexibility. In this review, the research progress of nanocellulose/two dimensional nanomaterials composites is summarized for supercapacitors in recent years. First, nanocellulose/MXene composites for supercapacitors are reviewed. Then, nanocellulose/graphene composites for supercapacitors are comprehensively elaborated. Finally, we also introduce the current challenges and development potential of nanocellulose/two dimensional nanomaterials composites in supercapacitors.
Collapse
Affiliation(s)
- Qidi Liang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yaxuan Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yanfan Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- *Correspondence: Ting Xu, ; Xueping Song, ; Sun-Eun Choi, ; Chuanling Si,
| | - Ying Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Qingshuang Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Su-Hak Heo
- Department of Medicinal Bioscience, Konkuk University (Glocal Campus), Chungju-si, Chungcheongbuk-do, South Korea
| | - Min-Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Young-Hwan Jeong
- Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- *Correspondence: Ting Xu, ; Xueping Song, ; Sun-Eun Choi, ; Chuanling Si,
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ting Xu, ; Xueping Song, ; Sun-Eun Choi, ; Chuanling Si,
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Ting Xu, ; Xueping Song, ; Sun-Eun Choi, ; Chuanling Si,
| |
Collapse
|
26
|
Park SM, He YC, Gong C, Gao W, Bae YS, Si C, Park KH, Choi SE. Effects of taxifolin from enzymatic hydrolysis of Rhododendron mucrotulatum on hair growth promotion. Front Bioeng Biotechnol 2022; 10:995238. [PMID: 36159701 PMCID: PMC9492874 DOI: 10.3389/fbioe.2022.995238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Flavonoid aglycones possess biological activities, such as antioxidant and antidiabetic activities compared to glycosides. Taxifolin, a flavonoid aglycones, is detected only in trace amounts in nature and is not easily observed. Therefore, in this study, to investigate the hair tonic and hair loss inhibitors effect of taxifolin, high content of taxifolin aglycone extract was prepared by enzymatic hydrolysis. Taxifolin effectively regulates the apoptosis of dermal papilla cells, which is associated with hair loss, based on its strong antioxidant activities. However, inhibition of dihydrotestosterone (DHT), which is a major cause of male pattern hair loss, was significantly reduced with taxifolin treatment compared with minoxidil, as a positive control. It was also confirmed that a representative factor for promoting hair growth, IGF-1, was significantly increased, and that TGF-β1, a representative biomarker for hair loss, was significantly reduced with taxifolin treatment. These results suggest that taxifolin from enzymatic hydrolysis of RM is a potential treatment for hair loss and a hair growth enhancer.
Collapse
Affiliation(s)
- Sun-Min Park
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Kangwon, South Korea
| | - Yi-Chang He
- Key Lab of Agricultural Resources and Ecology of Poyang Lake Basin, College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Chun Gong
- Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Young-Soo Bae
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Kangwon, South Korea
- Jiangxi Academy of Forestry, Nanchang, Jiangxi, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Kwang-Hyun Park
- Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, South Korea
- Department of Emergency Medical Rescue, Nambu University, Gwangju, South Korea
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Kangwon, South Korea
| |
Collapse
|
27
|
Xu Z, Pan N, Xue Y, Jiang T, Wang Y. Long-lasting renewable antibacterial graphene/N-halamine-coated cotton fabrics benefitting from enhanced UV stability and quantitative tracking of bactericidal factors. Int J Biol Macromol 2022; 222:1192-1200. [DOI: 10.1016/j.ijbiomac.2022.09.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
28
|
Tanpichai S, Srimarut Y, Woraprayote W, Malila Y. Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration. Int J Biol Macromol 2022; 213:534-545. [PMID: 35661671 DOI: 10.1016/j.ijbiomac.2022.05.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
Cellulose-based paper is an alternative substitution for petroleum-based polymers for packaging applications, but its mechanical performance is poor when in contact with water. Herein, chitosan was applied on cellulose-based paper via a coating approach. The effects of chitosan coatings between none and five layers on the color properties, wettability, thermal properties, mechanical performance, and overall migration in food simulants of the paper were evaluated. After the application of chitosan, chitosan first filled cavities between cellulose fibers within a network, and the chitosan film was formed on the paper surface later. This resulted in a pronounced increase in wettability and mechanical properties associated with a loss of whiteness and an increase in yellowness of the coated paper. The chitosan-coated paper became hydrophobic with a water contact angle of 94.7 ± 2.8°, and a robust improvement of 156.4% for tensile strength and 114.8% for strain at break was observed for the paper coated with three layers of chitosan in wet conditions in comparison to the uncoated paper. A reduction in the migration of the low molecular residuals from the paper could be hindered by the chitosan coating. These enhanced features revealed that chitosan-coated paper could be used as a food-contact material.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Cellulose and Bio-based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| |
Collapse
|
29
|
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. NANO-MICRO LETTERS 2022; 14:104. [PMID: 35416525 PMCID: PMC9008119 DOI: 10.1007/s40820-022-00849-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, Greenville, SC, 29607, USA
| | - Ning Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Bo Pang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
30
|
Abral H, Kurniawan A, Rahmadiawan D, Handayani D, Sugiarti E, Muslimin AN. Highly antimicrobial and strong cellulose-based biocomposite film prepared with bacterial cellulose powders, Uncaria gambir, and ultrasonication treatment. Int J Biol Macromol 2022; 208:88-96. [PMID: 35304197 DOI: 10.1016/j.ijbiomac.2022.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
This work characterized bacterial cellulose (BC)/Uncaria gambir (G) biocomposite film prepared with ultrasonication treatment. Films were prepared from BC powder suspensions in distilled water without and with various loadings (0.05 g, 0.1 g, 0.2 g, 2 g) of G powder then treated using an ultrasonic probe at 1000 W for one hour. The results revealed that the ultrasonication treatment of the suspension greatly increased tensile strength (TS), elongation at break (EB), and toughness (TN) of a BC film by 3097%, 644%, and 32,600%, respectively, compared to non-sonicated BC film. After adding 0.05 g G into the sonicated BC powder suspension, TS, EB, and TN of the biocomposite film were improved to 105.6 MPa, 14.3%, and 8.7 MJ/m3, respectively. The addition of the G increased in antimicrobial activity of the film. This study indicates that biocomposite film is potentially useful for nanopaper production with good antimicrobial and high tensile properties.
Collapse
Affiliation(s)
- Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia.
| | - Arif Kurniawan
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
| | - Dieter Rahmadiawan
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Indonesia
| | - Dian Handayani
- Laboratory of Sumatran Biota, Faculty of Pharmacy, Andalas University, 25163 Padang, Sumatera Barat, Indonesia
| | - Eni Sugiarti
- Laboratory of High-Temperature Coating, Research Center for Physics Indonesian Institute of Sciences (LIPI) Serpong, Indonesia
| | - Ahmad Novi Muslimin
- Laboratory of High-Temperature Coating, Research Center for Physics Indonesian Institute of Sciences (LIPI) Serpong, Indonesia
| |
Collapse
|
31
|
Mondal AK, Xu D, Wu S, Zou Q, Lin W, Huang F, Ni Y. High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties. Int J Biol Macromol 2022; 207:48-61. [PMID: 35247419 DOI: 10.1016/j.ijbiomac.2022.02.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
Herein, we design a dynamic redox system of using high contents of lignosulfonate (LS) and Al3+ to prepare poly acrylic acid (PAA) (LS-g-PAA-Al) hydrogels. The presence of high LS and Al3+ contents, in combination with the effective Al3+ complexes formed, renders the resultant hydrogel with some unique attributes, including excellent ionic conductivity (as high as 7.38 S·m-1) and antibacterial activity; furthermore, a very fast gelation (in 1 min) was obtained. As a flexible strain sensor, the LS-g-PAA-Al hydrogel with high conductivity demonstrates superior sensitivity in human movement detection. In addition, the rich anionic hydrophilic groups, such as sulfonic groups, phenolic hydroxyl groups, in the hydrogels impart the resultant hydrogels with excellent adsorption capacity for cationic dyes: when using Rhodamine B (RB) as a model cationic dye, the adsorption capacity of the resultant hydrogel reaches 334.64 mg·g-1; as a moist-induced power generator, it generates maximum 150.5 mV open circuit voltage with moist air flow. When the hydrogel electrolyte is assembled into a supercapacitor assembly, it shows high specific capacitance of 245.4 F·g-1, with the maximum energy density of 21.8 Wh·kg-1, power density of 2.37 kW·kg-1, and capacitance retention of 95.1% after 5000 consecutive charge-discharge cycles.
Collapse
Affiliation(s)
- Ajoy Kanti Mondal
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; Institute of Fuel Research and Development, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Dezhong Xu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Shuai Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Qiuxia Zou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Weijie Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada.
| |
Collapse
|
32
|
A REVIEW ON POTENTIAL ANTI-DIABETIC MECHANISMS OF CHITOSAN AND ITS DERIVATIVES. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
33
|
Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C. Cellulose Nanomaterials for Oil Exploration Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2007121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Meng Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
34
|
Zhou N, Xu L, Park SM, Ma MG, Choi SE, Si C. Genetic Diversity, Chemical Components, and Property of Biomass Paris polyphylla var. yunnanensis. Front Bioeng Biotechnol 2021; 9:713860. [PMID: 34368107 PMCID: PMC8339996 DOI: 10.3389/fbioe.2021.713860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Paris polyphylla var. yunnanensis is a kind of biomass resource, which has important medicinal and economical values with a huge market. This review article aims to summarize the recent development of biomass P. polyphylla var. yunnanensis. The genetic diversity and chemical components of biomass P. polyphylla var. yunnanensis were reviewed based on the literature. Both the genetic diversity and genetic structure of biomass P. polyphylla var. yunnanensis were compared by using molecular marker technologies. All the extraction processes, harvest time, and drying methods on the chemical components were summarized in detail. The differences of arbuscular mycorrhizal fungi on the infection rate, diosgenin content, microorganisms, enzyme activities, rhizospheric environment, and endogenous hormones were discussed. This review article is beneficial for the applications of biomass P. polyphylla var. yunnanensis as a biomass resource in the biomedical field.
Collapse
Affiliation(s)
- Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lingfeng Xu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Sun-Min Park
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ming-Guo Ma
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|