1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Liu P, Chen W, Wu D, Zhang Z, Li W, Yang Y. The preparation, modification and hepatoprotective activity of chitooligosaccharides: A review. Int J Biol Macromol 2024; 277:134489. [PMID: 39111493 DOI: 10.1016/j.ijbiomac.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, 201403 Shanghai, China.
| |
Collapse
|
3
|
Salembier R, De Haes C, Bellemans J, Demeyere K, Van Den Broeck W, Sanders NN, Van Laere S, Lyons TR, Meyer E, Steenbrugge J. Chitin-mediated blockade of chitinase-like proteins reduces tumor immunosuppression, inhibits lymphatic metastasis and enhances anti-PD-1 efficacy in complementary TNBC models. Breast Cancer Res 2024; 26:63. [PMID: 38605414 PMCID: PMC11007917 DOI: 10.1186/s13058-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.
Collapse
Affiliation(s)
- Robbe Salembier
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caro De Haes
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
4
|
Yi K, Miao S, Yang B, Li S, Lu Y. Harnessing the Potential of Chitosan and Its Derivatives for Enhanced Functionalities in Food Applications. Foods 2024; 13:439. [PMID: 38338575 PMCID: PMC10855628 DOI: 10.3390/foods13030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
As one of the most abundant natural polysaccharides that possess good biological activity, chitosan is extracted from chitin. Its application in the food field is being increasingly valued. However, chitosan extraction is difficult, and its poor solubility limits its application. At present, the extraction methods include the acid-base method, new chemical methods, and biological methods. The extraction rates of chitin/chitosan are 4-55%, 13-14%, and 15-28%, respectively. Different chemical modifications have different effects on chitosan, making it applicable in different fields. This article reviews and compares the extraction and chemical modification methods of chitosan, emphasizing the importance of green extraction methods. Finally, the application prospects of chitosan in the food industry are discussed. This will promote the understanding of the advantages and disadvantages of different extraction methods for chitosan as well as the relationship between modification and application, providing valuable insights for the future development of chitosan.
Collapse
Affiliation(s)
- Kexin Yi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
| | - Bixing Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Sijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (K.Y.); (S.M.); (B.Y.); (S.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
5
|
Hou F, Gong Z, Jia F, Cui W, Song S, Zhang J, Wang Y, Wang W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem 2023; 409:135336. [PMID: 36586263 DOI: 10.1016/j.foodchem.2022.135336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiqing Gong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengjuan Jia
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Cui
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shasha Song
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jian Zhang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
6
|
Development of Stable Pickering Emulsions with TEMPO-Oxidized Chitin Nanocrystals for Encapsulation of Quercetin. Foods 2023; 12:foods12020367. [PMID: 36673458 PMCID: PMC9857725 DOI: 10.3390/foods12020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Pickering emulsions stabilized by TEMPO-oxidized chitin nanocrystals (T-ChNCs) were developed for quercetin delivery. T-ChNCs were synthesized by TEMPO oxidation chitin and systematically characterized in terms of their physicochemical properties. T-ChNCs were rod-like with a length of 279.7 ± 11.5 nm and zeta potential around -56.1 ± 1.6 mV. The Pickering emulsions were analyzed through an optical microscope and CLSM. The results showed that the emulsion had a small droplet size (972.9 ± 86.0 to 1322.3 ± 447.7 nm), a high absolute zeta potential value (-48.2 ± 0.8 to -52.9 ± 1.9 mV) and a high encapsulation efficiency (quercetin: 79.6%). The emulsion stability was measured at different levels of T-ChNCs and pH values. The droplet size and zeta potential decreased with longer storage periods. The emulsions formed by T-ChNCs retarded the release of quercetin at half rate of that of the quercetin ethanol solution. These findings indicated that T-ChNCs are a promising candidate for effectively stabilizing Pickering emulsions and controlling release of quercetin.
Collapse
|
7
|
Dahiya D, Pilli A, Chirra PRR, Sreeramula V, Mogili NV, Ayothiraman S. Morphological and structural characterization of chitin as a substrate for the screening, production, and molecular characterization of chitinase by Bacillus velezensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86550-86561. [PMID: 35895172 DOI: 10.1007/s11356-022-22166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.
Collapse
Affiliation(s)
- Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Akhil Pilli
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Pratap Raja Reddy Chirra
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Vinay Sreeramula
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Nitish Venkateswarlu Mogili
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India, 534101.
| |
Collapse
|
8
|
Whey protein isolate nanofibrils formed with phosphoric acid: Formation, structural characteristics, and emulsion stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|