1
|
B M S, K S V P C, R D P, Bhat BN, V DK. Copper doped chitosan-guar gum nanocomposite: A multifunctional carrier for Trichoderma with potent antifungal properties. Int J Biol Macromol 2025; 311:143919. [PMID: 40324506 DOI: 10.1016/j.ijbiomac.2025.143919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
In this study, a biopolymer-based nanocomposite was fabricated as a delivery material for the biocontrol agent Trichoderma harzianum Th4d. Cu-Cts-gg nanocomposite was synthesized using sol-gel method. Characterization studies like UV-vis spectroscopy, DLS, SEM and TEM were conducted to determine the nano size and shape of the nanocomposite. TEM analysis confirmed the formation of spherical shaped particles with an average size of 28.59 ± 4.23 nm. Entrapment of Th4d spores with the nanocomposite matrix exhibited entrapment efficiency of 99.75 to 100 %. Cu-Cts-gg-Th4d (1 % w/v) nanocomposite showed significant antifungal activity against soil borne pathogen Sclerotium rolfsii under both in vitro (100 % inhibition of mycelial growth) and in vivo (92.27 % disease reduction) conditions. Apart from this, Cu-Cts-gg-Th4d seed coating significantly enhanced the germination percentage, seedling vigour, fresh weight, and dry weight of groundnut plants. Root colonization and shelf-life studies of Cu-Cts-gg-Th4d proven its ability to deliver the Trichoderma to the target site, and to maintain the viability of Trichoderma up to 6 months under room temperature. It can be concluded that, Cu-Cts-gg-Th4d nanocomposite as a seed coating material is a promising alternative to the synthetic chemicals to provide seed protection against soil borne pathogens.
Collapse
Affiliation(s)
- Sangeetha B M
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India; Professor Jayashankar Telangana Agricultural University, Hyderabad 500030, India
| | - Chandrika K S V P
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India.
| | - Prasad R D
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India.
| | - Bharati N Bhat
- Professor Jayashankar Telangana Agricultural University, Hyderabad 500030, India
| | - Dinesh Kumar V
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India
| |
Collapse
|
2
|
Beyaz H, Kavaz D, Rizaner N. Chitosan nanoparticle encapsulation of thymus capitatus essential oil: in vitro release, antioxidant, antibacterial activity and cytotoxicity in MDA-MB-231 cells. Pharm Dev Technol 2025:1-15. [PMID: 40163347 DOI: 10.1080/10837450.2025.2487255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Thymus capitatus (Th. Ca) is known to treat mouth ulcers and respiratory infections in Cyprus. However, antioxidant, antibacterial, and cytotoxic potential of Th. Ca. EO on MDA-MB-231 cells and its' encapsulation into nanoparticles has not been well studied. Therefore, we aimed to analyze the antioxidant, antibacterial, cytotoxic potential, loading efficiency, and in vitro release profile of both Th. Ca. EO and Chitosan Nanoparticle (Ch. Np) - Th. Ca. EO. GC-MS analysis revealed 53.97% carvacrol, 14.53% borneol, and 12.09% sabinene presence in EO. The loading efficiency of Th. Ca. EO into Ch. Np. was calculated as 35.27% and the in vitro release profile reached a maximum of 68% in pH 7 for two weeks. The Minimum Inhibitory Concentration (MIC) assay showed that E. coli had an MIC50 of 0.3215 mg/ml while B. subtilis had an MIC50 of 0.5304 mg/ml. The antioxidant activity of the EO was assessed by performing a DPPH assay with an IC50 = 440 μg/ml. Trypan Blue Assay revealed that 60 µg/ml Th. Ca. EO significantly reduced the cell viability of MDA-MB-231 cells by 10.7% at 48h and 20.06% at 72h. Overall, Ch. Np. - Th. Ca. EO has shown a promising formulation for the pharmaceutical industry.
Collapse
Affiliation(s)
- Huseyin Beyaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
- Biotechnology Research Centre, Cyprus International University, Nicosia, Turkey
| | - Nahit Rizaner
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Turkey
- Biotechnology Research Centre, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
3
|
Chudzińska-Skorupinska J, Wawrzyńczak A, Feliczak-Guzik A. Carbohydrate-based polymer nanocarriers for environmentally friendly applications. Adv Colloid Interface Sci 2025; 338:103415. [PMID: 39884112 DOI: 10.1016/j.cis.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Effective delivery of active substances and drugs is an important part of treatment. In order for a drug to work at the right place in the body, it must be transported there in the right way. For this reason, new carriers are being sought for active substances and drugs that can effectively deliver drugs to the target site without causing additional side effects. These include nanoparticles, microneedles, cubosomes and nanogels, among others. Recently, carriers based on biodegradable polymers such as hyaluronic acid or chitosan are becoming popular. In addition, modern carriers are designed to release the active ingredient in response to a specific agent. This paper reviews the literature from the past 5 years on novel delivery systems with medical, agricultural, food and cosmetic applications, with a special emphasis on the use of carbohydrate-based nanocarriers.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
4
|
Sharma P, Sahu BK, Swami K, Chandel M, Kumar P, Palanisamy T, Shanmugam V. E-seed skin: a carbohydrate-protein hybrid nanostructure for delayed germination and accelerated growth. J Mater Chem B 2025; 13:3895-3905. [PMID: 40007250 DOI: 10.1039/d4tb01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The main purpose of the seed industry is to cater seeds with desired strength and viability, for which seed coating is a basic requirement. Herein, a hybrid coating of an electrosprayed protein (collagen) on electrospun nanofibers having a multidentate zinc-reinforced carbohydrate (pectin)/PVA composite (PVA/Pec/Zn/Col-NF) was developed. The zinc ensured covalent binding with the -OH in pectin/PVA in addition to the native galvanic binding between the polymers. Along with this, hydrogen bonding interactions between the -NH2 groups of electrosprayed collagen and the -OH groups in PVA/pectin further enabled the formation of a highly stable nanostructure. Controlled electrodeposition of collagen nanoparticles on the PVA/Pec/Zn-NF led to a decreased surface roughness scale with enhanced moisture resistance. The humidity resistance of the coating and the participation of zinc as a nutrient delayed the germination by 8 days and accelerated the tomato seedling's growth by approximately two times, respectively. The presence of zinc in the coating formulation enabled oxidative stress protection by boosting the superoxide dismutase activity. Moreover, the fungal resistance of the coating enabled the seeds to germinate even in the presence of phytopathogens. Thus, the approach of using the developed PVA/Pec/Zn/Col-NF coating material to construct a tight packing without affecting viability of the seed demonstrates a pioneering seed coating technique for increasing global food security amidst climate change and global warming.
Collapse
Affiliation(s)
- Parul Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517619, India
| | - Kanchan Swami
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India.
| | - VijayaKumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector-81, Punjab - 140306, India.
| |
Collapse
|
5
|
Maurya A, Yadav A, Soni M, Paul KK, Banjare U, Jha MK, Dwivedy AK, Dubey NK. Nanoencapsulated Essential Oils for Post-Harvest Preservation of Stored Cereals: A Review. Foods 2024; 13:4013. [PMID: 39766956 PMCID: PMC11727106 DOI: 10.3390/foods13244013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Cereal grains are frequently attacked by microorganisms and insects during storage and processing, which negatively affects their quality, safety, and market value. Therefore, protecting stored grains from microbial contamination is crucial for food industries, farmers, public health associations, and environmental agencies. Due to the negative impact of synthetic gray chemicals, antimicrobial plant-based essential oils (EOs) can serve as alternative, safer, environmentally friendly preservatives that can prolong the shelf life of cereals. However, high volatility, low solubility, hydrophobicity, and quick oxidation limit their practical applicability. Using nanotechnology for the nanoencapsulation of EOs into polymeric matrices allows sustained release and ensures targeted delivery without significantly altering the organoleptic attributes of cereals, making EOs a new-generation green preservative. This ultimately overcomes the challenges of practical applications. The application of nanoencapsulated EOs in grain storage provides an effective and novel defense against microbes, insects, and other contaminants. Hence, the current review thoroughly examines the preservative potential of nanoencapsulated EOs in terms of antimicrobial and insecticidal efficacy for protecting stored cereal grains. It also highlights the challenges encountered during application and the safety concerns of using nanoencapsulated EOs in protecting cereal grains during post-harvest storage.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
- Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, India
| | - Arati Yadav
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Monisha Soni
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Kishor Kumar Paul
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Umakant Banjare
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Manish Kumar Jha
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (A.M.); (A.Y.); (M.S.); (K.K.P.); (U.B.); (M.K.J.); (A.K.D.)
| |
Collapse
|
6
|
Mondéjar-López M, López-Jiménez AJ, Gómez-Gómez L, Ahrazem O, García-Martínez JC, Niza E. Field Crop Evaluation of Polymeric Nanoparticles of Garlic Extract-Chitosan as Biostimulant Seed Nano-Priming in Cereals and Transcriptomic Insights. Polymers (Basel) 2024; 16:3385. [PMID: 39684129 DOI: 10.3390/polym16233385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Current crop management worldwide is shifting toward the use of environmentally friendly products. With this objective, we developed a new phytosanitary product with biostimulant properties based on the encapsulation of garlic extract at a lower dose (<0.1%) in chitosan nanoparticles as a seed nano-priming agent. In the present study, the morphology of the nanoparticles, their stability under prolonged storage conditions, and their efficacy as a biostimulant are evaluated on cereals in rainfed crops, and the activities were correlated with a transcriptomic analysis. The nanoparticles showed a spherical shape and had a maximum size close to 200 nm with satisfactory stability at 4 °C, reducing the probability of aggregation processes in the nanoparticles. The biostimulant properties of the nano-priming agent were evaluated in a field experiment with wheat, barley, and oat seeds at 30 and 90 days, showing that plants treated with nanoparticles showed significant differences with higher values in root development, leaf length, and total plant weight. Finally, through a RNA-SEQ analysis of the treated wheat seeds, we have confirmed that the nano-treatment showed a higher increases in regard to development, metabolism, and plant response genes compared with untreated seeds.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Alberto José López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Joaquín Calixto García-Martínez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- Instituto de Biomedicina (IB-UCLM), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| |
Collapse
|
7
|
Pitterou I, Kalogeropoulou F, Tzani A, Tsiantas K, Gatou MA, Pavlatou E, Batrinou A, Fountzoula C, Kriebardis A, Zoumpoulakis P, Detsi A. Development of Alginate Hydrogels Incorporating Essential Oils Loaded in Chitosan Nanoparticles for Biomedical Applications. Molecules 2024; 29:5318. [PMID: 39598707 PMCID: PMC11596793 DOI: 10.3390/molecules29225318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
A hybrid alginate hydrogel-chitosan nanoparticle system suitable for biomedical applications was prepared. Chitosan (CS) was used as a matrix for the encapsulation of lavender (Lavandula angustifolia) essential oil (LEO) and Mentha (Mentha arvensis) essential oil (MEO). An aqueous solution of an acidic Natural Deep Eutectic Solvent (NADES), namely choline chloride/ascorbic acid in a 2:1 molar ratio, was used to achieve the acidic environment for the dissolution of chitosan and also played the role of the ionic gelator for the preparation of the chitosan nanoparticles (CS-NPs). The hydrodynamic diameter of the CS-MEO NPs was 130.7 nm, and the size of the CS-LEO NPs was 143.4 nm (as determined using Nanoparticle Tracking Analysis). The CS-NPs were incorporated into alginate hydrogels crosslinked with CaCl2. The hydrogels showed significant water retention capacity (>80%) even after the swollen sample was kept in the aqueous HCl solution (pH 1.2) for 4 h, indicating a good stability of the network. The hydrogels were tested (a) for their ability to absorb dietary lipids and (b) for their antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens. The antimicrobial activity of the hybrid hydrogels was comparable to that of the widely used food preservative sodium benzoate 5% w/v.
Collapse
Affiliation(s)
- Ioanna Pitterou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (I.P.); (F.K.); (A.T.)
| | - Flora Kalogeropoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (I.P.); (F.K.); (A.T.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (I.P.); (F.K.); (A.T.)
| | - Konstantinos Tsiantas
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (K.T.); (A.B.); (P.Z.)
| | - Maria Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (M.A.G.); (E.P.)
| | - Evangelia Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (M.A.G.); (E.P.)
| | - Anthimia Batrinou
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (K.T.); (A.B.); (P.Z.)
| | - Christina Fountzoula
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, 12243 Athens, Greece;
| | - Anastasios Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, 12243 Athens, Greece;
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (K.T.); (A.B.); (P.Z.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece; (I.P.); (F.K.); (A.T.)
| |
Collapse
|
8
|
Muthusamy V, Govindhan T, Amirthalingam M, Pottanthara Ashokan A, Thangavel H, Palanisamy S, Paramasivam P. Chitosan nanoparticles encapsulated Piper betle essential oil alleviates Alzheimer's disease associated pathology in Caenorhabditis elegans. Int J Biol Macromol 2024; 279:135323. [PMID: 39241994 DOI: 10.1016/j.ijbiomac.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
A multifaceted approach in treating Alzheimer's disease (AD), a neurodegenerative condition that poses health risks in the aging population is explored in this investigation via encapsulating Piper betle essential oil (PBEO) in chitosan nanoparticles (ChNPs) to improve solubility and efficacy of PBEO. PBEO-ChNPs mitigated AD-like features more effectively than free PBEO by delaying paralysis progression and reducing serotonin hypersensitivity, ROS levels, Aβ deposits, and neurotoxic Aβ-oligomers in the Caenorhabditis elegans AD model. PBEO-ChNPs significantly improved lifespan, neuronal health, healthspan, cognitive function, and reversed deficits in chemotaxis and reproduction. PBEO-ChNPs also induced stress response genes daf-16, sod-3, and hsp-16.2. The participation of the DAF-16 pathway in reducing Aβ-induced toxicity was confirmed by daf-16 RNAi treatment, and upregulation of autophagy genes leg-1, unc-51, and bec-1 was noted. This study is the first to demonstrate an alternative biopolymeric nanoformulation with natural PBEO and chitosan, in mitigating AD and its associated symptoms.
Collapse
Affiliation(s)
- Velumani Muthusamy
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Thiruppathi Govindhan
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Mohankumar Amirthalingam
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | | | - Hema Thangavel
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Sundararaj Palanisamy
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| |
Collapse
|
9
|
Riseh RS, Vazvani MG, Vatankhah M, Kennedy JF. Chitosan coating of seeds improves the germination and growth performance of plants: A Rreview. Int J Biol Macromol 2024; 278:134750. [PMID: 39218713 DOI: 10.1016/j.ijbiomac.2024.134750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This review article explores the fascinating world of chitosan coating applied to seeds and its profound impacts on enhancing the germination process and growth performance of plants. Chitosan, a biodegradable and non-toxic polysaccharide derived from chitin, has shown remarkable potential in seed treatment due to its bioactive properties. The review discusses the mechanisms of chitosan's effect on plant germination including promoting water uptake, enhancing nutrient absorption, and protecting seeds from biotic and abiotic stresses. Moreover, it evaluates the effects of chitosan on plant growth parameters such as root development, shoot growth, chlorophyll content, and overall yield. The review also discusses the sustainable aspects of chitosan coatings in agriculture, emphasizing their eco-friendly nature and potential for reducing reliance on synthetic chemicals. Overall, the findings underscore the significant benefits of chitosan-coated seeds in improving the overall performance of plants, paving the way for a greener and more productive agricultural future. Finally, the article will conclude with a SWOT analysis discussing the strengths, weaknesses, opportunities, and threats of this technology.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
10
|
Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. J Anim Sci Biotechnol 2024; 15:110. [PMID: 39123220 PMCID: PMC11316336 DOI: 10.1186/s40104-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pengyuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongping Jin
- JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China
| | - Lisbeth Grøndahl
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
12
|
Hafeez R, Guo J, Ahmed T, Jiang H, Raza M, Shahid M, Ibrahim E, Wang Y, Wang J, Yan C, An Q, White JC, Li B. Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.). Carbohydr Polym 2024; 334:122023. [PMID: 38553222 DOI: 10.1016/j.carbpol.2024.122023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rice blast disease (RBD) caused by Magnaporthe oryzae, threaten food security by cutting agricultural output. Nano agrochemicals are now perceived as sustainable, cost-effective alternatives to traditional pesticides. This study investigated bioformulation of moringa chitosan nanoparticles (M-CsNPs) and their mechanisms for suppressing RBD while minimizing toxic effects on the microenvironment. M-CsNPs, sized 46 nm with semi-spherical morphology, significantly suppressed pathogen growth, integrity, and colonization at 200 mg L-1in vitro. Greenhouse tests with foliar exposure to the same concentration resulted in a substantial 77.7 % reduction in RBD, enhancing antioxidant enzyme activity and plant health. Furthermore, M-CsNPs improved photosynthesis, gas exchange, and the nutritional profile of diseased rice plants. RNA-seq analysis highlighted upregulated defense-related genes in treated rice plants. Metagenomic study showcased reshaping of the rice microbiome, reducing Magnaporthe abundance by 93.5 %. Both healthy and diseased rice plants showed increased microbial diversity, particularly favoring specific beneficial species Thiobacillus, Nitrospira, Nocardioides, and Sphingomicrobium in the rhizosphere and Azonexus, Agarivorans, and Bradyrhizobium in the phyllosphere. This comprehensive study unravels the diverse mechanisms by which M-CsNPs interact with plants and pathogens, curbing M. oryzae damage, promoting plant growth, and modulating the rice microbiome. It underscores the significant potential for effective plant disease management.
Collapse
Affiliation(s)
- Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Junning Guo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China; MEU Research Unit, Middle East University, Amman, Jordan
| | - Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
14
|
Singh J, Sharma M, Singh H, Arora P, Utreja P, Kumar S. Formulation, Characterization and In Vitro Evaluation of Mesalamine and Bifidobacterium bifidum Loaded Hydrogel Beads in Capsule System for Colon Targeted Delivery. AAPS PharmSciTech 2024; 25:61. [PMID: 38485901 DOI: 10.1208/s12249-024-02764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/10/2024] [Indexed: 03/19/2024] Open
Abstract
Mesalamine is a first-line drug for the treatment of inflammatory bowel diseases. However, its premature release associated with marketed formulations leads to adverse effects like gastric trouble, vomiting, and diarrhoea. To minimize these side effects, colon-targeted drug delivery is essential. Besides conventional pharmacotherapy, bifidogenic probiotics with anti-inflammatory activity has been reported to elicit a significant impact on the remission of ulcerative colitis. Bifidogenic probiotics being acid-labile necessitate developing a gastro-resistant formulation for enhancing the delivery of viable cells to the colon. The present study was aimed at developing a fixed-dose unit dosage form of mucoadhesive hydrogel beads loaded with mesalamine and Bifidobacterium bifidum further encapsulated in Eudragit® capsules for the targeted drug delivery at colonic pH. The hydrogel beads were prepared by ionotropic gelation, with the effect of single and dual-crosslinking approaches on various formulation characteristics studied. Standard size 00 Eudragit® gastro-resistant capsules were prepared and the dried beads were filled inside the capsule shells. The formulation was then evaluated for various parameters, including physicochemical characterization, in vitro biocompatibility and anti-inflammatory activity. No interaction was observed between the drug and the polymers, as confirmed through FTIR, XRD, and DSC analysis. The mean particle size of the beads was ~ 457-485 µm. The optimized formulation showed a drug entrapment efficiency of 95.4 ± 2.58%. The Eudragit® capsule shells disintegrated in approximately 13 min at pH 7.4. The mucoadhesive hydrogel beads sustained the drug release above 18 h, with 50% of the drug released by the end of 12 h. The optimized formulation demonstrated significant (p < 0.05) gastro-resistance, biocompatibility, sustained drug release, cell viability, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Jagtar Singh
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Mohit Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Harmeet Singh
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
- Faculty of Medical Lab Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Near Baddowal Cantt, Ferozepur Rd, Ludhiana, Punjab, 142021, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| |
Collapse
|
15
|
Jiang X, Yu Y, Ma S, Li L, Yu M, Han M, Yuan Z, Zhang J. Chitosan nanoparticles loaded with Eucommia ulmoides seed essential oil: Preparation, characterization, antioxidant and antibacterial properties. Int J Biol Macromol 2024; 257:128820. [PMID: 38103671 DOI: 10.1016/j.ijbiomac.2023.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Eucommia ulmoides seed essential oil (EUSO) is a natural plant oil rich in various nutrients, which has been widely used due to its unique medicinal effects. However, it is prone to oxidation and rancidity under many adverse environmental influences. Nanoencapsulation technology can protect and slow down the loss of its biological activity. In this study, chitosan nanoparticles (CSNPs) loaded with EUSO were prepared by emulsification and ionic gel technology. EUSO-CSNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results confirmed the success of EUSO encapsulation and the encapsulation rate ranged from 36.95 % to 67.80 %. Nanoparticle size analyzer, Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) showed that CSNPs were spherical particles with a range of 200.6-276.0 nm. The results of in vitro release study indicated that the release of EUSO was phased, and EUSO-CSNPS had certain sustained-release properties. Furthermore, EUSO-CSNPs had higher antioxidant and antibacterial abilities than pure EUSO and chitosan, which was verified through free radical scavenging experiments and bacteria biofilm experiments, respectively. This technology can enhance the medicinal value of EUSO in biomedical and other fields, and will provide support for in vivo research of EUSO-CSNPs in the future.
Collapse
Affiliation(s)
- Xin Jiang
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yufan Yu
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuting Ma
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lianshi Li
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Meiqi Yu
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Meijie Han
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
16
|
Shetta A, Ali IH, Sharaf NS, Mamdouh W. "Review of strategic methods for encapsulating essential oils into chitosan nanosystems and their applications". Int J Biol Macromol 2024; 259:129212. [PMID: 38185303 DOI: 10.1016/j.ijbiomac.2024.129212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Essential oils (EOs) are hydrophobic, concentrated extracts of botanical origin containing diverse bioactive molecules that have been used for their biomedical properties. On the other hand, the volatility, toxicity, and hydrophobicity limited their use in their pure form. Therefore, nano-encapsulation of EOs in a biodegradable polymeric platform showed a solution. Chitosan (CS) is a biodegradable polymer that has been intensively used for EOs encapsulation. Various approaches such as homogenization, probe sonication, electrospinning, and 3D printing have been utilized to integrate EOs in CS polymer. Different CS-based platforms were investigated for EOs encapsulation such as nanoparticles (NPs), nanofibers, films, nanoemulsions, 3D printed composites, and hydrogels. Biological applications of encapsulating EOs in CS include antioxidant, antimicrobial, and anticancer functions. This review explores the principles for nanoencapsulation strategies, and the available technologies are also reviewed, in addition to an in-depth overview of the current research and application of nano-encapsulated EOs.
Collapse
Affiliation(s)
- Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Isra H Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Nouran S Sharaf
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
17
|
Etxebeste-Mitxeltorena M, Niza E, Fajardo CM, Gil C, Gómez-Gómez L, Martinez A, Ahrazem O. Neuroprotective properties of exosomes and chitosan nanoparticles of Tomafran, a bioengineered tomato enriched in crocins. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:9. [PMID: 38212507 PMCID: PMC10784249 DOI: 10.1007/s13659-023-00425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Saffron has many pharmacological properties in addition to being a frequently used food seasoning. Crocin and picrocrocin which accumulate in saffron stigma, are responsible for these pharmacological properties. These natural products have health-promoting effects for the prevention and treatment of numerous diseases, including age-related cognitive and memory disfunction. Currently, crocin and picrocrocin are obtained from saffron, considered as the spice with the highest price in the market. To develop an efficient and low-cost approach to producing these compounds with high bioactivity, biosynthetic genes isolated from saffron can be exploited in the metabolic engineering of heterologous hosts and the production of crocins in productive crop plants. Recently, we engineered tomato fruit producing crocins (Tomafran). In this study, we demonstrated that crocin-rich extract, encapsulated in chitosan or in exosomes may function as a neuroprotective strategy. Crocins contained in the Tomafran extracts and much lower doses in chitosan nanoparticles or exosomes were enough to rescue the neuroblastoma cell line SH-SY5Y after damage caused by okadaic acid. Our results confirm the neuroprotective effect of Tomafran and its exosomes that may be useful for the delay or prevention of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Enrique Niza
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Cristián Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain.
| | - Oussama Ahrazem
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain.
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
18
|
Wu J, Chang J, Liu J, Huang J, Song Z, Xie X, Wei L, Xu J, Huang S, Cheng D, Li Y, Xu H, Zhang Z. Chitosan-based nanopesticides enhanced anti-fungal activity against strawberry anthracnose as "sugar-coated bombs". Int J Biol Macromol 2023; 253:126947. [PMID: 37734523 DOI: 10.1016/j.ijbiomac.2023.126947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
A chitosan-based nanoparticle was prepared using chitosan (CS) and O-carboxymethyl chitosan (O-CMCS). Our study revealed that chitosan/O-carboxymethyl chitosan/tebuconazole nanoparticles (CS/O-CMCS/TBA NPs) exhibited superior antifungal activity, foliar adhesion, and microbial target adhesion performance compared to commercial suspension concentrate (SC). The antifungal activity of CS/O-CMCS/TBA NPs against C. gloeosporioides, with a 3.13-fold increase in efficacy over TBA (SC). We also found that low concentrations of CS/O-CMCS NPs promoted the growth of C. gloeosporioides and enhanced the fungal catabolism of chitosan. Overall, the CS/O-CMCS/TBA NPs were found to possess the remarkable capability to selectively aggregate around pathogenic microorganisms and CS/O-CMCS NPs can enhance the fungal catabolism of chitosan. CS/O-CMCS/TBA NPs, as a "sugar-coated bomb", was a promising asset for effective plant disease management and pesticide utilization through the affinity of chitosan-based nanoparticles and C. gloeosporioides, enabling targeted delivery and targeted release of their encapsulated active ingredient, which was important for the development and application of biocompatible chitosan-based nanopesticides.
Collapse
Affiliation(s)
- Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhe Chang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jiajian Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zixia Song
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Xie
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liting Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxin Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Youzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Du H, Gao F, Yang S, Zhu H, Cheng C, Peng F, Zhang W, Zheng Z, Wang X, Yang Y, Hou W. Oxidized of chitosan with different molecular weights for potential antifungal and plant growth regulator applications. Int J Biol Macromol 2023; 253:126862. [PMID: 37703971 DOI: 10.1016/j.ijbiomac.2023.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The application of Chitosan (CS) in drug delivery systems, plant growth promotion, antibacterial potentiality and plant defense is significantly limited by its inability to dissolve in neutral solutions. In this work, CS with different molecular weights (Mw) has been oxidized, yielding five kinds of oxidized chitosan (OCS 1-5) with solubilities in neutral solutions. The results obtained from Fourier Transform Infrared Spectroscopy clearly showed the successful oxidation of the hydroxyl group to form aldehyde and carboxyl groups. And the CS derivatives showed the wrinkled and lamellar structures on the surface of OCS. The results of antifungal activity against Fusarium graminearum showed that the OCS dissolved in 2 % (V/V) acetic acid exhibited better performance of almost complete inhibition of mycelial growth compared with CS at the concentration of 500 μg/mL. Among the five OCS, OCS-4 exhibited the best antifungal effect and had the lowest EC50 value of 581.68 μg/mL in samples. OCS-4 displayed superior promoting effect on seed germination with a germination potential of 62.2 % at a concentration of 3 g/L and a germination rate of 74.5 %. Additionally, the other four OCS also showed excellent antifungal activity with dose-dependent manners. These results indicated that the OCS had excellent antifungal potential in agricultural production.
Collapse
Affiliation(s)
- Haoyang Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fengkun Gao
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Hongxia Zhu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Wenjing Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Zhe Zheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Wenlong Hou
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| |
Collapse
|
20
|
Tiran Gunasena M, Hussein MZ, Ali A, Wahab MAA, Bashir Kutawa A, Rafif A, Afif Mohd Zobir S, Ahmad K. Zingiber officinale Roscoe Essential Oils-Loaded Chitosan Nanoparticles with Enhanced Bactericidal Efficacy against Burkholderia glumae in Rice. Chem Biodivers 2023; 20:e202300686. [PMID: 37905394 DOI: 10.1002/cbdv.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023]
Abstract
Ginger essential oils (GEO) shows exceptional antimicrobial properties against plant pathogens. Due to its high volatility and low stability, it requires encapsulation to retain its effective properties. The GEO-Chitosan (GEO-CS) nanobactericide was developed using the ionic gelation method. The nanobactericides show particle diameters of 465, 28, 35, 48 and 500 nm when sodium tripolyphosphate (TPP) concentrations used in the preparation were 0.0, 0.5, 1.0, 2.0 and 4.0 %, respectively. The X-ray diffraction and the UV-vis studies revealed that the GEO was encapsulated into the chitosan nanoparticles with an encapsulation efficiency of around 46 % and a loading capacity of 27-34 %. The antibacterial activity of GEO-chitosan nanobactericide against Burkholderia glumae (Bg) was found to be 7.5-11.8 mm, with minimum inhibitory concentration and minimum bactericidal concentration values of 15.6 μl/mL and 31.25 μl/mL, respectively. Hence, these findings indicate that the prepared GEO-CS nanobactericides were found to be effective against Bg. This preliminary study is toward the development of new agronanobactericides using a natural product to control Bg.
Collapse
Affiliation(s)
- Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa, 82220, Sri Lanka
| | - Mohd Zobir Hussein
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih, 43500, Malaysia
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsin-Ma, P.M.B 500, Dutsin-Ma, 821101, Nigeria
| | - Amara Rafif
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
21
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
22
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Functionalized nanoencapsulated Curcuma longa essential oil in chitosan nanopolymer and their application for antioxidant and antimicrobial efficacy. Int J Biol Macromol 2023; 251:126387. [PMID: 37595727 DOI: 10.1016/j.ijbiomac.2023.126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The present study reports on the encapsulation of Curcuma longa (L.) essential oil (CLEO) in chitosan nanopolymer as a novel nanotechnology preservative for enhancing its antibacterial, antifungal, and mycotoxin inhibitory efficacy. GC-MS analysis of CLEO showed the presence of α-turmerone (42.6 %) and β- turmerone (14.0 %) as the major components. CLEO-CSNPs were prepared through the ionic-gelation technique and confirmed by TEM micrograph, DLS, XRD, and FTIR. In vitro, bactericidal activity of CLEO-CSNPs at a concentration of 100 μg/mL showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, which mostly rely on ROS production and depend on its penetration and interaction with bacterial cells. Furthermore, the CLEO-CSNPs during in vitro investigation against F. graminearum completely inhibited the growth and zearalenone and deoxynivalenol production at 0.75 μL/mL, respectively. Further, CLEO-CSNPs enhanced antioxidant activity against DPPH• and ABTS•+ with IC50 values 0.95 and 0.66 μL/mL, respectively, and without any negative impacts on germinating seeds were observed during the phytotoxicity investigation. Overall, experiments concluded that encapsulated CLEO enhances antimicrobial inhibitory efficiency against stored foodborne pathogens.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India..
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
23
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
24
|
Xu Y, Chen H, Zhang L, Xu Y. Clove essential oil loaded chitosan nanocapsules on quality and shelf-life of blueberries. Int J Biol Macromol 2023; 249:126091. [PMID: 37543269 DOI: 10.1016/j.ijbiomac.2023.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In this study, the formation of clove essential oil loaded chitosan nanocapsules (CEO/CS-NCs) was achieved by the ionotropic gelation technology. The spherical shape and core-shell structure of CEO/CS-NCs were characterized by SEM, TEM, and FT-IR. CEO/CS-NCs have a reasonable encapsulation efficiency rate of 39 % and an average size of 253.63 nm. The simulated release of CEO/CS-NCs in a citric acid buffer solution shows that the nano-encapsulation technology could control the sustained release of clove essential oil (CEO). The shelf life of untreated blueberries at room temperature is only about 3 days, while CEO/CS-NCs combined with low-temperature storage can extend the shelf life to about 12 days. The quality characteristic of blueberries, including fruit firmness and moisture content, were effectively maintained, and the rotting rate of blueberries was significantly reduced with CEO/CS-NCs. As a natural preservative, CEO/CS-NCs have a good antioxidant activity close to the commercial antioxidant butylated hydroxytoluene (BHT) and a high antibacterial activity against pathogenic bacteria (PB) isolated from naturally occurring blueberries. Therefore, this study not only gives a theoretical basis for the development of CEO as a commercial preservative but also provides a practical solution to solve the protection challenge of preserving blueberries.
Collapse
Affiliation(s)
- Yongjian Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hao Chen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lan Zhang
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yang Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
25
|
Saeed Al-Zahrani S, Mohammed Al-Garni S. Antifungal potentiality of mycogenic silver nanoparticles capped with chitosan produced by endophytic Amesia atrobrunnea. Saudi J Biol Sci 2023; 30:103746. [PMID: 37645687 PMCID: PMC10461022 DOI: 10.1016/j.sjbs.2023.103746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
This research reports the fabrication of silver nanoparticles (AgNPs) from endophytic fungus, Amesia atrobrunnea isolated from Ziziphus spina-christi (L.). Influencing factors for instance, thermal degree of incubation, media, pH, and silver nitrate (AgNO3) molarity were optimized. Then, the AgNPs were encapsulated with chitosan (Ch-AgNPs) under microwave heating at 650 W for 90 s. Characterization of nanoparticles was performed via UV-visible (UV-vis) spectrophotometer, Fourier-transform infrared spectrophotometer (FTIR), zeta potential using dynamic-light scattering (DLS), and field-emission-scanning electron microscope (FE-SEM). Anti-fungal activity of Ch-AgNPs at (50, 25, 12.5, 6.25 mg/L) was tested against Fusarium oxysporum, Curvularia lunata, and Aspergillus niger using the mycelial growth inhibition method (MGI). Results indicated that Czapek-dox broth (CDB) with 1 mM AgNO3, an acidic pH, and a temperature of 25-30 °C were the optimum for AgNPs synthesis. (UV-vis) showed the highest peak at 435 nm, whereas Ch-AgNPs showed one peak for AgNPs at 405 nm and another peak for chitosan at 230 nm. FTIR analysis confirmed that the capping agent chitosan was successfully incorporated and interacted with the AgNPs through amide functionalities. Z-potential was -19.7 mV for AgNPs and 38.9 mV for Ch-AgNPs, which confirmed the significant stability enhancement after capping. FES-SEM showed spherical AgNPs and a reduction in the nanoparticle size to 44.65 nm after capping with chitosan. The highest mycelial growth reduction using fabricated Ch-AgNPs was 93% for C. lunata followed by 77% for A. niger and 66% F. oxysporum at (50 mg/L). Biosynthesis of AgNPs using A. atrobrunnea cell-free extract was successful. Capping with chitosan exhibited antifungal activity against fungal pathogens.
Collapse
Affiliation(s)
- Samiyah Saeed Al-Zahrani
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Faculty of Arts and Science, Albaha University, Albaha, Saudi Arabia
| | | |
Collapse
|
26
|
Lv H, Huo S, Zhao L, Zhang H, Liu Y, Liu S, Tani A, Wang R. Preparation and application of cinnamon-Litsea cubeba compound essential oil microcapsules for peanut kernel postharvest storage. Food Chem 2023; 415:135734. [PMID: 36848837 DOI: 10.1016/j.foodchem.2023.135734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
This research developed a novel, efficient and safe antimildew for peanut kernel postharvest storage. The antimildew, cinnamon-Litsea cubeba compound essential oil (CLCEO) microcapsule (CLCEOM), was synthesized with CLCEO as core materials and β-cyclodextrin as wall materials. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry analyses indicated that major antifungal compounds of CLCEO were encapsulated in the cavity of β-cyclodextrin. The inhibition zone experiment showed that CLCEOM retained antifungal effect on Aspergillus spp. strains even after storage for 2 months at 4 ℃. Besides, CLCEOM reduced total number of fungal colonies, relative abundance of Aspergillus spp., and aflatoxin B1 content of peanut kernels, and had positive effect on slowing down the increase in acid value of peanut oil without causing any adverse effect on the viability and sensory properties during storage process. Overall, CLCEOM presented good preservative effects on peanut kernels, providing evidence for its potential use as antimildew for peanut storage.
Collapse
Affiliation(s)
- Haoxin Lv
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China.
| | - Shanshan Huo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Lingli Zhao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Hanxiao Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yijun Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Shichang Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Ruolan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
27
|
Yousefi M, Khanniri E, Sohrabvandi S, Khorshidian N, Mortazavian AM. Encapsulation of Heracleum persicum essential oil in chitosan nanoparticles and its application in yogurt. Front Nutr 2023; 10:1130425. [PMID: 37360296 PMCID: PMC10287953 DOI: 10.3389/fnut.2023.1130425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Heracleum percicum essential oil (HEO) at various levels was encapsulated in chitosan nanoparticles and its potential application in yogurt was investigated. The values obtained for encapsulation efficiency, loading capacity, mean particle size, and zeta potential of nanoparticles were 39.12-70.22%, 9.14-14.26%, 201.23-336.17 nm, and + 20.19-46.37 mV, respectively. The nanoparticles had spherical shape with some holes as a result of drying process. In vitro release studies in acidic solution and phosphate buffer solution indicated an initial burst effect followed by slow release with higher release rate in acidic medium. Results of antibacterial activity revealed that Staphylococcus aureus and Salmonella typhimurium with inhibition zones of 21.04-38.10 and 9.39-20.56 mm were the most sensitive and resistant bacteria to HEO, respectively. Incorporation of encapsulated HEO into yogurt decreased pH and increased titratable acidity due to stimulation of starters' activity. Interaction of nanoparticles with proteins decreased syneresis in yogurt. Regarding antioxidant activity, a higher value was observed in yogurt containing encapsulated HEO after 14 days of storage due to degradation and release of essential oil from nanoparticles. In conclusion, application of HEO nanoparticles in yogurt could be a promising approach for development of functional food products such as yogurt with enhanced antioxidant properties.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ. Int J Biol Macromol 2023:125160. [PMID: 37271266 DOI: 10.1016/j.ijbiomac.2023.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The present study investigated the comparative efficacy of garlic essential oil (GEO) and its nanoencapsulated within chitosan nanomatrix (GEO-CSNPs) as a novel preservative for the protection of stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination and lipid peroxidation against a toxigenic strain of Aspergillus flavus. GC-MS examination of GEO showed the presence of allyl methyl tri-sulfide (23.10 %) and diallyl sulfide (19.47 %) as the major components. GEO-CSNPs were characterized through TEM micrograph, DLS, XRD, and FTIR instrumentation. During the in-vitro investigation, GEO-CSNPs at 1.0 μL/mL dose completely inhibited the growth of A. flavus while preventing the synthesis of AFB1 at 0.75 μL/mL compared to the pure GEO. The biochemical analysis reveals that A. flavus exposed to GEO-CSNPs significantly changed its ergosterol level, ions leakage, mitochondrial membrane potential (MMP), and antioxidant system. Additionally, GEO-CSNPs exhibited enhanced antioxidant activity against DPPH compared with GEO. Likewise, during in-situ experiments on A. hypogea GEO-CSNPs MIC and 2 MIC concentration prohibited fungal development, AFB1 synthesis, and lipid peroxidation or inflicting any negative impacts on germinating seeds. Overall, investigations concluded that GEO-CSNPs could be used as a novel preservative agent to improve the shelf life of stored food commodities.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
Adeyemi SB, Akere AM, Orege JI, Ejeromeghene O, Orege OB, Akolade JO. Polymeric nanoparticles for enhanced delivery and improved bioactivity of essential oils. Heliyon 2023; 9:e16543. [PMID: 37484246 PMCID: PMC10360594 DOI: 10.1016/j.heliyon.2023.e16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
Essential oils are volatile constituents that give aromatic plants their characteristic odour. The application of these plant actives in food, agriculture, pharmaceutics, and cosmetics has been widely studied. Aromatherapy, a complementary therapy involving the use of essential oils to treat several diseases ranging from microbial infections to metabolic dysfunctions, has been utilised for centuries. Anticancer, antimicrobial, and anti-inflammatory activities are well-established among other pharmacological properties of these aromatic oils. The oils, which are composed mainly of terpene-based compounds, have also been explored as nutraceuticals, alternative green preservatives, and functional additives in foods. However, due to their physicochemical properties, viz high volatility and low aqueous solubility, essential oil delivery to target receptors were challenging when administered as chemotherapeutics. Hence, formulating essential oils with suitable excipients to enhance their delivery and bioavailability, invariably improving their bioactivity and therapeutic efficacy becomes expedient. Nanotechnology presents a unique strategy to develop a particulate delivery system for the controlled, sustained, and extended release of essential oils. In this review, we examine and summarize the trends and developments in the formulation of essential oils using polymeric nanoparticles.
Collapse
Affiliation(s)
| | - Aishat Mojisola Akere
- Public Library of Science (PLOS), The Bradfield Centre, 184 Cambridge Science Park, Milton, Cambridge, CB4 0GA, United Kingdom
| | - Joshua Iseoluwa Orege
- Ekiti State University, Ado-Ekiti, PMB 5363, Ekiti State, Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Onome Ejeromeghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, PR China
| | | | - Jubril Olayinka Akolade
- Biotechnology Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria
- Department of Biotechnology, Baze University, Abuja, Nigeria
| |
Collapse
|
30
|
Dos Santos VS, Lorevice MV, Baccarin GS, da Costa FM, da Silva Fernandes R, Aouada FA, de Moura MR. Combining Chitosan Nanoparticles and Garlic Essential Oil as Additive Fillers to Produce Pectin-Based Nanocomposite Edible Films. Polymers (Basel) 2023; 15:polym15102244. [PMID: 37242819 DOI: 10.3390/polym15102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Edible films were produced by combining a pectin (PEC) matrix with chitosan nanopar-ticle (CSNP), polysorbate 80 (T80), and garlic essential oil (GEO) as an antimicrobial agent. CSNPs were analyzed for their size and stability, and the films, throughout their contact angle, scanning electron microscopy (SEM), mechanical and thermal properties, water vapor transmission rate, and antimicrobial activity. Four filming-forming suspensions were investigated: PGEO (control); PGEO@T80; PGEO@CSNP; PGEO@T80@CSNP. The compositions are included in the methodology. The average particle size was 317 nm, with the zeta potential reaching +21.4 mV, which indicated colloidal stability. The contact angle of the films exhibited values of 65°, 43°, 78°, and 64°, respec-tively. These values showed films with variations in hydrophilicity. In antimicrobial tests, the films containing GEO showed inhibition only by contact for S. aureus. For E. coli, the inhibition occurred in films containing CSNP and by direct contact in the culture. The results indicate a promising al-ternative for designing stable antimicrobial nanoparticles for application in novel food packaging. Although, it still shows some deficiencies in the mechanical properties, as demonstrated in the elongation data.
Collapse
Affiliation(s)
- Vanessa Solfa Dos Santos
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, Brazil
| | - Marcos Vinicius Lorevice
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| | - Graziela Solferini Baccarin
- Chemistry Department, Center for Exact Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 10 SP 310, São Carlos 13565-905, Brazil
| | - Fabíola Medeiros da Costa
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, Brazil
| | - Renan da Silva Fernandes
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, Brazil
| | - Fauze A Aouada
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, Brazil
| | - Márcia Regina de Moura
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, Brazil
| |
Collapse
|
31
|
Cheng F, Huang QF, Li YH, Huang ZJ, Wu QX, Wang W, Liu Y, Wang GH. Combined chemo and photo therapy of programmable prodrug carriers to overcome delivery barriers against nasopharyngeal carcinoma. BIOMATERIALS ADVANCES 2023; 151:213451. [PMID: 37150081 DOI: 10.1016/j.bioadv.2023.213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.
Collapse
Affiliation(s)
- Fan Cheng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zeng-Jin Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Quan-Xin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wei Wang
- Scientific Research Service Center, Guangdong Medical University, Dongguan 523808, China
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yet-Sen University, Guangzhou 510275, China.
| |
Collapse
|
32
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B 1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int J Biol Macromol 2023; 233:123565. [PMID: 36740131 DOI: 10.1016/j.ijbiomac.2023.123565] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 μL/mL, respectively and AFB1 production at 5.0 μL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
33
|
Santos C, de Araújo Gonçalves M, de Macedo LF, Torres AHF, Marena GD, Chorilli M, Trovatti E. Green nanotechnology for the development of nanoparticles based on alginate associated with essential and vegetable oils for application in fruits and seeds protection. Int J Biol Macromol 2023; 232:123351. [PMID: 36702229 DOI: 10.1016/j.ijbiomac.2023.123351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Aiming to highlight the valorization of the natural products and the green synthesis processes, this work describes the development of a nanoscale system based on the use of alginate to encapsulate a blend of oils (vegetable and essential oils), not previously reported, with antibacterial and antioxidant actions. The study shows the influence of the polymer and surfactant concentrations on the physicochemical properties of the nanoparticles. The formulations were characterized by DLS, zeta potential, efficiency of encapsulation and stability. In addition, the antioxidant and antimicrobial properties of the systems were evaluated using the DPPH method and disk diffusion assays, respectively. The shelf life was studied by coating fruits and seeds. The results showed that the nanostructured system was stable, the efficiency of encapsulation was high and the nanoparticles size range was about 200-400 nm. The coating of fruits and seeds showed that the system was capable of inhibiting the growth of microorganisms and delaying the fruit maturation, indicating its potential for prolonging the shelf-life of fresh food.
Collapse
Affiliation(s)
- Carolina Santos
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - Manoela de Araújo Gonçalves
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - Larissa Ferreira de Macedo
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - André Henrique Furtado Torres
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil; Instituto de Química, Câmpus de Araraquara Rua Prof. Francisco Degni, 55 Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Eliane Trovatti
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil.
| |
Collapse
|
34
|
Amighi M, Zahedifar M, Alizadeh H, Payandeh M. Encapsulation of Nepeta hormozganica and Nepeta dschuprensis essential oils in shrimp chitosan NPs: Enhanced antifungal activity. Int J Biol Macromol 2023; 238:124112. [PMID: 36948343 DOI: 10.1016/j.ijbiomac.2023.124112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
This study investigated the encapsulation of Nepeta hormozganica (NHEO) and Nepeta Dschuprensis (NDEO) essential oils into chitosan nanoparticles (CSN) via a simple ionic gelation method with tripolyphosphate (TPP). Chitosan (CS) is prepared by demineralizing, deproteinizing, and deacetylating shrimp shells waste in high yield (70.2 %). SEM, TEM, FT-IR, TGA, and XRD techniques were employed to characterize the encapsulated essential oils ((NHEO-CSN) and (NDEO-CSN)). The prepared EOs-CSN and CSN are found with particle sizes of 100-150 nm and 400-500 nm, respectively, and regular distribution. The encapsulation efficiency of encapsulated Nepeta hormozganica and Dschuprensis essential oils were found to be 73.64 % and 75.91 %, respectively. The synthesized nanocapsules were evaluated for antifungal activity against Fusarium oxysporium, Sclerotinia sclerotiorum, Pythium aphanidermatum, Alternaria alternata, Rhizactonia Solani, and Botrytis cinerea. Antifungal studies show that encapsulated essential oils increased antifungal efficiency by up to 100 %.
Collapse
Affiliation(s)
- Mina Amighi
- Department of Plant Protection Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran
| | - Mahboobeh Zahedifar
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran.
| | - Hamidreza Alizadeh
- Department of Plant Protection Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran.
| | - Maryam Payandeh
- Department of Biology, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran
| |
Collapse
|
35
|
Anti-Inflammatory Effect and Toxicological Profile of Pulp Residue from the Caryocar Brasiliense, a Sustainable Raw Material. Gels 2023; 9:gels9030234. [PMID: 36975683 PMCID: PMC10048353 DOI: 10.3390/gels9030234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 03/19/2023] Open
Abstract
Caryocar brasiliense Cambess is a plant species typical of the Cerrado, a Brazilian biome. The fruit of this species is popularly known as pequi, and its oil is used in traditional medicine. However, an important factor hindering the use of pequi oil is its low yield when extracted from the pulp of this fruit. Therefore, in this study, with aim of developing a new herbal medicine, we an-alyzed the toxicity and anti-inflammatory activity of an extract of pequi pulp residue (EPPR), fol-lowing the mechanical extraction of the oil from its pulp. For this purpose, EPPR was prepared and encapsulated in chitosan. The nanoparticles were analyzed, and the cytotoxicity of the encapsu-lated EPPR was evaluated in vitro. After confirming the cytotoxicity of the encapsulated EPPR, the following evaluations were performed with non-encapsulated EPPR: in vitro anti-inflammatory activity, quantification of cytokines, and acute toxicity in vivo. Once the anti-inflammatory activity and absence of toxicity of EPPR were verified, a gel formulation of EPPR was developed for topical use and analyzed for its in vivo anti-inflammatory potential, ocular toxicity, and previous stability assessment. EPPR and the gel containing EPPR showed effective anti-inflammatory activity and lack of toxicity. The formulation was stable. Thus, a new herbal medicine with anti-inflammatory activity can be developed from discarded pequi residue.
Collapse
|
36
|
Talukdar H, Saikia G, Das A, Sultana SY, Islam NS. Organic-Solvent-Free Oxidation of Styrene, Phenol and Sulfides with H2O2 over Eco-Friendly Niobium and Tantalum Based Heterogeneous Catalysts. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
38
|
Xu J, Lai H, You L, Zhao Z. Improvement of the stability and anti-AGEs ability of betanin through its encapsulation by chitosan-TPP coated quaternary ammonium-functionalized mesoporous silica nanoparticles. Int J Biol Macromol 2022; 222:1388-1399. [DOI: 10.1016/j.ijbiomac.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
39
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|
40
|
Wang D, Zou Y, Wang N, Wu J. Chitosan hydrochloride salt stabilized emulsion as vaccine adjuvant. Carbohydr Polym 2022; 296:119879. [DOI: 10.1016/j.carbpol.2022.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
41
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
42
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|
43
|
Tiwari S, Upadhyay N, Singh BK, Dubey NK, Dwivedy AK, Singh VK. Nanoencapsulated
Lippia origanoides
essential oil: physiochemical characterisation and assessment of its bio‐efficacy against fungal and aflatoxin contamination as novel green preservative. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shikha Tiwari
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Neha Upadhyay
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Bijendra Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Nawal K. Dubey
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Abhishek K. Dwivedy
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| | - Vipin Kumar Singh
- Centre of Advanced study in Botany Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
44
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Mondéjar-López M, López-Jiménez AJ, Martínez JCG, Ahrazem O, Gómez-Gómez L, Niza E. Thymoquinone-Loaded Chitosan Nanoparticles as Natural Preservative Agent in Cosmetic Products. Int J Mol Sci 2022; 23:ijms23020898. [PMID: 35055080 PMCID: PMC8778794 DOI: 10.3390/ijms23020898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
The current status of controversy regarding the use of certain preservatives in cosmetic products makes it necessary to seek new ecological alternatives that are free of adverse effects on users. In our study, the natural terpene thymoquinone was encapsulated in chitosan nanoparticles. The nanoparticles were characterized by DLS and TEM, showing a particle size of 20 nm. The chemical structure, thermal properties, and release profile of thymoquinone were evaluated and showed a successful stabilization and sustained release of terpenes. The antimicrobial properties of the nanoparticles were evaluated against typical microbial contaminants found in cosmetic products, showing high antimicrobial properties. Furthermore, natural moisturizing cream inoculated with the aforementioned microorganisms was formulated with thymoquinone-chitosan nanoparticles to evaluate the preservative efficiency, indicating its promising use as a preservative in cosmetics.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Alberto José López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Joaquín C. García Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain;
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (M.M.-L.); (A.J.L.-J.); (O.A.); (L.G.-G.)
- Correspondence:
| |
Collapse
|