1
|
Ma S, Zhang C, Ren X, Song L, Shan J, Liu Y, Weng S, Wang Y, Jiao D, Ren K, Li Z, Han X, Zhao Y. Photothermally Responsive Hydrogel Releases Basic Fibroblast Growth Factor to Promote the Healing of Infected Wounds. Biomater Res 2025; 29:0156. [PMID: 40040954 PMCID: PMC11876544 DOI: 10.34133/bmr.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/18/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
The treatment of infected wounds is often complicated by bacterial infection and impaired scar healing. Antibiotics and growth factors are typically utilized to address these clinical challenges and expedite wound healing. However, the use of hydrogels containing these therapeutic agents is often restricted to complex cases and increases treatment costs considerably. In this study, we developed a quaternized-chitosan-based hybrid hydrogel dressing (SQFB) with intrinsic antibacterial properties to address these limitations. The hybrid hydrogel contained interpenetrating polymer networks of basic fibroblast growth factor and black phosphorus nanosheets, facilitating a photothermal response that triggers the release of basic fibroblast growth factor upon near-infrared irradiation. In vitro experiments demonstrated that SQFB exhibits superior antibacterial, hemostatic, enhanced cell proliferation, and angiogenesis functions. Importantly, the results showed that SQFB can promote the healing of infected wounds by accelerating all 4 stages of wound repair while preventing scarring formation. RNA sequencing analysis revealed that combined treatment with SQFB and near-infrared irradiation can effectively modulate genes primarily associated with epithelial regeneration pathways and metabolic processes. Collectively, our findings suggest that this hybrid hydrogel holds great promise for the effective management of infected wounds.
Collapse
Affiliation(s)
- Shengnan Ma
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou University, Zhengzhou 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou 450052, Henan, China
| | - Chengzhi Zhang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofeng Ren
- Department of Information,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lei Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiheng Shan
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Wang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Dechao Jiao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Kewei Ren
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Pi Z, Ye M, Huang J, Li B, Yan C, Wang Q, Ji B, Yu X, Tan Z, Li D, Ma K, Zhang Y, Ye X, An H, Zhou P. Injectable polyethylene glycol/methacrylated polylysine double cross-linked hydrogel releases neuropeptides for infected wound healing. Int J Biol Macromol 2025; 284:137972. [PMID: 39581413 DOI: 10.1016/j.ijbiomac.2024.137972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Wound infections caused by microorganisms often give rise to extensive inflammation and vascular damage that compromise the wound healing process. Designing approaches to more effectively controlling wound infections and accelerating this healing process are urgently needed. This study was designed with the goal of synthesizing an injectable, double cross-linked hydrogel suitable for use when treating infected wounds. After initially synthesizing methacrylated polylysine (PLMA) through polylysine grafting with methacrylic anhydride, CGRP and PLMA were incorporated into a PEG hydrogel network through reactions between NHS-activated carboxyl esters and amino groups (NH₂). PLMA was also employed to enhance the self-crosslinking activity, culminating in the production of PEG/PLMA/CGRP double cross-linked hydrogels. After injection these hydrogels were capable of undergoing rapid molding such that they were able to conform to the irregularly shaped wound contours. This PEG/PLMA/CGRP formulation was capable of mimicking nerve ending-mediated CGRP secretion to control wound healing, while also exhibiting robust antioxidant, anti-inflammatory, and pro-angiogenic properties. In addition, PEG/PLMA/CGRP hydrogels in vitro showed robust resistance to S. aureus and E. coli. In a rat model of S. aureus-mediated wound infection, this hydrogel markedly promoted wound healing. PEG/PLMA/CGRP hydrogels are thus an effective tool for use in the context of infected wound healing.
Collapse
Affiliation(s)
- Zhilong Pi
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Meiyi Ye
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | | | - Binglin Li
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Chaolang Yan
- Department of orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Qiong Wang
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Bo Ji
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Zhichao Tan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523005, China
| | - Dongdong Li
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Kunpeng Ma
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Ying Zhang
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China
| | - Xiangling Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523005, China.
| | - Huijie An
- General Hospital of Southern Theatre Command, PLA, Guangzhou 510010, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Pengjun Zhou
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Garg D, Kumar D, Paliwal S, Pinnaka AK, Sachdev A, Matai I. Self-adhesive poly-l-lysine/tannic acid hybrid hydrogel for synergistic antibacterial activity against biofilms. Int J Biol Macromol 2024; 278:134961. [PMID: 39179081 DOI: 10.1016/j.ijbiomac.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Biomedical implants are crucial for enhancing various human physiological functions. However, they are susceptible to microbial contamination after implantation, posing a risk of implant failure. To address this issue, hydrogel-based coatings are used, but achieving both effective antibacterial properties and stable adhesion remains challenging. This study introduces a hybrid hydrogel network made from Tannic Acid (TA) and Poly-l-Lysine (PLL), cross-linked through ionic and hydrogen bonds, which imparts adhesive and anti-infective properties. The physicochemical analysis revealed that the hydrogels exhibited significant porosity, favorable mechanical characteristics, and demonstrated in vitro enzymatic biodegradation. Moreover, the hydrogels demonstrated adhesion to various substrates, including Ti alloy with an adhesive strength of 42.5 kPa, and retained their integrity even after immersion in water for a minimum of 10 days. The modified Ti surfaces significantly reduced protein adsorption (∼70 %), indicating antifouling properties. The hydrogels prevented bacterial adhesion on titanium surfaces through a "contact-kill" mode of action and inhibited biofilm formation by around 94.5 % for Staphylococcus aureus and 90.8 % for Pseudomonas aeruginosa. The modified Ti retained biofilm inhibitory effects for at least six days without significant performance decline. In vitro cytotoxicity assay confirmed the biocompatibility of the hydrogels with NIH3T3 cells. Overall, these results highlight the competence of hybrid hydrogels as effective coatings for Ti implants, offering strong adhesion and biofilm prevention to mitigate implant-related infections.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Deepak Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sakshi Paliwal
- CSIR - Institute of Microbial Technology, Chandigarh 160036, India
| | | | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali 140306, India.
| |
Collapse
|
4
|
Paul AA, Kadosh YS, Kushmaro A, Marks RS. Microbead-Encapsulated Luminescent Bioreporter Screening of P. aeruginosa via Its Secreted Quorum-Sensing Molecules. BIOSENSORS 2024; 14:383. [PMID: 39194612 DOI: 10.3390/bios14080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers-such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)-the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and -80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yael Schlichter Kadosh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
5
|
Sun X, Lin X, Dong F, Shen M, Liu H, Song Z, Jiang J. Advanced-design cross-linked binder enables high-performance silicon-based anodes through in-situ crosslinking based on sodium carboxymethyl cellulose and poly-lysine. Int J Biol Macromol 2024; 274:133050. [PMID: 38880451 DOI: 10.1016/j.ijbiomac.2024.133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g-1. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.
Collapse
Affiliation(s)
- Xingshen Sun
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Green Chemical Technology of Fujian Province University, Department of College of Ecology and Resource Engineering, Wuyi University, Wuyishan 354300, China
| | - Xiangyu Lin
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Fuhao Dong
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Minggui Shen
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Yong Y, Gu Y, Nabeel Ahmad H, Wang L, Wang R, Zhu J. Design and characterization of tannic acid/ε-polylysine biocomposite packaging films with excellent antibacterial and antioxidant properties for beef preservation. Food Chem 2024; 439:138155. [PMID: 38081095 DOI: 10.1016/j.foodchem.2023.138155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The shelf life of beef is shortened by microbial infection, which limits its supply in the market. Active packaging film is expected to overcome this difficulty. In this study, an antibacterial/antioxidant SS-ε-PL-TA biocomposite film made by soy protein isolate/sodium alginate/ε-polylysine/tannic acid was designed and prepared. Due to the formation of hydrogen bonds and enhanced hydrophobic interactions, the biocomposite film showed enhanced mechanical property. Tensile strength increased from 22.8 ± 2.59 MPa to 64.34 ± 6.22 MPa, and elongation at break increased from 7.70 ± 1.07 % to 13.98 ± 0.22 %. The composite film displayed excellent antibacterial activity owing to the damage to cell membranes and biofilms of bacteria. Furthermore, the antioxidant activity also significantly increased (DPPH ∙ scavenging activity was 78.0 %). The shelf life of beef covered with the SS-ε-PL-TA film was extended by 3 days compared to the control group by decreasing lipid oxidation and inhibiting bacterial growth, showing a good application potential in food packaging.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lining Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan Hairun Agricultural Company, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
7
|
Qu H, Yao Q, Chen T, Wu H, Liu Y, Wang C, Dong A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv Colloid Interface Sci 2024; 325:103099. [PMID: 38330883 DOI: 10.1016/j.cis.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microbial contamination poses a serious threat to human life and health. Through the intersection of material science and modern medicine, advanced bionic hydrogels have shown great potential for biomedical applications due to their unique bioactivity and ability to mimic the extracellular matrix environment. In particular, as a promising antimicrobial material, the synthesis and practical biomedical applications of peptide-based antimicrobial hydrogels have drawn increasing research interest. The synergistic effect of peptides and hydrogels facilitate the controlled release of antimicrobial agents and mitigation of their biotoxicity while achieving antimicrobial effects and protecting the active agents from degradation. This review reports on the progress and trends of researches in the last five years and provides a brief outlook, aiming to provide theoretical background on peptide-based antimicrobial hydrogels and make suggestions for future related work.
Collapse
Affiliation(s)
- Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, People's Republic of China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
8
|
Ouyang Y, Su X, Zheng X, Zhang L, Chen Z, Yan Q, Qian Q, Zhao J, Li P, Wang S. Mussel-inspired "all-in-one" sodium alginate/carboxymethyl chitosan hydrogel patch promotes healing of infected wound. Int J Biol Macromol 2024; 261:129828. [PMID: 38296135 DOI: 10.1016/j.ijbiomac.2024.129828] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Hydrogels have been widely used as wound dressings to accelerate wound healing. However, due to the impaired skin barrier at the wound site, external bacteria can easily invade the wound and cause infection. In this study, we designed a dopamine-modified sodium alginate/carboxymethyl chitosan/polyvinylpyrrolidone (CPD) hydrogel, which was able to promote wound healing while preventing wound infection. Due to the high content of catechol groups, the CPD hydrogel exhibited good tissue adhesion ability and a significant scavenging ability for DPPH• and PTIO• radicals. Under near-infrared laser irradiation, the temperature of CPD hydrogel increased significantly, which significantly killed the Staphylococcus aureus and Escherichia coli. The cell migration test confirmed that CPD hydrogel could promote the cell migration ratio. In the in vivo wound healing test for infected full-thickness skin defect, CPD hydrogel significantly inhibited bacterial proliferation and enhanced wound healing rate. Therefore, the multifunctional hydrogel is expected to be applied to wound healing.
Collapse
Affiliation(s)
- Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Xiaoju Su
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Xiaoyi Zheng
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Liang Zhang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Qiling Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Qinyuan Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiulong Zhao
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Ping Li
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
9
|
Hu W, Chen Z, Chen X, Feng K, Hu T, Huang B, Tang J, Wang G, Liu S, Yang G, Wang Z. Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing. Carbohydr Polym 2023; 319:121193. [PMID: 37567698 DOI: 10.1016/j.carbpol.2023.121193] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.
Collapse
Affiliation(s)
- Weikang Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xi Chen
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Feng
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bohan Huang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinlan Tang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shiyu Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China.
| | - Zijian Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Zhao Y, Wang X, Qi R, Yuan H. Recent Advances of Natural-Polymer-Based Hydrogels for Wound Antibacterial Therapeutics. Polymers (Basel) 2023; 15:3305. [PMID: 37571202 PMCID: PMC10422483 DOI: 10.3390/polym15153305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Hydrogels have a three-dimensional network structure and high-water content, are similar in structure to the extracellular matrix, and are often used as wound dressings. Natural polymers have excellent biocompatibility and biodegradability and are commonly utilized to prepare hydrogels. Natural-polymer-based hydrogels can have excellent antibacterial and bioactive properties by loading antibacterial agents or being combined with therapeutics such as phototherapy, which has great advantages in the field of treatment of microbial infections. In the published reviews of hydrogels used in the treatment of infectious wounds, the common classification criteria of hydrogels include function, source of antibacterial properties, type of antibacterial agent, etc. However, there are few reviews on the classification of hydrogels based on raw materials, and the description of natural-polymer-based hydrogels is not comprehensive and detailed. In this paper, based on the principle of material classification, the characteristics of seven types of natural polymers that can be used to prepare hydrogels are discussed, respectively, and the application of natural-polymer-based hydrogels in the treatment of infectious wounds is described in detail. Finally, the research status, limitations, and prospects of natural-polymer-based hydrogels are briefly discussed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|