1
|
Han X, Tian L, Chen Q, Wang L, Mi Y, Li Q, Guo Z, Dong F. Preparation of novel thiolated chitosan with significant antioxidant activity. Int J Biol Macromol 2025; 308:142536. [PMID: 40154708 DOI: 10.1016/j.ijbiomac.2025.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The aim of this study was to synthesize thiolated chitosan derivative and evaluated its antioxidant activity. Thiol groups were introduced into chitosan and hydroxypropyl trimethylammonium chloride chitosan quaternary ammonium salt (HACC) by microwave reaction, respectively. At the same time, a series of compounds containing thiol groups were introduced at the amino site. The structure of the chitosan derivatives was identified by FTIR and 1H NMR. The thiol groups content, thermal stability, water solubility and cytotoxicity of the chitosan derivative were evaluated. The antioxidant activity of chitosan derivatives was evaluated using superoxide anion radical scavenging activity assay, DPPH radical scavenging activity assay, hydroxyl radical scavenging activity assay and reducing power assay. The results showed that the thiolated chitosan derivatives obtained in this study possessed excellent antioxidant activity, which provides a new idea for the further study of chitosan antioxidants.
Collapse
Affiliation(s)
- Xiangru Han
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai 264003, China
| | - Qiuhong Chen
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li X, Wang X, He D, Xu N, Li K, Liu Q, Zhang Y. Dual-network sodium alginate-chitosan aerogel loaded with UiO-66 for efficient removal of organic pollutants in water: Preparation and mechanism study. Int J Biol Macromol 2025; 307:142171. [PMID: 40101833 DOI: 10.1016/j.ijbiomac.2025.142171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Organic pollutants in wastewater pose severe threats to human health and ecosystems. This study used maleic anhydride to adjust chitosan's (CA) surface charge, enhancing solubility and forming a homogenous solution with sodium alginate (SA). Glutaraldehyde cross-linking created a water-stable double network sodium alginate/chitosan composite aerogel (SCCA). UiO-66 was in-situ loaded to produce UiO-66@SCCA, a high-specific-surface-area biopolymer for removing pollutants like ibuprofen (IBP) and methyl orange (MO). UiO-66@SCCA had a surface area of 302.65 m2/g and a UiO-66 loading rate of 48.77 %. Factors affecting adsorption efficiency (time, pH, adsorbent, coexisting ions) were studied. Adsorption followed pseudo-second-order kinetics and Langmuir isotherms, with maximum capacities of 67.39 mg/g for IBP and 45.22 mg/g for MO. Efficiency all remained above 90 % after five cycles. Mechanisms included hydrogen bonding, pore filling, electrostatic interactions, and Electron Donor - Acceptor (EDA) interactions. UiO-66@SCCA shows significant potential for pollutant removal.
Collapse
Affiliation(s)
- Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Dongjie He
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Nuo Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
3
|
Moridi H, Behroozikhah H, Talebi M, Mousavi SE, Abbasizadeh S. Fabrication of a chitosan-grafted-4‑vinylpyridine/thiol-amine-HZSM-5 nanocomposite via casting method in adsorption of heavy cations from water systems: an evaluation of adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6628-6657. [PMID: 40009324 DOI: 10.1007/s11356-025-36146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
This study presents the synthesis of low-silica HZSM-5 zeolite through a hydrothermal process. Subsequently, chitosan-grafted-4‑vinylpyridine/thiol-amine-HZSM-5 nanocomposites were fabricated using casting method for the effective removal of copper (Cu2+) and zinc (Zn2+) cations from aqueous systems. The fabricated cast nanocomposites were characterized using XRD, BET, XPS, FESEM, EDX, CHNS, FTIR, and TGA analyses. The simultaneous roles of amine (-NH2) and thiol (-SH) groups in enhancing the adsorption efficiency of Cu2+ and Zn2+ were thoroughly investigated. Additionally, the influence of key factors, including solution pH, contact time, adsorption temperature, and cation concentration, was systematically assessed. Equilibrium data fitting revealed the dominance of monolayer adsorption, as evidenced by the excellent fit of the Redlich-Peterson (R-P) and Langmuir isotherm models for both Cu2+ and Zn2+ cations. Examination of the kinetic experimental data indicated a close correspondence with the double-exponential model. The maximum adsorption capacity of the fabricated cast nanocomposite was determined to be 328.05 mg/g for Cu2+ and 107.96 mg/g for Zn2+ cations. Additionally, the fabricated cast nanocomposite demonstrated satisfactory regeneration capabilities after 9 cycles of desorption. In both synthetic binary and ternary systems, as well as in real wastewater, the adsorption process exhibited antagonistic behavior, indicating that the presence of one type of cation interfered with the adsorption of the other. The nanocomposite displayed a higher affinity for Cu2⁺ compared to Zn2⁺ cations, in both synthetic and real systems, demonstrating its potential for selective heavy metal removal.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamideh Behroozikhah
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Marzieh Talebi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saeed Abbasizadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Aljohani MS, Alnoman RB, Alharbi HY, Bukhari AAH, Monier M. Development and evaluation of thiosalicylic-modified/ion-imprinted chitosan for selective removal of cerium (III) ion. Carbohydr Polym 2024; 326:121620. [PMID: 38142099 DOI: 10.1016/j.carbpol.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Chitosan was used in this study as the bio-based product for the development of microparticles for the specifically targeted removal of cerium ions (Ce3+) by ion-imprinting technology. A thiosalicylic hydrazide-modified chitosan (TSCS) is produced via cyanoacetylation of chitosan, followed by hydrazidine derivatization to finally introduce the thiosalicylate chelating units. Ion-imprinted Ce-TSCS sorbent microparticles were prepared by combining the synthesized TSCS with Ce3+, crosslinking the polymeric Ce3+/TSCS complex with glutaraldehyde, and releasing the chelated Ce3+ using an eluent solution containing a mixture of EDTA and HNO3. Ce-TSCS had a capacity of 164 ± 1 mg/g and better removal selectivity for Ce3+ because it was smart enough to figure out which target ions would fit into the holes made by Ce3+ during the imprinting process. The kinetic data were well suited to a pseudo-second-order model, and the isotherms were well described by the Langmuir model, both of which pointed to chemisorption and adsorption through Ce3+ chelation. XPS and FTIR analyses demonstrate that the predominant adsorption mechanism is the coordination of Ce3+ with the -NH-, -NH2, and -SH chelating units of the thiosalicylic hydrazidine. These findings provide fresh direction for the development of sorbent materials that can effectively and selectively remove Ce3+ from aqueous effluents.
Collapse
Affiliation(s)
- Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | | | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Ismail YH, Wang K, Al Shehhi M, Al Hammadi A. Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications. Heliyon 2024; 10:e24735. [PMID: 38318068 PMCID: PMC10838745 DOI: 10.1016/j.heliyon.2024.e24735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Iodide ions from radioactive iodine isotopes are common contaminants present in nuclear wastewater from nuclear power plants which are considered hazardous contaminants to be released in water sources even at low concentrations due to their association with metabolic disorders, therefore its removal from the nuclear wastewater effluents is necessary. Chitosan beads are natural and cost-efficient adsorbents that have been used for ion removal from wastewater. However, issues of poor selectivity persist in achieving high-efficiency iodide ion removal. In this study, ion-imprinted chitosan beads (IIC) have been synthesized using the phase-inversion method, IIC beads were modified by cross-linking with epichlorohydrin (IIC-EPI) and modified by cross-linking with epichlorohydrin and silicon dioxide nanoparticles (IIC-SiO2-EPI). Through 4 h of batch adsorption experiments, IIC beads achieved a maximum adsorption capacity (Qe) of 0.65 mmol g-1 and showed more preference for the iodide ions compared to the non-imprinted chitosan beads which achieved a maximum adsorption capacity of 0.27 mmol g-1 at pH 7. While the modified beads IIC-EPI and IIC-SiO2-EPI beads have boosted the adsorption capacities to 0.72 mmol g-1 and 0.91 mmol g-1. Scanning electron microscopic cross-sectional images have shown more pores and cavities than the surface images which agrees with the multilayer heterogeneous diffusion suggested by the Freundlich adsorption isotherm, that the experimental data has fitted. Adsorption kinetic data have fitted the Pseudo-second-order model as well as the Weber and Morris intraparticle model, which suggest an intraparticle pore diffusion adsorption mechanism, with the involvement of the physical electrostatic interactions with the cationic chitosan surface.
Collapse
Affiliation(s)
- Yassmin Handulle Ismail
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kean Wang
- Singapore Technology Institute, 138683, Singapore, Singapore
| | - Maryam Al Shehhi
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Civil Infrastructure and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ali Al Hammadi
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Aljohani MS, Alnoman RB, Alharbi HY, Al-Anazia M, Monier M. Designing of a cellulose-based ion-imprinted biosorbent for selective removal of lead (II) from aqueous solutions. Int J Biol Macromol 2024; 259:129145. [PMID: 38176491 DOI: 10.1016/j.ijbiomac.2023.129145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity for specific metals remains very low. Here, we describe the synthesis of 4-(2-pyridyl)thiosemicarbazide (PTC) hydrazidine-functionalized cellulose (Pb-PTC-CE), a polymer imprinted with Pb2+ ions that may be used to remove Pb2+ ions from wastewater. Owing to its potent -NH2 functionalization, PTC hydrazidine not only served as an efficient chelator to effectively supply coordinating sites and construct hierarchical porous structures on Pb-PTC-CE, but it also made it possible for cross-linking to occur through the glyoxal cross-linker. The abundant chelators, along with the hierarchical porous construction of the developed Pb-PTC-CE with PTC functionality, result in a greater sorption capacity of 336 mg/g and a short sorption period of 40 min for Pb2+. Additionally, Pb-PTC-CE exhibits highly selective Pb2+ uptake compared to competing ions. This study proposes a feasible methodology for the development of high-quality materials for Pb2+ remediation by combining the advantages of active ligand functionality with ion-imprinting techniques in a straightforward way.
Collapse
Affiliation(s)
- Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
Kim M, Njaramba LK, Yoon Y, Jang M, Park CM. Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr Polym 2024; 324:121436. [PMID: 37985070 DOI: 10.1016/j.carbpol.2023.121436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used drugs and have been frequently detected in aquatic environments. This paper demonstrates a thermally-activated gelatin-chitosan and amine-functionalized metal-organic framework (UiO-66-NH2) aerogel (CGC-MOF), which was successfully synthesized for the efficient removal of ibuprofen (IBP) and naproxen (NPX). Various characterization tools were used to systematically analyze the microstructure and physicochemical properties of the synthesized aerogel. In addition, the effect of key reaction parameters as well as batch and continuous-flow fixed-bed column experiments were carried out to elucidate the adsorption process. Several functional groups in the biopolymer network, combined with excellent MOF properties, synergistically couple to form an adsorbent with great performance. The mesoporous aerogel activated at 200 °C (CGC-MOF200) exhibited a high specific surface area (819.6 m2/g) that is valuable in providing abundant adsorption active sites that facilitate the efficient adsorption of IBP and NPX. CGC-MOF200 exhibited an excellent removal of IBP and NPX, accounting to 99.28 % and 96.39 %, respectively. The adsorption process followed the pseudo-second-order kinetics and the Freundlich isotherm models, suggesting heterogeneous and chemisorption adsorption processes. Overall, this work provides new and valuable insights into the development of a promising biopolymer-MOF composite aerogel for environmental remediation.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Alharbi RA, Alminderej FM, Al-Harby NF, Elmehbad NY, Mohamed NA. Preparation and Characterization of a New Bis-Uracil Chitosan-Based Hydrogel as Efficient Adsorbent for Removal of Anionic Congo Red Dye. Polymers (Basel) 2023; 15:polym15061529. [PMID: 36987309 PMCID: PMC10056002 DOI: 10.3390/polym15061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
A new hydrogel, based on chitosan crosslinked with 2-chlorophenyl-bis(6-amino-1,3-dimethyluracil-5-yl) methane, (2Clph-BU-Cs), has been successfully created. Various instrumental techniques such as elemental analysis, FTIR, SEM, and XRD were used to prove its structure. Its removal efficiency for anionic Congo red (CR) dye under different conditions for industrial wastewater treatment was studied. For optimizing the conditions to maximize CR dye removal, the impacts of temperature, contact time, pH, and initial concentration of the dye on adsorption capacity were investigated. The removal of the dye was pH-dependent, with a much higher value achieved at pH 4 than at pH 7 and 9. The maximum adsorption capacity of the hydrogel was 93.46 mg g-1. The model of adsorption process was fitted to the pseudo-second-order kinetic model. The intraparticle diffusion demonstrated the multi-step nature of the adsorption process. The thermodynamic results showed that the adsorption process was endothermic because of the positive value of enthalpy (43.70 kJ mol-1). The process of adsorption at high temperatures was spontaneous, according to the values of ∆G0. An increase in randomness was seen in the value of ∆S°. Generally, the investigated hydrogel has the potential to be used as a promising effective reusable adsorbent for industrial wastewater remediation.
Collapse
Affiliation(s)
- Rana A Alharbi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Nouf F Al-Harby
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Noura Y Elmehbad
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 55461, Saudi Arabia
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Sathiyaseelan A, Zhang X, Wang MH. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023; 15:nu15061319. [PMID: 36986049 PMCID: PMC10051692 DOI: 10.3390/nu15061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, antibacterial and antioxidant molecules-rich Melaleuca alternifolia oil (tea tree oil (TTO)) loaded chitosan (CS) based nanoemulsions (NEMs) were prepared and encapsulated by sodium alginate (SA) microsphere for antibacterial wound dressing. CS-TTO NEMs were prepared by oil-in-water emulsion technique, and the nanoparticle tracking analysis (NTA) confirmed that the CS-TTO NEMs had an average particle size of 89.5 nm. Further, the SA-CS-TTO microsphere was confirmed through SEM analysis with an average particle size of 0.76 ± 0.10 µm. The existence of TTO in CS NEMs and SA encapsulation was evidenced through FTIR analysis. The XRD spectrum proved the load of TTO and SA encapsulation with CS significantly decreased the crystalline properties of the CS-TTO and SA-CS-TTO microsphere. The stability of TTO was increased by the copolymer complex, as confirmed through thermal gravimetric analysis (TGA). Furthermore, TTO was released from the CS-SA complex in a sustained manner and significantly inhibited the bacterial pathogens observed under confocal laser scanning microscopy (CLSM). In addition, CS-TTO (100 µg/mL) showed antioxidant potential (>80%), thereby increasing the DPPH and ABTS free radicals scavenging ability of SA-CS-TTO microspheres. Moreover, CS and SA-CS-TTO microsphere exhibited negligible cytotoxicity and augmented the NIH3T3 cell proliferation confirmed in the in vitro scratch assay. This study concluded that the SA-CS-TTO microsphere could be an antibacterial and antioxidant wound dressing.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
11
|
Design, Synthesis, and Characterization of Novel Bis-Uracil Chitosan Hydrogels Modified with Zinc Oxide Nanoparticles for Boosting Their Antimicrobial Activity. Polymers (Basel) 2023; 15:polym15040980. [PMID: 36850260 PMCID: PMC9964190 DOI: 10.3390/polym15040980] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
A new series of hydrogels was successfully prepared by incorporating various substituted bisuracil (R-BU) linkages between chitosan Schiff's base chains (R-BU-CsSB) and between chitosan chains (R-BU-Cs). After protection of the amino groups of chitosan by benzaldehyde, yielding chitosan Schiff's base (CsSB), the reaction with epichlorohydrin was confined on the -OH on C6 to produce epoxy chitosan Schiff's base (ECsSB), which was reacted with R-BU to form R-BU-CsSB hydrogels, and finally, the bioactive amino groups of chitosan were restored to obtain R-BU-Cs hydrogels. Further, some R-BU-Cs-based ZnO nanoparticle (R-BU-Cs/ZnONPs) composites were also prepared. Appropriate techniques such as elemental analysis, FTIR, XRD, SEM, and EDX were used to verify their structures. Their inhibition potency against all the tested microbes were arranged as: ZnONPs bio-composites > R-BU-Cs hydrogels > R-BU-CsSB hydrogels > Cs. Their inhibition performance against Gram-positive bacteria was better than Gram-negative ones. Their minimum inhibitory concentration (MIC) values decreased as a function of the negative resonance effect of the substituents in the aryl ring of R-BU linkages in the hydrogels. Compared with Vancomycin, the ZnONPs bio-composites showed superior inhibitory effects against most of the tested Gram-negative bacteria, all inspected Gram-positive ones, and all investigated fungi.
Collapse
|