1
|
Kaplan A, Abidi E, Diab R, Ghali R, Al-Awassi H, Booz GW, Zouein FA. Sex differences in cardiac remodeling post myocardial infarction with acute cigarette smoking. Biol Sex Differ 2022; 13:36. [PMID: 35799275 PMCID: PMC9264586 DOI: 10.1186/s13293-022-00446-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether cigarette smoking affects the heart post-myocardial infarction (MI) in a sex-dependent way remains controversial. Using a mouse model, we investigated cardiac remodeling under the influence of acute cigarette smoke (CS) exposure following ischemic injury in both sexes. Methods Ten cigarettes were smoked twice daily for 2 weeks followed by MI and then 1 additional week post permanent LAD ligation. Cardiac function, histology, and infarct size were assessed, and inflammatory markers quantified by RT–PCR. Statistical comparisons were performed using an unpaired t test or ANOVA followed by Tukey post hoc test. Results We observed that cigarette smoking exacerbated both left and right ventricular remodeling only in males at an early stage of post-MI. Females did not display a significant structural and/or functional alteration within 7 days of cardiac remodeling post-MI upon CS exposure. Worsened right ventricular remodeling in males was independent of pulmonary congestion. CS-exposed males exhibited enhanced increases in left ventricular end systolic and diastolic volumes, as well as reductions in ejection fraction and fractional area changes of left ventricular base. At day 7, infarct size was increased by cigarette smoking in males only, which was accompanied by enhanced collagen deposition in both the infarcted and peri-infarcted areas. Both IL-6 and TNF-α mRNA expression significantly increased in CS-exposed MI male group only at day 7 post-MI suggestive of prolonged inflammation. Conclusions These findings indicate that CS exposure worsens the progression of cardiac remodeling post-MI in male sex in a significant manner compared to female sex at least at early stages.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon.,Department of Cardiology, Kemer Public Hospital, Hastane Cd. No: 9, 07980, Kemer, Antalya, Turkey.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Emna Abidi
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon.,Department of Pharmacy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Reine Diab
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Hiam Al-Awassi
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216-4500, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Medical Center, American University of Beirut, Faculty of Medicine, Riad El-Solh, Beirut, 1107 2020, Lebanon. .,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon. .,Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216-4500, USA. .,Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, Paris, France.
| |
Collapse
|
2
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Houssari M, Dumesnil A, Tardif V, Kivelä R, Pizzinat N, Boukhalfa I, Godefroy D, Schapman D, Hemanthakumar KA, Bizou M, Henry JP, Renet S, Riou G, Rondeaux J, Anouar Y, Adriouch S, Fraineau S, Alitalo K, Richard V, Mulder P, Brakenhielm E. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. Arterioscler Thromb Vasc Biol 2020; 40:1722-1737. [PMID: 32404007 PMCID: PMC7310303 DOI: 10.1161/atvbaha.120.314370] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. Conclusions: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.
Collapse
Affiliation(s)
- Mahmoud Houssari
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Anais Dumesnil
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Virginie Tardif
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Nathalie Pizzinat
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Ines Boukhalfa
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - David Godefroy
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Damien Schapman
- Normandy University, UniRouen, PRIMACEN, Mont Saint Aignan, France (D.S.)
| | - Karthik A Hemanthakumar
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Mathilde Bizou
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm UMR1048, Université de Toulouse III, France (N.P., M.B.)
| | - Jean-Paul Henry
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Sylvanie Renet
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Gaetan Riou
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Julie Rondeaux
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Youssef Anouar
- Normandy University, UniRouen, Inserm UMR1239 (DC2N Laboratory), Mont Saint Aignan, France (D.G., Y.A.)
| | - Sahil Adriouch
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1234 (PANTHER Laboratory), Rouen, France (G.R., S.A.)
| | - Sylvain Fraineau
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., K.A.)
| | - Vincent Richard
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | - Paul Mulder
- From the Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France (H.M., A.D., V.T., I.B., J.P.H., S.R., J.R., S.F., V.R., P.M.)
| | | |
Collapse
|
4
|
Klanderman RB, Bosboom JJ, Maas AAW, Roelofs JJTH, de Korte D, van Bruggen R, van Buul JD, Zuurbier CJ, Veelo DP, Hollmann MW, Vroom MB, Juffermans NP, Geerts BF, Vlaar APJ. Volume incompliance and transfusion are essential for transfusion-associated circulatory overload: a novel animal model. Transfusion 2019; 59:3617-3627. [PMID: 31697425 PMCID: PMC6916548 DOI: 10.1111/trf.15565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transfusion‐associated circulatory overload (TACO) is the predominant complication of transfusion resulting in death. The pathophysiology is poorly understood, but inability to manage volume is associated with TACO, and observational data suggest it is different from simple cardiac overload due to fluids. We developed a two‐hit TACO animal model to assess the role of volume incompliance (“first‐hit”) and studied whether volume overload (“second‐hit”) by red blood cell (RBC) transfusion is different compared to fluids (Ringer's lactate [RL]). MATERIALS AND METHODS Male adult Lewis rats were stratified into a control group (no intervention) or a first hit: either myocardial infarction (MI) or acute kidney injury (AKI). Animals were randomized to a second hit of either RBC transfusion or an equal volume of RL. A clinically relevant difference was defined as an increase in left ventricular end‐diastolic pressure (ΔLVEDP) of +4.0 mm Hg between the RBC and RL groups. RESULTS In control animals (without first hit) LVEDP was not different between infusion groups (Δ + 1.6 mm Hg). LVEDP increased significantly more after RBCs compared to RL in animals with MI (Δ7.4 mm Hg) and AKI (Δ + 5.4 mm Hg), respectively. Volume‐incompliant rats matched clinical TACO criteria in 92% of transfused versus 25% of RL‐infused animals, with a greater increase in heart rate and significantly higher blood pressure. CONCLUSION To our knowledge, this is the first animal model for TACO, showing that a combination of volume incompliance and transfusion is essential for development of circulatory overload. This model allows for further testing of mechanistic factors as well as therapeutic approaches.
Collapse
Affiliation(s)
- Robert B Klanderman
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim J Bosboom
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrie A W Maas
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise P Veelo
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Margreeth B Vroom
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart F Geerts
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
6
|
Najjar F, Ahmad M, Lagace D, Leenen FHH. Sex differences in depression-like behavior and neuroinflammation in rats post-MI: role of estrogens. Am J Physiol Heart Circ Physiol 2018; 315:H1159-H1173. [PMID: 30052050 DOI: 10.1152/ajpheart.00615.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with heart failure (HF) have a high prevalence of depression associated with a worse prognosis, particularly in older women. The present study evaluated whether sex and estrogens affect depression-like behavior and associated neuroinflammation induced by myocardial infarction (MI) in rats. MI was induced by occlusion of the left anterior descending artery in young adult male and female Wistar rats or in ovariectomized (OVX) female rats without and with estrogen [17β-estradiol (E2)] replacement. MI groups showed a comparable degree of cardiac dysfunction. Eight weeks post-MI, male rats with HF exhibited depression-like behaviors, including anhedonia and higher immobility in the sucrose preference and forced swim tests, which were not observed in female rats with HF. In the cued fear conditioning test, male but not female rats with HF froze more than sham rats. After OVX, female sham rats developed mild depression-like behaviors that were pronounced in OVX female rats post-MI and were largely prevented by E2 replacement. Cytokine levels in the plasma and paraventricular nucleus increased in both sexes with HF, but only male rats with HF showed an increase in cytokine levels in the prefrontal cortex. OVX alone did not affect cytokine levels, but OVX-MI caused significant increases in the prefrontal cortex, which were shifted to an anti-inflammatory pattern by E2 replacement. These results suggest that estrogens prevent depression-like behavior induced by HF post-MI in young adult female rats by inhibiting proinflammatory cytokine production and actions in the prefrontal cortex. NEW & NOTEWORTHY In contrast to male rats, female rats with heart failure after myocardial infarction do not develop depression-like behavior or increases in prefrontal cortex cytokines. However, after ovariectomy, female rats exhibit similar changes, which are prevented by 17β-estradiol replacement. Neuroinflammation in the prefrontal cortex in male subjects may contribute to depression-like behavior, whereas its estrogen-dependent absence in female subjects may protect against depression.
Collapse
Affiliation(s)
- Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Diane Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa Brain and Mind Institute , Ottawa, Ontario , Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| |
Collapse
|
7
|
Sex Differences in Vascular Reactivity to Angiotensin II During the Evolution of Myocardial Infarction. J Cardiovasc Pharmacol 2018; 71:19-25. [DOI: 10.1097/fjc.0000000000000542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Bates J, Teh I, McClymont D, Kohl P, Schneider JE, Grau V. Monte Carlo Simulations of Diffusion Weighted MRI in Myocardium: Validation and Sensitivity Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1316-1325. [PMID: 28328501 DOI: 10.1109/tmi.2017.2679809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A model of cardiac microstructure and diffusion MRI is presented, and compared with experimental data from ex vivo rat hearts. The model includes a simplified representation of individual cells, with physiologically correct cell size and orientation, as well as intra- to extracellular volume ratio. Diffusion MRI is simulated using a Monte Carlo model and realistic MRI sequences. The results show good correspondence between the simulated and experimental MRI signals. Similar patterns are observed in the eigenvalues of the diffusion tensor, the mean diffusivity (MD), and the fractional anisotropy (FA). A sensitivity analysis shows that the diffusivity is the dominant influence on all three eigenvalues of the diffusion tensor, the MD, and the FA. The area and aspect ratio of the cell cross-section affect the secondary and tertiary eigenvalues, and hence the FA. Within biological norms, the cell length, volume fraction of cells, and rate of change of helix angle play a relatively small role in influencing tissue diffusion. Results suggest that the model could be used to improve understanding of the relationship between cardiac microstructure and diffusion MRI measurements, as well as in testing and refinement of cardiac diffusion MRI protocols.
Collapse
|
9
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
10
|
|
11
|
Dedkov EI, Bogatyryov Y, Pavliak K, Santos AT, Chen YF, Zhang Y, Pingitore A. Sex-related differences in intrinsic myocardial properties influence cardiac function in middle-aged rats during infarction-induced left ventricular remodeling. Physiol Rep 2016; 4:4/11/e12822. [PMID: 27288060 PMCID: PMC4908497 DOI: 10.14814/phy2.12822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/15/2016] [Indexed: 11/24/2022] Open
Abstract
We previously determined that residual left ventricular (LV) myocardium of middle-aged rats had sex-related differences in regional tissue properties 4 weeks after a large myocardial infarction (MI). However, the impact of such differences on cardiac performance remained unclear. Therefore, our current study aimed to elucidate whether sex-related changes in MI-induced myocardial remodeling can influence cardiac function. A similar-sized MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. The cardiac function was monitored for 2 months after MI and then various LV parameters were compared between sexes. We found that although two sex groups had a similar pattern of MI-induced decline in LV function, F-MI rats had greater cardiac performance compared to M-MI rats, considering the higher values of EF (39.9 ± 3.4% vs. 26.7 ± 7.7%, P < 0.05), SW index (40.4 ± 2.1 mmHg • mL/kg vs. 20.2 ± 3.3 mmHg • mL/kg, P < 0.001), and CI (139.2 ± 7.9 mL/min/kg vs. 74.9 ± 14.7 mL/min/kg, P < 0.01). The poorer pumping capacity in M-MI hearts was associated with markedly reduced LV compliance and prolonged relaxation. On the tissue level, F-MI rats revealed a higher, than in M-MI rats, density of cardiac myocytes in the LV free wall (2383.8 ± 242.6 cells/mm(2) vs. 1785.7 ± 55.9 cells/mm(2), P < 0.05). The latter finding correlated with a lower density of apoptotic cardiac myocytes in residual LV myocardium of F-MI rats (0.18 ± 0.08 cells/mm(2) vs. 0.91 ± 0.30 cells/mm(2) in males, P < 0.01). Thus, our data suggested that F-MI rats had markedly attenuated decline in cardiac performance compared to males due to ability of female rats to better retain functionally favorable intrinsic myocardial properties.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Yevgen Bogatyryov
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Kristina Pavliak
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Adora T Santos
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Yue-Feng Chen
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | | |
Collapse
|
12
|
Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, Saunders D, Balasubramanian K, Towner RA, Gerdes AM. Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects. PLoS One 2016; 11:e0151413. [PMID: 26981865 PMCID: PMC4794221 DOI: 10.1371/journal.pone.0151413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background A large body of evidence suggests that thyroid hormones (THs) are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3) treatment in myocardial infarction (MI) rats increased left ventricular (LV) contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI. Methods and Results Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day) was available in drinking water ad libitum immediately following MI and continuing for 2 month(s) (mo). Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy. Conclusions Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans.
Collapse
Affiliation(s)
- Viswanathan Rajagopalan
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, United States of America
- * E-mail: (AMG); (VR)
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Kaie Ojamaa
- Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yue-feng Chen
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | | | - Christine J. Pol
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Debra Saunders
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | | | - Rheal A. Towner
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - A. Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York, United States of America
- * E-mail: (AMG); (VR)
| |
Collapse
|
13
|
Pessôa BS, Slump DE, Ibrahimi K, Grefhorst A, van Veghel R, Garrelds IM, Roks AJM, Kushner SA, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes. Hypertension 2015; 66:396-402. [PMID: 26056343 DOI: 10.1161/hypertensionaha.115.05303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Denise E Slump
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Khatera Ibrahimi
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Steven A Kushner
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands.
| | - Joep H M van Esch
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Lam CSP, McEntegart M, Claggett B, Liu J, Skali H, Lewis E, Køber L, Rouleau J, Velazquez E, Califf R, McMurray JJ, Pfeffer M, Solomon S. Sex differences in clinical characteristics and outcomes after myocardial infarction: insights from the Valsartan in Acute Myocardial Infarction Trial (VALIANT). Eur J Heart Fail 2015; 17:301-12. [DOI: 10.1002/ejhf.238] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/14/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carolyn S. P. Lam
- National University Health System; Tower Block Level 9, 1E Kent Ridge Road Singapore 119228
| | | | | | | | | | | | | | | | | | - Rob Califf
- Duke University Medical Center; Durham NC USA
| | - John J. McMurray
- Department of Cardiology; Western Infirmary; Glasgow Scotland UK
| | | | | |
Collapse
|
15
|
Sofia RR, Serra AJ, Silva JA, Antonio EL, Manchini MT, Oliveira FAAD, Teixeira VPC, Tucci PJF. Gender-based differences in cardiac remodeling and ILK expression after myocardial infarction. Arq Bras Cardiol 2014; 103:124-30. [PMID: 25098374 PMCID: PMC4150663 DOI: 10.5935/abc.20140113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023] Open
Abstract
Background Gender can influence post-infarction cardiac remodeling. Objective To evaluate whether gender influences left ventricular (LV) remodeling and
integrin-linked kinase (ILK) after myocardial infarction (MI). Methods Female and male Wistar rats were assigned to one of three groups: sham, moderate
MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was
induced by coronary occlusion, and echocardiographic analysis was performed after
six weeks to evaluate MI size as well as LV morphology and function. Real-time
RT-PCR and Western blot were used to quantify ILK in the myocardium. Results MI size was similar between genders. MI resulted in systolic dysfunction and
enlargement of end-diastolic as well as end-systolic dimension of LV as a function
of necrotic area size in both genders. Female rats with large MI showed a lower
diastolic and systolic dilatation than the respective male rats; however, LV
dysfunction was similar between genders. Gene and protein levels of ILK were
increased in female rats with moderate and large infarctions, but only male rats
with large infarctions showed an altered ILK mRNA level. A negative linear
correlation was evident between LV dimensions and ILK expression in female rats
with large MI. Conclusions Post-MI ILK expression is altered in a gender-specific manner, and higher ILK
levels found in females may be sufficient to improve LV geometry but not LV
function.
Collapse
Affiliation(s)
- Renato Rodrigues Sofia
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Jose Antonio Silva
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Ednei Luiz Antonio
- Departamento de Cardiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Martha Trindade Manchini
- Programa de Pós-graduação em Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Dedkov EI, Oak K, Christensen LP, Tomanek RJ. Coronary vessels and cardiac myocytes of middle-aged rats demonstrate regional sex-specific adaptation in response to postmyocardial infarction remodeling. Biol Sex Differ 2014; 5:1. [PMID: 24383822 PMCID: PMC3892039 DOI: 10.1186/2042-6410-5-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023] Open
Abstract
Background An increasing body of evidence indicates that left ventricular (LV) remodeling, especially the degree of reactive myocardial hypertrophy after myocardial infarction (MI), differs in males and females. Surprisingly, to date, the sex-specific post-MI alterations of the coronary vasculature remain undetermined. Therefore, we tested the hypothesis that adaptive coronary arteriolar and capillary modifications occurring in response to reactive myocyte hypertrophy differ between middle-aged male and female post-MI rats. Methods A large MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague–Dawley rats by ligation of the left coronary artery. Four weeks after surgery, rats with transmural infarctions, greater than 50% of the LV free wall (FW), were evaluated. Sham-operated male (M-Sham) and female (F-Sham) rats served as an age-matched controls. Results F-MI and M-MI rats had similar sized infarcts (61.3% ± 3.9% vs. 61.5% ± 1.2%) and scale of LV remodeling, as indicated analogous remodeling indices (1.41 ± 0.11 vs. 1.39 ± 0.09). The degree of reactive post-MI myocardial hypertrophy was adequate to normalize LV weight-to-body weight ratio in both sexes; however, the F-MI rats, in contrast to males, showed no myocyte enlargement in the LVFW epimyocardium. At the same time, a greater than 50% expansion of myocyte area in the male epimyocardium and in the female endomyocardium was accompanied by a 23% (P < 0.05) increase in capillary-to-myocyte ratio, indicative of adaptive angiogenesis. Based on arteriolar length density in post-MI hearts, the resistance vessels grew in the male LVFW as well as the septum by 24% and 29%, respectively. In contrast, in females, a significant (30%) expansion of arteriolar bed was limited only to the LVFW. Moreover, in F-MI rats, the enlargement of the arteriolar bed occurred predominantly in the vessels with diameters <30 μm, whereas in M-MI rats, a substantial (two- to threefold) increase in the density of larger arterioles (30 to 50 μm in diameter) was also documented. Conclusion Our data reveal that while both sexes have a relatively similar pattern of global LV remodeling and adaptive angiogenesis in response to a large MI, male and female middle-aged rats differ markedly in the regional scale of reactive cardiac myocyte hypertrophy and adaptive arteriogenesis.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Rockefeller Building, Room 215E, Northern Boulevard, Old Westbury, NY 11568-8000, USA.
| | | | | | | |
Collapse
|
17
|
Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM. Improvement of left ventricular remodeling after myocardial infarction with eight weeks L-thyroxine treatment in rats. J Transl Med 2013; 11:40. [PMID: 23409791 PMCID: PMC3576349 DOI: 10.1186/1479-5876-11-40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Left ventricular (LV) remodeling following large transmural myocardial infarction (MI) remains a pivotal clinical issue despite the advance of medical treatment over the past few decades. Identification of new medications to improve the remodeling process and prevent progression to heart failure after MI is critical. Thyroid hormones (THs) have been shown to improve LV function and remodeling in animals post-MI and in the human setting. However, changes in underlying cellular remodeling resulting from TH treatment are not clear. Methods MI was produced in adult female Sprague–Dawley rats by ligation of the left descending coronary artery. L-thyroxine (T4) pellet (3.3 mg, 60 days sustained release) was used to treat MI rats for 8 weeks. Isolated myocyte shape, arterioles, and collagen deposition in the non-infarcted area were measured at terminal study. Results T4 treatment improved LV ±dp/dt, normalized TAU, and increased myocyte cross-sectional area without further increasing myocyte length in MI rats. T4 treatment increased the total LV tissue area by 34%, increased the non-infarcted tissue area by 41%, and increased the thickness of non-infarcted area by 36% in MI rats. However, myocyte volume accounted for only ~1/3 of the increase in myocyte mass in the non-infarct area, indicating the presence of more myocytes with treatment. T4 treatment tended to increase the total length of smaller arterioles (5 to 15 μm) proportional to LV weight increase and also decreased collagen deposition in the LV non-infarcted area. A tendency for increased metalloproteinase-2 (MMP-2) expression and tissue inhibitor of metalloproteinases (TIMPs) -1 to −4 expression was also observed in T4 treated MI rats. Conclusions These results suggest that long-term T4 treatment after MI has beneficial effects on myocyte, arteriolar, and collagen matrix remodeling in the non-infarcted area. Most importantly, results suggest improved survival of myocytes in the peri-infarct area.
Collapse
Affiliation(s)
- Yue-Feng Chen
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | | | | | | | | | | |
Collapse
|