1
|
Buja LM, Zhao B, Vela D, Segura A, Narula N. Pathobiology of Aortic Aneurysms and Dissections: Synthesis of Recent Investigations and Evolving Insights. JACC. ADVANCES 2025; 4:101682. [PMID: 40286354 DOI: 10.1016/j.jacadv.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/29/2025]
Abstract
The pathobiology of aortic disease is linked to aortic region: atherosclerosis for abdominal aorta, primary medial degeneration or aortitis for ascending thoracic aorta, and all causes for descending thoracic aorta and thoracoabdominal lesions. The pathogenesis of aortic dissection involves damage of the outer media from impaired perfusion from dysfunctional vasa vasorum, formation of discrete foci of disrupted vascular smooth muscle cell-elastic fiber extension-contractile units, and imbalance of radial sheer stress across the aortic wall, thereby creating an intimal tear and linear dissection. Thoracic aortic aneurysms develop from the chronic progression of medial degeneration coupled with the weakening of the remodeled adventitia, allowing for aortic dilatation. Precipitating factors include hypertension and mutations of genes regulating the vascular smooth muscle cell-elastic fiber extension-contractile units. Criteria are presented for distinguishing genetic from acquired causes of thoracic aortic aneurysms and dissections, with important implications for therapeutic and surgical decisions in the care of these patients.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA; Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA.
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Ana Segura
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| |
Collapse
|
2
|
Ortega J, Wyneken J, Garner MM. Aneurysm Associated with Vascular Wall Degeneration in Bearded Dragons ( Pogona vitticeps). Vet Pathol 2024; 61:468-475. [PMID: 38006226 DOI: 10.1177/03009858231214025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
This study describes the clinical, gross, and histologic findings in 17 cases of aneurysms in bearded dragons (Pogona vitticeps). The clinical presentation ranged from incidental to sudden and unexpected death. The affected vasculature was predominantly arterial; however, based on the topographical locations of the lesions, gross structure, and drainage, some veins were likely involved. Magnetic resonance imaging and computerized tomography scans of 1 animal showed a large aneurysm of the internal carotid artery extending from near its aortic origin into the caudal head. Aneurysms were organized in 5 groups based on their anatomical locations: cephalic, cranial coelom (for all near the heart), caudal coelom (for the mesenteric vessels and descending aorta), limbs, and tail. The cranial coelomic region was the most prevalent location. Gross findings were large hematomas or red serosanguineous fluid filling the adjacent area, as most of the aneurysms (94%) were ruptured at the time of the study. The main histological findings were degenerative changes of the vessel walls characterized by moderate to severe disruption of the collagen and elastic fibers of the tunica media and adventitia (100%), followed by thickening of the intima with thrombi formation (54%) and dissecting hematoma of the vessel wall (47%). Vasculitis (29%), mineralization (6%), and lipid deposits (6%) in the vessel wall were observed occasionally. Based on these findings, the vascular dilations and ruptures observed in bearded dragons likely are associated with weakness of the vessel walls caused by degenerative changes in the intimal and medial tunics.
Collapse
Affiliation(s)
- Joaquín Ortega
- Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | | |
Collapse
|
3
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
4
|
Ruiz-Rodríguez MJ, Oller J, Martínez-Martínez S, Alarcón-Ruiz I, Toral M, Sun Y, Colmenar Á, Méndez-Olivares MJ, López-Maderuelo D, Kern CB, Nistal JF, Evangelista A, Teixido-Tura G, Campanero MR, Redondo JM. Versican accumulation drives Nos2 induction and aortic disease in Marfan syndrome via Akt activation. EMBO Mol Med 2024; 16:132-157. [PMID: 38177536 PMCID: PMC10897446 DOI: 10.1038/s44321-023-00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.
Collapse
Affiliation(s)
- María Jesús Ruiz-Rodríguez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Oller
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Vascular Pathology, Hospital IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Alarcón-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Yilin Sun
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Christine B Kern
- Medical University of South Carolina (MUSC), Charleston, SC, 29425, USA
| | - J Francisco Nistal
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander, 39005, Spain
| | | | - Gisela Teixido-Tura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron (VHIR), Barcelona, 08035, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
5
|
Li J, Yu C, Yu K, Chen Z, Xing D, Zha B, Xie W, Ouyang H. SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Exp Ther Med 2023; 26:546. [PMID: 37928510 PMCID: PMC10623238 DOI: 10.3892/etm.2023.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Thoracic aortic dissection (TAD) is a severe and extremely dangerous cardiovascular disease. Proliferation, migration and phenotypic switching of vascular smooth muscle cells (SMCs) are major pathogenetic mechanisms involved in the development of TAD. The present study was designed to investigate the expression and potential function of serine peptidase inhibitor Kunitz type 2 (SPINT2) in TAD. The gene expression profile data for ascending aorta from patients with TAD were downloaded from the GEO database with the accession number GSE52093. Bioinformatics analysis using GEO2R indicated that the differentially expressed SPINT2 was prominently decreased in TAD. The expression levels of SPINT2 mRNA and protein in aortic dissection specimens and normal aorta tissues were measured using reverse transcription-quantitative PCR and western blotting. SPINT2 expression was downregulated in clinical samples from aortic dissection specimens of patients with TAD compared with the corresponding expression noted in tissues derived from patients without TAD. In vitro, platelet-derived growth factor BB (PDGF-BB) was applied to induce the isolated primary mouse aortic SMC phenotypic modulation (a significant upregulation in the expression levels of synthetic markers), and the SMCs were infected with the adenoviral vector, Ad-SPINT2, to construct SPINT2-overexpressed cell lines. SMC viability was detected by an MTT assay and SMC proliferation was detected via the presence of Ki-67-positive cells (immunofluorescence staining). To explore the effects of SPINT2 on SMC migration, a wound healing assay was conducted. ELISA and western blotting assays were used to measure the content and expression levels of MMP-2 and MMP-9. The expression levels of vimentin, collagen I, α-SMA and SM22α were measured using western blotting. The PDGF-BB-induced proliferation and migration of SMCs were recovered by SPINT2 overexpression. The increase in the expression levels of SPINT2 reduced the expression levels of active matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Overexpression of SPINT2 suppressed SMC switching from a contractile to a synthetic type, as evidenced by decreased vimentin and collagen I expression levels along with increased α-smooth muscle actin and smooth muscle protein 22-α expression levels. Furthermore, activation of ERK was inhibited in SPINT2-overexpressing SMCs. A specific ERK agonist, 12-O-tetradecanoylphorbol-13-acetate, reversed the SPINT2-mediated inhibition of SMC migration and the phenotypic switching. Collectively, the data indicated that SPINT2 was implicated in the proliferation, migration and phenotypic switching of aortic SMCs, suggesting that it may be involved in TAD progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangmin Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiyong Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dan Xing
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Binshan Zha
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wentao Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huan Ouyang
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
6
|
Terriaca S, Scioli MG, Pisano C, Ruvolo G, Ferlosio A, Orlandi A. miR-632 Induces DNAJB6 Inhibition Stimulating Endothelial-to-Mesenchymal Transition and Fibrosis in Marfan Syndrome Aortopathy. Int J Mol Sci 2023; 24:15133. [PMID: 37894814 PMCID: PMC10607153 DOI: 10.3390/ijms242015133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by FBN1 gene mutations leading to TGF-β signaling hyperactivation, vascular wall weakness, and thoracic aortic aneurysms (TAAs). The pathogenetic mechanisms are not completely understood and patients undergo early vascular surgery to prevent TAA ruptures. We previously reported miR-632 upregulation in MFS TAA tissues compared with non-genetic TAA tissues. DNAJB6 is a gene target of miR-632 in cancer and plays a critical role in blocking epithelial-to-mesenchymal transition by inhibiting the Wnt/β catenin pathway. TGF-β signaling also activates Wnt/β catenin signaling and induces endothelial-to-mesenchymal transition (End-Mt) and fibrosis. We documented that miR-632 upregulation correlated with DNAJB6 expression in both the endothelium and the tunica media of MFS TAA (p < 0.01). Wnt/β catenin signaling, End-Mt, and fibrosis markers were also upregulated in MFS TAA tissues (p < 0.05, p < 0.01 and p < 0.001). Moreover, miR-632 overexpression inhibited DNAJB6, inducing Wnt/β catenin signaling, as well as End-Mt and fibrosis exacerbation (p < 0.05 and p < 0.01). TGF-β1 treatment also determined miR-632 upregulation (p < 0.01 and p < 0.001), with the consequent activation of the aforementioned processes. Our study provides new insights about the pathogenetic mechanisms in MFS aortopathy. Moreover, the high disease specificity of miR-632 and DNAJB6 suggests new potential prognostic factors and/or therapeutic targets in the progression of MFS aortopathy.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Calogera Pisano
- Cardiac Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Giovanni Ruvolo
- Cardiac Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (A.F.); (A.O.)
| |
Collapse
|
7
|
Fang T, Zhang L, Yin X, Wang Y, Zhang X, Bian X, Jiang X, Yang S, Xue Y. The prognostic marker elastin correlates with epithelial-mesenchymal transition and vimentin-positive fibroblasts in gastric cancer. J Pathol Clin Res 2022; 9:56-72. [PMID: 36226731 PMCID: PMC9732685 DOI: 10.1002/cjp2.298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Elastin (ELN) fibers are essential constituents of the tumor microenvironment of gastric cancer (GC). However, few studies have investigated the clinical prognostic significance of ELN in GC. We screened for molecular markers that were highly related to distant metastasis by transcriptome sequencing. The Cancer Genome Atlas (TCGA) and Harbin Medical University (HMU) validation cohorts were used to validate ELN expression and to explore molecular mechanisms. Immunohistochemistry for ELN, vimentin (VIM), and fibroblast activation protein, and elastic fiber-specific staining were used to evaluate the relationship between ELN and prognosis. R studio was used to construct a nomogram prognostic model. In this study, we found that ELN mRNA levels were significantly higher in cancer tissues and were associated with poor prognosis in TCGA and HMU patients. Gene set enrichment analysis showed that ELN was mainly enriched in the epithelial-mesenchymal transition (EMT) pathway. The mRNA expression of ELN was positively correlated with fibroblast molecular markers, especially VIM. For validation, we collected a tissue microarray containing 180 pairs of samples. We found that ELN was positively correlated with VIM expression in cancer tissue but not in paracancerous tissues by immunohistochemistry staining. Univariate and multivariate analyses showed that the expression of ELN and lymph node metastasis rate were independent predictors for overall survival. Moreover, a nomogram model was used to evaluate the risk of death by combining the expression of ELN and lymph node metastasis rate. ELN may play an important role in the progression of GC by regulating EMT and is a useful prognostic indicator in predicting the prognosis of GC.
Collapse
Affiliation(s)
- Tianyi Fang
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Lei Zhang
- Department of PathologyHarbin Medical UniversityHarbinPR China
| | - Xin Yin
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Yufei Wang
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| | - Xinghai Zhang
- Department of PathologyHarbin Medical UniversityHarbinPR China
| | - Xiulan Bian
- Department of PathologyHarbin Medical UniversityHarbinPR China
| | - Xinju Jiang
- Department of PathologyHarbin Medical UniversityHarbinPR China
| | - Shuo Yang
- Department of PathologyHarbin Medical UniversityHarbinPR China
| | - Yingwei Xue
- Department of Gastroenterological SurgeryHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinPR China
| |
Collapse
|
8
|
Zaradzki M, Mohr F, Lont S, Soethoff J, Remes A, Arif R, Müller OJ, Karck M, Hecker M, Wagner AH. Short-term rapamycin treatment increases life span and attenuates aortic aneurysm in a murine model of Marfan-Syndrome. Biochem Pharmacol 2022; 205:115280. [PMID: 36198355 DOI: 10.1016/j.bcp.2022.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetic disorder leading to medial aortic degeneration and life-limiting dissections. To date, there is no causal prevention or therapy. Rapamycin is a potent and selective inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, regulating cell growth and metabolism. The mgR/mgR mice represent an accepted MFS model for studying aortic pathologies to understand the underlying molecular pathomechanisms. This study investigated whether rapamycin inhibits the development of thoracic aortic aneurysms and dissections in mgR/mgR mice. METHODS Isolated primary aortic smooth muscle cells (mAoSMCs) from mgR/mgR mice were used for in vitro studies. Two mg kg/BW rapamycin was injected intraperitoneally daily for two weeks, beginning at 7-8 weeks of age. Mice were sacrificed 30 days post-treatment. Histopathological and immunofluorescence analyses were performed using adequate tissue specimens and techniques. Animal survival was evaluated accompanied by periodic echocardiographic examinations of the aorta. RESULTS The protein level of the phosphorylated ribosomal protein S6 (p-RPS6), a downstream target of mTOR, was significantly increased in the aortic tissue of mgR/mgR mice. In mAoSMCs isolated from these animals, expression of mTOR, p-RPS6, tumour necrosis factor α, matrix metalloproteinase-2 and -9 was significantly suppressed by rapamycin, demonstrating its anti-inflammatory capacity. Short-term rapamycin treatment of Marfan mice was associated with delayed aneurysm formation, medial aortic elastolysis and improved survival. CONCLUSIONS Short-term rapamycin-mediated mTOR inhibition significantly reduces aortic aneurysm formation and thus increases survival in mgR/mgR mice. Our results may offer the first causal treatment option to prevent aortic complications in MFS patients.
Collapse
Affiliation(s)
- M Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - F Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - S Lont
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - J Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - A Remes
- Department of Internal Medicine III, University of Kiel and University Hospital Schleswig-Holstein, Kiel; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - R Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - O J Müller
- Department of Internal Medicine III, University of Kiel and University Hospital Schleswig-Holstein, Kiel; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - M Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - M Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - A H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Widenka KJ, Kosiorowska M, Jakob H, Pacini D, Hemmer W, Grabenwoeger M, Sioris T, Moritz A, Tsagakis K. Early and midterm results of frozen elephant trunk operation with Evita open stent-graft in patients with Marfan syndrome: results of a multicentre study. BMC Cardiovasc Disord 2022; 22:333. [PMID: 35883019 PMCID: PMC9317434 DOI: 10.1186/s12872-022-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Endovascular treatment of patients with Marfan syndrome (MFS) is not recommended. Hybrid procedures such as frozen elephant trunk (FET), which combines stent-graft deployment with an integrated non-stented fabric graft for proximal grafting and suturing, have not been previously evaluated. The aim of this study was to assess the safety and feasibility of FET operation in patients with MFS. METHODS Patients enrolled in the International E-vita Open Registry (IEOR) who underwent FET procedure between January 2001 and February 2020 meeting Ghent criteria for MFS were included in the study. Early and midterm results were retrospectively analyzed. Preoperative, postoperative and follow-up computed tomography angiography scans were analysed. RESULTS We analyzed 37 patients [mean age 38 ± 11 years, 65% men]. Acute or chronic aortic dissection was present in 35 (95%) patients (14 and 21 patients respectively). Two (5%) patients had an aneurysm without dissection. Malperfusion syndrome was present in 4 patients. Twenty-nine (78%) patients had history of aortic surgical interventions. The 30-day and in-hospital mortality amounted to 8 and 14% respectively. False lumen exclusion was present in 73% in stented segment in last postoperative CT. The overall 5-year survival was 71% and freedom from reintervention downstream was 58% at 5 years. Of the nine patients who required reintervention for distal aortic disease, one patient died. CONCLUSIONS FET operation for patients with MFS can be performed with acceptable mortality and morbidity. In long-term follow-up no reinterventions on the aortic arch were required. FET allows for easier second stage operations providing platform for surgical and endovascular reinterventions.
Collapse
Affiliation(s)
- Kazimierz Jan Widenka
- Department of Cardiac Surgery, University of Rzeszow Poland, 60 Lwowska Street 60, 35-301, Rzeszow, Poland.
| | - Monika Kosiorowska
- Department of Cardiac Surgery, University of Rzeszow Poland, 60 Lwowska Street 60, 35-301, Rzeszow, Poland
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, Essen, Germany
| | - Davide Pacini
- Department of Cardiac Surgery, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Wolfgang Hemmer
- Department of Cardiac Surgery, Sana Cardiac Surgery Stuttgart GmbH, Stuttgart, Germany
| | | | - Thanos Sioris
- Tampere University Hospital Heart Center, Tampere, Finland
| | - Anton Moritz
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, Essen, Germany
| |
Collapse
|
10
|
Făgărășan A, Săsăran MO. The Predictive Role of Plasma Biomarkers in the Evolution of Aortopathies Associated with Congenital Heart Malformations. Int J Mol Sci 2022; 23:ijms23094993. [PMID: 35563383 PMCID: PMC9102091 DOI: 10.3390/ijms23094993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dilatation of the aorta is a constantly evolving condition that can lead to the ultimate life-threatening event, acute aortic dissection. Recent research has tried to identify quantifiable biomarkers, with both diagnostic and prognostic roles in different aortopathies. Most studies have focused on the bicuspid aortic valve, the most frequent congenital heart disease (CHD), and majorly evolved around matrix metalloproteinases (MMPs). Other candidate biomarkers, such as asymmetric dimethylarginine, soluble receptor for advanced glycation end-products or transforming growth factor beta have also gained a lot of attention recently. Most of the aortic anomalies and dilatation-related studies have reported expression variation of tissular biomarkers. The ultimate goal remains, though, the identification of biomarkers among the serum plasma, with the upregulation of circulating MMP-1, MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), asymmetric dimethylarginine (ADMA), soluble receptor for advanced glycation end-products (sRAGE) and transforming growth factor beta (TGF-β) being reported in association to several aortopathies and related complications in recent research. These molecules are apparently quantifiable from the early ages and have been linked to several CHDs and hereditary aortopathies. Pediatric data on the matter is still limited, and further studies are warranted to elucidate the role of plasmatic biomarkers in the long term follow-up of potentially evolving congenital aortopathies.
Collapse
Affiliation(s)
- Amalia Făgărășan
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Târgu Mureș, Romania;
| | - Maria Oana Săsăran
- Department of Pediatrics III, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-720-332-503
| |
Collapse
|
11
|
Virmani R, Sato Y, Sakamoto A, Romero ME, Butany J. Aneurysms of the aorta: ascending, thoracic, and abdominal and their management. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Toral M, de la Fuente-Alonso A, Campanero MR, Redondo JM. The NO signalling pathway in aortic aneurysm and dissection. Br J Pharmacol 2021; 179:1287-1303. [PMID: 34599830 DOI: 10.1111/bph.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.
Collapse
Affiliation(s)
- Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea de la Fuente-Alonso
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
13
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, González-Lucán M, Funcasta-Calderón R. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol Biol Rep 2021; 48:4865-4878. [PMID: 34129188 DOI: 10.1007/s11033-021-06478-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Raquel Funcasta-Calderón
- Nephrology Division, Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
14
|
You Y, Ma X, Chen L. Marfan Syndrome With Recurrent Lower Left Posterior Toothache as the First Symptom: A Report on a Rare Case. J Endod 2021; 47:1328-1331. [DOI: 10.1016/j.joen.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023]
|
15
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
16
|
Remes A, Arif R, Franz M, Jungmann A, Zaradzki M, Puehler T, Md MBH, Frey N, Karck M, Kallenbach K, Hecker M, Müller OJ, Wagner AH. AAV-mediated AP-1 decoy oligonucleotide expression inhibits aortic elastolysis in a mouse model of marfan syndrome. Cardiovasc Res 2021; 117:2459-2473. [PMID: 33471064 DOI: 10.1093/cvr/cvab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/02/2019] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
AIMS Marfan syndrome is one of the most common inherited disorders of connective tissue caused by fibrillin-1 mutations, characterized by enhanced transcription factor AP-1 DNA binding activity and subsequently abnormally increased expression and activity of matrix-metalloproteinases (MMPs). We aimed to establish a novel adeno-associated virus (AAV)-based strategy for long-term expression of an AP-1 neutralising RNA hairpin (hp) decoy oligonucleotide (dON) in the aorta to prevent aortic elastolysis in a murine model of Marfan syndrome. METHODS AND RESULTS Using fibrillin-1 hypomorphic mice (mgR/mgR), aortic grafts from young (9 weeks old) donor mgR/mgR mice were transduced ex vivo with AAV vectors and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Grafts were explanted after 30 days. For in vitro studies isolated primary aortic smooth muscle cells from mgR/mgR mice were used. Elastica-van-Giesson staining visualized elastolysis, ROS production was assessed using DHE staining. RNA F.I.S.H. verified AP-1 hp dON generation in the ex vivo transduced aortic tissue. MMP expression and activity were assessed by western blotting and immunoprecipitation combined with zymography.Transduction resulted in stable therapeutic dON expression in endothelial and smooth muscle cells. MMP expression and activity, ROS formation as well as expression of monocyte chemoattractant protein-1 were significantly reduced. Monocyte graft infiltration declined and the integrity of the elastin architecture was maintained. RNAseq analyzis confirmed the beneficial effect of AP-1 neutralisation on the pro-inflammatory environment in smooth muscle cells. CONCLUSIONS This novel approach protects from deterioration of aortic stability by sustained delivery of nucleic acids-based therapeutics and further elucidated how to interfere with the mechanism of elastolysis. TRANSLATIONAL PERSPECTIVE This study provides a novel single treatment option to achieve long-term expression of a transcription factor AP-1 neutralising decoy oligonucleotide in the aorta of mgR/mgR mice with the potential to prevent life-threatening elastolysis and aortic complications.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Maximilian Franz
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Thomas Puehler
- Department of Cardiac and Vascular Surgery, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Internal Medicine III, University Hospital Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Markus Hecker
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
17
|
Seike Y, Matsuda H, Ishibashi-Ueda H, Morisaki H, Morisaki T, Minatoya K, Ogino H. Surgical Outcome and Histological Differences between Individuals with TGFBR1 and TGFBR2 Mutations in Loeys-Dietz Syndrome. Ann Thorac Cardiovasc Surg 2021; 27:56-63. [PMID: 33408307 PMCID: PMC8043025 DOI: 10.5761/atcs.oa.20-00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify differences in surgical outcomes between patients with transforming growth factor-beta receptor (TGFBR) 1 and TGFBR2 mutations in Loeys-Dietz syndrome (LDS). METHODS In all, 22 LDS patients between 1998 and 2015 were divided into the two groups: TGFBR1 (n = 11) and TGFBR2 mutation (n = 11). RESULTS The freedom from aortic reoperation was similar between the two groups (p = 0.19, log-rank). In the subanalysis, the freedom from aortic reoperation was lower in female patients with TGFBR2 mutations (n = 6) than in other patients (p = 0.08). The freedom from aortic dissection (AD) after the initial surgery was also lower in female patients with TGFBR2 mutation than in other patients (p = 0.025). All patients with TGFBR2 mutations revealed grade III cystic medial necrosis (CMN), whereas 67% of patients with TGFBR1 mutations showed CMN (p = 0.033) and only one patient had grade III (p <0.001). CONCLUSION LDS patients with TGFBR2 mutations had higher grade of CMN than those of TGFBR1 mutations. In particular, in female patients with TGFBR2 mutations, AD after the initial surgery and reoperation were more frequent than those of other LDS patients.
Collapse
Affiliation(s)
- Yoshimasa Seike
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hitoshi Matsuda
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan.,Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Fuchu, Tokyo, Japan
| | - Takayuki Morisaki
- Department of Molecular Pathology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Goodenough CJ, Afifi RO, Prakash SK, Buja LM, Lamaris GA. Ulnar Artery Aneurysm as a Late Sequela of Marfan Syndrome. J Hand Surg Am 2020; 45:1090.e1-1090.e5. [PMID: 32213296 DOI: 10.1016/j.jhsa.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/24/2020] [Indexed: 02/02/2023]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations of the FBN1 gene encoding fibrillin-1, which leads to overexpression of transforming growth factor-β, increased hyaluronan deposition, and matrix metalloproteinase activity in the media of the aorta and other muscular arteries. Marfan syndrome patients present with connective tissue laxity and aneurysmal changes to muscular arteries. Successful medical and surgical intervention has prolonged the life expectancy of MFS patients, which can allow atypical presentations of the syndrome to manifest. We present a case of a 49-year-old man with MFS who developed an ulnar artery aneurysm that was treated by excision and vein grafting.
Collapse
Affiliation(s)
- Christopher J Goodenough
- Department of Surgery, Division of Plastic Surgery, University of Texas Health Sciences Center at Houston, Houston, TX.
| | - Rana O Afifi
- Department of Cardiothoracic and Vascular Surgery, University of Texas Health Sciences Center at Houston, Houston, TX
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Sciences Center at Houston, Houston, TX
| | - L Maximilian Buja
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX
| | - Grigorios A Lamaris
- Department of Surgery, Division of Plastic Surgery, University of Texas Health Sciences Center at Houston, Houston, TX
| |
Collapse
|
19
|
Specific miRNA and Gene Deregulation Characterize the Increased Angiogenic Remodeling of Thoracic Aneurysmatic Aortopathy in Marfan Syndrome. Int J Mol Sci 2020; 21:ijms21186886. [PMID: 32961817 PMCID: PMC7555983 DOI: 10.3390/ijms21186886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disease caused by mutations in the FBN1 gene, leading to alterations in the extracellular matrix microfibril assembly and the early formation of thoracic aorta aneurysms (TAAs). Non-genetic TAAs share many clinico-pathological aspects with MFS and deregulation of some microRNAs (miRNAs) has been demonstrated to be involved in the progression of TAA. In this study, 40 patients undergoing elective ascending aorta surgery were enrolled to compare TAA histomorphological features, miRNA profile and related target genes in order to find specific alterations that may explain the earlier and more severe clinical outcomes in MFS patients. Histomorphological, ultrastructural and in vitro studies were performed in order to compare aortic wall features of MFS and non-MFS TAA. MFS displayed greater glycosaminoglycan accumulation and loss/fragmentation of elastic fibers compared to non-MFS TAA. Immunohistochemistry revealed increased CD133+ angiogenic remodeling, greater MMP-2 expression, inflammation and smooth muscle cell (SMC) turnover in MFS TAA. Cultured SMCs from MFS confirmed higher turnover and α-smooth muscle actin expression compared with non-MFS TAA. Moreover, twenty-five miRNAs, including miR-26a, miR-29, miR-143 and miR-145, were found to be downregulated and only miR-632 was upregulated in MFS TAA in vivo. Bioinformatics analysis revealed that some deregulated miRNAs in MFS TAA are implicated in cell proliferation, extracellular matrix structure/function and TGFβ signaling. Finally, gene analysis showed 28 upregulated and seven downregulated genes in MFS TAA, some of them belonging to the CDH1/APC and CCNA2/TP53 signaling pathways. Specific miRNA and gene deregulation characterized the aortopathy of MFS and this was associated with increased angiogenic remodeling, likely favoring the early and more severe clinical outcomes, compared to non-MFS TAA. Our findings provide new insights concerning the pathogenetic mechanisms of MFS TAA; further investigation is needed to confirm if these newly identified specific deregulated miRNAs may represent potential therapeutic targets to counteract the rapid progression of MFS aortopathy.
Collapse
|
20
|
Gu L, Ni J, Sheng S, Zhao K, Sun C, Wang J. Microarray analysis of long non-coding RNA expression profiles in Marfan syndrome. Exp Ther Med 2020; 20:3615-3624. [PMID: 32855713 PMCID: PMC7444390 DOI: 10.3892/etm.2020.9093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/29/2020] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a crucial role in every aspect of cell biological functions as well as in a variety of diseases, including cardiovascular disease, cancer and nervous system disease. However, the differential expression profiles of lncRNAs in Marfan syndrome (MFS) have not been reported. The aim of the present study was to identify potential target genes behind the pathogenesis of MFS by analyzing microarray profiles of lncRNA in aortic tissues from individuals with MFS and normal aortas (NA). The differentially expressed lncRNA profiles between MFS (n=3) and NA (n=4) tissues were analyzed using microarrays. Bioinformatics analyses were used to further investigate the candidate lncRNAs. Reverse transcription-quantitative (RT-qPCR) was applied to validate the results. In total, the present study identified 294 lncRNAs (245 upregulated and 49 downregulated) and 644 mRNAs (455 upregulated and 189 downregulated) which were differential expressed between MFS and NA tissues (fold change ≥1.5; P<0.05). Gene Ontology enrichment analysis indicated that the differentially expressed mRNAs were involved in cell adhesion, elastic fiber assembly, extracellular matrix (ECM) organization, the response to virus and the inflammatory response. Kyoto Encyclopedia of Gene and Genomes pathway analysis indicated that the differentially expressed mRNAs were mainly associated with focal adhesion, the ECM-receptor interaction, the mitogen-activated protein kinase signaling pathway and the tumor necrosis factor signaling pathway. The lncRNA-mRNA coexpression network analysis further elucidated the interaction between the lncRNAs and mRNAs. A total of five lncRNAs (uc003jka.1, uc003jox.1, X-inactive specific transcript, linc-lysophosphatidic acid receptor 1 and linc-peptidylprolyl isomerase domain and WD repeat containing 1) with the highest degree of coexpression were selected and confirmed using RT-qPCR. In the present study, expression profiles of lncRNA and mRNA in MFS were revealed using microarray analysis. These results provided novel candidates for further investigation of the molecular mechanisms and effective targeted therapies for MFS.
Collapse
Affiliation(s)
- Lizhong Gu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sunpeng Sheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaixiang Zhao
- Department of Cardiothoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchao Sun
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jue Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
21
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys Rev 2020; 12:903-916. [PMID: 32654068 DOI: 10.1007/s12551-020-00730-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-established that variations of a CGG repeat expansion in the gene FMR1, which encodes the fragile-X mental retardation protein (FMRP), cause the neurocognitive disorder, fragile-X syndrome (FXS). However, multiple observations suggest a general and complex regulatory role of FMRP in processes outside the brain: (1) FMRP is ubiquitously expressed in the body, suggesting it functions in multiple organ systems; (2) patients with FXS can exhibit a physical phenotype that is consistent with an underlying abnormality in connective tissue; (3) different CGG repeat expansion lengths in FMR1 result in different clinical outcomes due to different pathogenic mechanisms; (4) the function of FMRP as an RNA-binding protein suggests it has a general regulatory role. This review details the complex nature of FMRP and the different CGG repeat expansion lengths and the evidence supporting the essential role of the protein in a variety of biological and pathological processes.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
22
|
Pisano C, D'Amico F, Balistreri CR, Vacirca SR, Nardi P, Altieri C, Scioli MG, Bertoldo F, Santo L, Bellisario D, Talice M, Verzicco R, Ruvolo G, Orlandi A. Biomechanical properties and histomorphometric features of aortic tissue in patients with or without bicuspid aortic valve. J Thorac Dis 2020; 12:2304-2316. [PMID: 32642135 PMCID: PMC7330388 DOI: 10.21037/jtd.2020.03.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background We sought to investigate and compare biomechanical properties and histomorphometric findings of thoracic ascending aorta aneurysm (TAA) tissue from patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) in order to clarify mechanisms underlying differences in the clinical course. Methods Circumferential sections of TAA tissue in patients with BAV (BAV-TAA) and TAV (TAV-TAA) were obtained during surgery and used for biomechanical tests and histomorphometrical analysis. Results In BAV-TAA, we observed biomechanical higher peak stress and lower Young modulus values compared with TAV-TAA wall. The right lateral longitudinal region seemed to be the most fragile zone of the TAA wall. Mechanical stress-induced rupture of BAV-TAA tissue was sudden and uniform in all aortic wall layers, whereas a gradual and progressive aortic wall breakage was described in TAV-TAA. Histomorphometric analysis revealed higher amount of collagen but not elastin in BAV-TAA tunica media. Conclusions The higher deformability of BAV-TAA tissue supports the hypothesis that increased wall shear stress doesn’t explain the increased risk of sudden onset of rupture and dissection; other mechanisms, likely related to alteration of specific genetic pathways and epigenetic signals, could be investigated to explain differences in aortic dissection and rupture in BAV patients.
Collapse
Affiliation(s)
- Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology, Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Sara Rita Vacirca
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Paolo Nardi
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Claudia Altieri
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy
| | - Fabio Bertoldo
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Loredana Santo
- Department of Industrial Engineering, Tor Vergata University, Rome, Italy
| | - Denise Bellisario
- Department of Industrial Engineering, Tor Vergata University, Rome, Italy
| | | | - Roberto Verzicco
- Department of Industrial Engineering, Tor Vergata University, Rome, Italy
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
23
|
Benson JC, Lehman VT, Carr CM, Wald JT, Cloft HJ, Lanzino G, Brinjikji W. Beyond plaque: A pictorial review of non-atherosclerotic abnormalities of extracranial carotid arteries. J Neuroradiol 2020; 48:51-60. [PMID: 32169468 DOI: 10.1016/j.neurad.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The common carotid artery (CCA) and extracranial internal carotid artery are subject to a wide variety of non-atheromatous pathologies. These entities are often overshadowed in both research and clinical realms by atherosclerotic disease. Nevertheless, non-atherosclerotic disease of the carotid arteries may have profound, even devastating, neurologic consequences. Hence, this review will cover both common and uncommon forms of extracranial carotid artery pathologies in a pictorial format, in order to aid the diagnostician in identifying and differentiating such pathologies.
Collapse
Affiliation(s)
- John C Benson
- Mayo Clinic, Department of Neuroradiology, Rochester, MN, USA.
| | - Vance T Lehman
- Mayo Clinic, Department of Neuroradiology, Rochester, MN, USA
| | - Carrie M Carr
- Mayo Clinic, Department of Neuroradiology, Rochester, MN, USA
| | - John T Wald
- Mayo Clinic, Department of Neuroradiology, Rochester, MN, USA
| | - Harry J Cloft
- Mayo Clinic, Department of Neuroradiology, Rochester, MN, USA
| | | | | |
Collapse
|
24
|
Mangum KD, Farber MA. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet 2020; 97:815-826. [PMID: 31957007 DOI: 10.1111/cge.13705] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.
Collapse
Affiliation(s)
- Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark A Farber
- Division of Vascular Surgery, UNC Department of Surgery, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Thomas RA, Anyanwu CT, Blazo M, Subramanian S. Severe aortic root dilatation in infantile Marfan syndrome. Proc AMIA Symp 2019; 32:561-563. [PMID: 31656420 PMCID: PMC6793975 DOI: 10.1080/08998280.2019.1646594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022] Open
Abstract
Cardiovascular manifestations of Marfan syndrome are associated with increased mortality, especially in the pediatric population. Early recognition is critical to long-term management. We present two cases of genetically defined "classical" Marfan syndrome presenting with severe infantile aortic root dilatation among siblings and discuss options for therapy.
Collapse
Affiliation(s)
- Renita A. Thomas
- College of Medicine, Texas A&M University Health Science CenterBryanTexas
| | | | - Maria Blazo
- College of Medicine, Texas A&M University Health Science CenterBryanTexas
- Department of Genetics, Baylor Scott & White Medical Center–TempleTempleTexas
| | - Saradha Subramanian
- College of Medicine, Texas A&M University Health Science CenterBryanTexas
- Department of Pediatric Cardiology, Baylor Scott & White McLane Children’s Medical CenterTempleTexas
| |
Collapse
|
26
|
Wagner AH, Zaradzki M, Arif R, Remes A, Müller OJ, Kallenbach K. Marfan syndrome: A therapeutic challenge for long-term care. Biochem Pharmacol 2019; 164:53-63. [PMID: 30926475 DOI: 10.1016/j.bcp.2019.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominant genetic disorder caused by mutations in the fibrillin-1 gene. Acute aortic dissection is the leading cause of death in patients suffering from MFS and consequence of medial degeneration and aneurysm formation. In addition to its structural function in the formation of elastic fibers, fibrillin has a major role in keeping maintaining transforming growth factor β (TGF-β) in an inactive form. Dysfunctional fibrillin increases TGF-β bioavailability and concentration in the extracellular matrix, leading to activation of proinflammatory transcription factors. In turn, these events cause increased expression of matrix metalloproteinases and cytokines that control the migration and infiltration of inflammatory cells into the aorta. Moreover, TGF-β causes accumulation of reactive oxygen species leading to further degradation of elastin fibers. All these processes result in medial elastolysis, which increases the risk of vascular complications. Although MFS is a hereditary disease, symptoms and traits are usually not noticeable at birth. During childhood or adolescence affected individuals present with severe tissue weaknesses, especially in the aorta, heart, eyes, and skeleton. Considering this, even young patients should avoid activities that exert additional stress and pressure on the aorta and the cardiovascular system. Thus, if the diagnosis is made and prophylactic treatment is initiated in a timely fashion, MFS and its preliminary pathophysiologic vascular remodeling can be successfully ameliorated reducing the risk of life-threatening complications. This commentary focuses on new research opportunities and molecular findings on MFS, discusses future challenges and possible long-term therapies.
Collapse
Affiliation(s)
- A H Wagner
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Germany.
| | - M Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - R Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - A Remes
- Department of Internal Medicine III, University Hospital Kiel, Kiel, Germany
| | - O J Müller
- Department of Internal Medicine III, University Hospital Kiel, Kiel, Germany
| | - K Kallenbach
- INCCI HaerzZenter, Department of Cardiac Surgery, Luxembourg, Luxembourg
| |
Collapse
|
27
|
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients⁻Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20:E1122. [PMID: 30841577 PMCID: PMC6429290 DOI: 10.3390/ijms20051122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Radiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Seike Y, Minatoya K, Matsuda H, Ishibashi-Ueda H, Morisaki H, Morisaki T, Kobayashi J. Histologic differences between the ascending and descending aortas in young adults with fibrillin-1 mutations. J Thorac Cardiovasc Surg 2019; 159:1214-1220.e1. [PMID: 30905418 DOI: 10.1016/j.jtcvs.2019.01.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study aimed to review the clinical results of young adult patients with aortic disease associated with mutations in the fibrillin-1 gene (FBN1) and disclose the histologic differences between the ascending and descending aortas. METHODS Between 2012 and 2015, 94 patients aged less than 50 years underwent surgery for thoracic aortic diseases. Forty-two patients (44.7%) had FBN-1 mutations. Of these, 40 patients (42.5%) with surgical specimens for histologic evaluation were included in the study. With the histologic results including the specimen sampled at their previous operations, cystic medial necrosis was classified into 3 grades according to the degree of the cystic area. RESULTS Thirty-nine patients (97.5%) had aortic root dilatation (Z ≥2), and 13 patients (32.5%) had ectopia lentis. Thirty-nine patients (97.5%) fulfilled the diagnostic criteria for Marfan syndrome. There were no in-hospital deaths. The majority (27/29: 93.1%) of the specimens of the ascending aorta revealed cystic medial necrosis pattern. With grade III being the most severe condition, these cases were classified into grade I (n = 2), grade II (n = 5), and grade III (n = 20). In contrast, only 6 specimens (6/17: 35.3%) of the descending aorta showed a cystic medial necrosis pattern that was classified into grade I (n = 2) and grade III (n = 4), (P < .00001). CONCLUSIONS Fewer specimens of the descending aorta revealed cystic medial necrosis compared with those of the ascending aorta. This difference might influence the characteristic aortic disease in Marfan syndrome associated with FBN-1 mutations.
Collapse
Affiliation(s)
- Yoshimasa Seike
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Japan.
| | - Hitoshi Matsuda
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Hiroko Morisaki
- Department of Genetics and Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takayuki Morisaki
- Department of Genetics and Bioscience, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Junjiro Kobayashi
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
29
|
Erdős G, Mészáros B, Reichmann D, Dosztányi Z. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Proteomics 2019; 19:e1800070. [PMID: 30628183 DOI: 10.1002/pmic.201800070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Recently developed quantitative redox proteomic studies enable the direct identification of redox-sensing cysteine residues that regulate the functional behavior of target proteins in response to changing levels of reactive oxygen species. At the molecular level, redox regulation can directly modify the active sites of enzymes, although a growing number of examples indicate the importance of an additional underlying mechanism that involves conditionally disordered proteins. These proteins alter their functional behavior by undergoing a disorder-to-order transition in response to changing redox conditions. However, the extent to which this mechanism is used in various proteomes is currently unknown. Here, a recently developed sequence-based prediction tool incorporated into the IUPred2A web server is used to estimate redox-sensitive conditionally disordered regions at a large scale. It is shown that redox-sensitive conditional disorder is fairly widespread in various proteomes and that its presence strongly correlates with the expansion of specific domains in multicellular organisms that largely rely on extra stability provided by disulfide bonds or zinc ion binding. The analyses of yeast redox proteomes and human disease data further underlie the significance of this phenomenon in the regulation of a wide range of biological processes, as well as its biomedical importance.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Bálint Mészáros
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
30
|
López-Guimet J, Peña-Pérez L, Bradley RS, García-Canadilla P, Disney C, Geng H, Bodey AJ, Withers PJ, Bijnens B, Sherratt MJ, Egea G. MicroCT imaging reveals differential 3D micro-scale remodelling of the murine aorta in ageing and Marfan syndrome. Am J Cancer Res 2018; 8:6038-6052. [PMID: 30613281 PMCID: PMC6299435 DOI: 10.7150/thno.26598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aortic wall remodelling is a key feature of both ageing and genetic connective tissue diseases, which are associated with vasculopathies such as Marfan syndrome (MFS). Although the aorta is a 3D structure, little attention has been paid to volumetric assessment, primarily due to the limitations of conventional imaging techniques. Phase-contrast microCT is an emerging imaging technique, which is able to resolve the 3D micro-scale structure of large samples without the need for staining or sectioning. Methods: Here, we have used synchrotron-based phase-contrast microCT to image aortae of wild type (WT) and MFS Fbn1C1039G/+ mice aged 3, 6 and 9 months old (n=5). We have also developed a new computational approach to automatically measure key histological parameters. Results: This analysis revealed that WT mice undergo age-dependent aortic remodelling characterised by increases in ascending aorta diameter, tunica media thickness and cross-sectional area. The MFS aortic wall was subject to comparable remodelling, but the magnitudes of the changes were significantly exacerbated, particularly in 9 month-old MFS mice with ascending aorta wall dilations. Moreover, this morphological remodelling in MFS aorta included internal elastic lamina surface breaks that extended throughout the MFS ascending aorta and were already evident in animals who had not yet developed aneurysms. Conclusions: Our 3D microCT study of the sub-micron wall structure of whole, intact aorta reveals that histological remodelling of the tunica media in MFS could be viewed as an accelerated ageing process, and that phase-contrast microCT combined with computational image analysis allows the visualisation and quantification of 3D morphological remodelling in large volumes of unstained vascular tissues.
Collapse
|
31
|
Spin JM, Li DY, Maegdefessel L, Tsao PS. Non-coding RNAs in aneurysmal aortopathy. Vascul Pharmacol 2018; 114:110-121. [PMID: 29909014 DOI: 10.1016/j.vph.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/21/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023]
Abstract
Aortic aneurysms represent a major public health burden, and currently have no medical treatment options. The pathophysiology behind these aneurysms is complex and variable, depending on location and underlying cause, and generally involves progressive dysfunction of all elements of the aortic wall. Changes in smooth muscle behavior, endothelial signaling, extracellular matrix remodeling, and to a variable extent inflammatory signaling and cells, all contribute to the dilation of the aorta, ultimately resulting in high mortality and morbidity events including dissection and rupture. A large number of researchers have identified non-coding RNAs as crucial regulators of aortic aneurysm development, both in humans and in animal models. While most work to-date has focused on microRNAs, intriguing information has also begun to emerge regarding the role of long-non-coding RNAs. This review summarizes the currently available data regarding the involvement of non-coding RNAs in aneurysmal aortopathies. Going forward, these represent key potential therapeutic targets that might be leveraged in the future to slow or prevent aortic aneurysm formation, progression and rupture.
Collapse
Affiliation(s)
- Joshua M Spin
- Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
| | - Daniel Y Li
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Lars Maegdefessel
- Vascular Biology Unit, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technical University of Munich, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philip S Tsao
- Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA.
| |
Collapse
|
32
|
Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, Mehta SG, Hague J, Verhagen J, van de Laar I, Wessels M, Detisch Y, van Haelst M, Baas A, Lichtenbelt K, Braun K, van der Linde D, Roos-Hesselink J, McGillivray G, Meester J, Maystadt I, Coucke P, El-Khoury E, Parkash S, Diness B, Risom L, Scurr I, Hilhorst-Hofstee Y, Morisaki T, Richer J, Désir J, Kempers M, Rideout AL, Horne G, Bennett C, Rahikkala E, Vandeweyer G, Alaerts M, Verstraeten A, Dietz H, Van Laer L, Loeys B. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat 2018; 39:621-634. [PMID: 29392890 PMCID: PMC5947146 DOI: 10.1002/humu.23407] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Abstract
The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor‐β (TGF‐β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF‐β signaling. More recently, TGF‐β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF‐β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF‐β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.
Collapse
Affiliation(s)
- Dorien Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Giada Tortora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.,Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan.,Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lindsay
- Thoracic Aortic Center, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Liang
- Cardiovascular Medicine, Stanford University Medical Center, Stanford, California
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Judith Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yvonne Detisch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Annette Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klaske Lichtenbelt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees Braun
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Josephina Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Elie El-Khoury
- Department of Diagnostic Cardiology, Clinique St Luc, Bouge (Namur), Belgium
| | - Sandhya Parkash
- Department of Pediatrics, Maritime Medical Genetics Service, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Birgitte Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingrid Scurr
- Department of Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | | | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie Désir
- Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Gabrielle Horne
- Department of Medicine (Cardiology) and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Bennett
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elisa Rahikkala
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hal Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Bielli A, Bernardini R, Varvaras D, Rossi P, Di Blasi G, Petrella G, Buonomo OC, Mattei M, Orlandi A. Characterization of a new decellularized bovine pericardial biological mesh: Structural and mechanical properties. J Mech Behav Biomed Mater 2017; 78:420-426. [PMID: 29223730 DOI: 10.1016/j.jmbbm.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Implants made from naturally-derived biomaterials, also called biological meshes or biomeshes, typically derive from decellularized extracellular matrix of either animal or human tissue. Biomeshes have many biomedical applications such as ligament repair, bone and cartilage regeneration and soft tissue replacement. Bovine collagen is one of the most widely used and abundantly available xenogenic materials. In particular, bovine pericardium is widely used as extracellular matrix bioprosthetic tissue. The efficiency of a pericardial mesh to function as scaffold depends on the quality of the decellularization protocol used. Moreover, the biomesh mechanical features are critical for a successful surgical repair process, as they must reproduce the biological properties of the autologous tissue. Different methods of physical, chemical, or enzymatic decellularization exist, but no one has proved to be ideal. Therefore, in the present study, we developed a novel decellularization protocol for a bovine pericardium-derived biomesh. We characterized the biomesh obtained by comparing some ultrastructural, physical and mechanical features to a reference commercial biomesh. Quantification revealed that our novel decellularization process removed about 90% of the native pericardial DNA. Microscopic and ultrastructural analysis documented the maintenance of the physiological structure of the pericardial collagen. Moreover, mechanical tests showed that both the extension and resilience of the new biomesh were statistically higher than the commercial control ones. The results presented in this study demonstrate that our protocol is promising in preparing high quality bovine pericardial biomeshes, encouraging further studies to validate its use in tissue engineering and regenerative medicine protocols.
Collapse
Affiliation(s)
- Alessandra Bielli
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberta Bernardini
- Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy; Dept. of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Dimitrios Varvaras
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Piero Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | | | - Giuseppe Petrella
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Italy
| | - Maurizio Mattei
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Dept. of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Augusto Orlandi
- Institute of Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
34
|
López-Guimet J, Andilla J, Loza-Alvarez P, Egea G. High-Resolution Morphological Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome. Sci Rep 2017; 7:1505. [PMID: 28473723 PMCID: PMC5431420 DOI: 10.1038/s41598-017-01620-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 12/04/2022] Open
Abstract
In Marfan syndrome, the tunica media is disrupted, which leads to the formation of ascending aortic aneurysms. Marfan aortic samples are histologically characterized by the fragmentation of elastic laminae. However, conventional histological techniques using transverse sections provide limited information about the precise location, progression and 3D extension of the microstructural changes that occur in each lamina. We implemented a method using multiphoton excitation fluorescence microscopy and computational image processing, which provides high-resolution en-face images of segmented individual laminae from unstained whole aortic samples. We showed that internal elastic laminae and successive 2nd laminae are injured to a different extent in murine Marfan aortae; in particular, the density and size of fenestrae changed. Moreover, microstructural injuries were concentrated in the aortic proximal and convex anatomical regions. Other parameters such as the waviness and thickness of each lamina remained unaltered. In conclusion, the method reported here is a useful, unique tool for en-face laminae microstructure assessment that can obtain quantitative three-dimensional information about vascular tissue. The application of this method to murine Marfan aortae clearly shows that the microstructural damage in elastic laminae is not equal throughout the thickness of the tunica media and in the different anatomical regions of the ascending aorta.
Collapse
Affiliation(s)
- Júlia López-Guimet
- Departament de Biomedicina, Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, Barcelona, Spain. .,Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
|
36
|
Ferlosio A, Orlandi A. The use of electron microscopy for the diagnosis of malignant pleural mesothelioma. J Thorac Dis 2016; 8:E1487-E1489. [PMID: 28066639 PMCID: PMC5179440 DOI: 10.21037/jtd.2016.11.58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
- Anatomic Pathology, Policlinic of Tor Vergata University, Rome, Italy
| |
Collapse
|
37
|
Ladich E, Yahagi K, Romero ME, Virmani R. Vascular diseases: aortitis, aortic aneurysms, and vascular calcification. Cardiovasc Pathol 2016; 25:432-41. [PMID: 27526100 DOI: 10.1016/j.carpath.2016.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Inflammatory diseases of the aorta broadly include noninfectious and infectious aortitis, periaortitis, atherosclerosis, and inflammatory atherosclerotic aneurysms. Aortitis is uncommon but is increasingly recognized as an important cause of aortic aneurysms and dissections. Abdominal (AAA) and thoracic aortic aneurysms (TAA) have different pathologies and etiologies. AAAs are the most common type of aortic aneurysm, and the vast majority of these are atherosclerotic. The causes of TAA vary depending on the site of involvement, but medial degeneration is a common pathologic substrate, regardless of etiology, and genetic influences play a prominent role in TAA expression. Standardized classification schemes for inflammatory and degenerative diseases of the aorta have only recently been added to the pathology literature. A brief overview of the new histopathologic classifications for aortic inflammatory and degenerative diseases has recently been published by the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology as a consensus document on the surgical pathology of the aorta. Vascular calcification is a highly regulated biologic process, and the mechanisms leading to vascular calcification are under investigation. Calcification may occur in the intima (atherosclerotic) or in the media secondary to metabolic disease. Rarely, vascular calcification may be associated with genetic disorders.
Collapse
|
38
|
Somers AE, Hinton RB, Pilipenko V, Miller E, Ware SM. Analysis of TGFBR1*6A variant in individuals evaluated for Marfan syndrome. Am J Med Genet A 2016; 170:1786-90. [PMID: 27112580 DOI: 10.1002/ajmg.a.37668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 11/11/2022]
Abstract
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are genetic disorders that affect connective tissue as a result of dysregulated TGF-β signaling. MFS is most frequently caused by mutations in FBN1 whereas Loeys-Dietz syndrome results from mutations in TGFBR1 or TGFBR2. There is substantial inter- and intra-familial phenotypic variability among these disorders, suggesting the presence of genetic modifiers. Previously, a polymorphism in the TGFβR1 protein termed the TFGBR1*6A allele was found to be overrepresented in patients with MFS and was identified as a low penetrance allele with suggestion as a possible modifier. To further investigate the importance of this variant, a retrospective review of genetic and phenotypic findings was conducted for 335 patients evaluated for suspicion of MFS or related disorders. In patients with a diagnosis of MFS, the presence of the TFGBR1*6A allele was not associated with phenotypic differences. Similarly, careful phenotyping of patients who carried the TFGBR1*6A allele but did not have MFS did not identify an altered frequency of specific connective tissue features. In this small cohort, the results did not reach significance to identify the TFGBR1*6A allele as a major modifier for aortic dilation, ectopia lentis, or systemic features associated with MFS or other connective tissue disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Robert B Hinton
- University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erin Miller
- University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
39
|
|
40
|
Ladich E, Butany J, Virmani R. Aneurysms of the Aorta. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Andelfinger G, Loeys B, Dietz H. A Decade of Discovery in the Genetic Understanding of Thoracic Aortic Disease. Can J Cardiol 2015; 32:13-25. [PMID: 26724507 DOI: 10.1016/j.cjca.2015.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/23/2022] Open
Abstract
Aortic aneurysms are responsible for a significant number of all deaths in Western countries. In this review we provide a perspective on the important progress made over the past decade in the understanding of the genetics of this condition, with an emphasis on the more frequent forms of vascular smooth muscle and transforming growth factor β (TGF-β) signalling alterations. For several nonsyndromic and syndromic forms of thoracic aortic disease, a genetic basis has now been identified, with 3 main pathomechanisms that have emerged: perturbation of the TGF-β signalling pathway, disruption of the vascular smooth muscle cell (VSMC) contractile apparatus, and impairment of extracellular matrix synthesis. Because smooth muscle cells and proteins of the extracellular matrix directly regulate TGF-β signalling, this latter pathway emerges as a key component of thoracic aortic disease initiation and progression. These discoveries have revolutionized our understanding of thoracic aortic disease and provided inroads toward gene-specific stratification of treatment. Last, we outline how these genetic findings are translated into novel pharmaceutical approaches for thoracic aortic disease.
Collapse
Affiliation(s)
- Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | - Bart Loeys
- Centre for Medical Genetics, University Hospital of Antwerp/University of Antwerp, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hal Dietz
- Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Groman-Lupa S, Santos-Cantú D, Quiroz-Mercado H. What is the best surgical approach for ectopia lentis in Marfan syndrome? REVISTA MEXICANA DE OFTALMOLOGÍA 2015. [DOI: 10.1016/j.mexoft.2015.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
43
|
Bills VL, Smithson SF, Tsai-Goodman B, Tometski A, Overton TG. Prenatal diagnosis and postnatal outcome of massive abdominal aortic aneurysms-a case report. Prenat Diagn 2015; 35:923-5. [PMID: 26094847 DOI: 10.1002/pd.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Victoria L Bills
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, UK
| | - Beverly Tsai-Goodman
- Department of Fetal Cardiology, University Hospitals Bristol NHS Foundation Trust, UK
| | - Andrew Tometski
- Department of Fetal Cardiology, University Hospitals Bristol NHS Foundation Trust, UK
| | - Timothy G Overton
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| |
Collapse
|
44
|
Koenig SN, Bosse KM, Nadorlik HA, Lilly B, Garg V. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background. J Cardiovasc Dev Dis 2015; 2:17-30. [PMID: 25914885 PMCID: PMC4407710 DOI: 10.3390/jcdd2010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV) and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.
Collapse
Affiliation(s)
- Sara N. Koenig
- The Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; E-Mails: (S.N.K.); (K.M.B.); (H.A.N.); (B.L.)
- Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Kevin M. Bosse
- The Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; E-Mails: (S.N.K.); (K.M.B.); (H.A.N.); (B.L.)
| | - Holly A. Nadorlik
- The Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; E-Mails: (S.N.K.); (K.M.B.); (H.A.N.); (B.L.)
- Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Brenda Lilly
- The Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; E-Mails: (S.N.K.); (K.M.B.); (H.A.N.); (B.L.)
- Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Vidu Garg
- The Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; E-Mails: (S.N.K.); (K.M.B.); (H.A.N.); (B.L.)
- Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-355-5740; Fax: +1-614-355-5725
| |
Collapse
|
45
|
Xiao Y, Liu Y, Yang K, Yang Y, Zhou X, Lu C, Xiao J, Liu F, Zhang X. Next generation sequencing as a rapid molecular diagnosis for Marfan syndrome in a Chinese family with mutations in the fibrillin-1 gene. Clin Chim Acta 2015; 439:58-60. [PMID: 25304743 DOI: 10.1016/j.cca.2014.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Yan Xiao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yaxin Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Kunqi Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yankun Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xianliang Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Chaoxia Lu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jifang Xiao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
46
|
Terni E, Giannini N, Brondi M, Montano V, Bonuccelli U, Mancuso M. Genetics of ischaemic stroke in young adults. BBA CLINICAL 2014; 3:96-106. [PMID: 26672892 PMCID: PMC4661509 DOI: 10.1016/j.bbacli.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Background Stroke may be a clinical expression of several inherited disorders in humans. Recognition of the underlined genetic disorders causing stroke is important for a correct diagnosis, for genetic counselling and, even if rarely, for a correct therapeutic management. Moreover, the genetics of complex diseases such the stroke, in which multiple genes interact with environmental risk factors to increase risk, has been revolutionized by the Genome-Wide Association Study (GWAS) approach. Scope of review Here we review the single-gene causes of ischemic stroke, bringing the reader from the candidate gene method toward the exciting new horizons of genetic technology. Major conclusions The aetiological diagnosis of ischemic stroke in young adults is more complex than in the elderly. The identification of a genetic cause is important to provide appropriate counseling and to start a correct therapy, when available. The advent of GWAS technology, such as for other complex pathological conditions, has contributed enormously to the understanding of many of these genetic bases. For success large, well phenotyped case cohorts are required, and international collaborations are essential. General significance This review focuses on the main causes of genetically-based ischemic stroke in young adults, often classified as indeterminate, investigating also the recent findings of the GWAS, in order to improve diagnostic and therapeutic management. The aetiological diagnosis of stroke in young adults needs a different and more complex diagnostic work up than in older adults. Stroke may be a clinical expression of several inherited disorders in humans. The most common genetic causes of stroke are CADASIL, Fabry and mitochondrial diseases. Recognition of the underlined genetic disorders causing stroke is important for the correct management of the patient.
Collapse
Affiliation(s)
- Eva Terni
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| | - Nicola Giannini
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| | - Marco Brondi
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| | - Vincenzo Montano
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| | - Ubaldo Bonuccelli
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| | - Michelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, 56126 Pisa PI, Italy
| |
Collapse
|
47
|
Molecular mechanisms of inherited thoracic aortic disease - from gene variant to surgical aneurysm. Biophys Rev 2014; 7:105-115. [PMID: 28509973 DOI: 10.1007/s12551-014-0147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection is a catastrophic event that has a high mortality rate. Thoracic aortic aneurysms are the clinically silent precursor that confers an increased risk of acute aortic dissection. There are several gene mutations that have been identified in key structural and regulatory proteins within the aortic wall that predispose to thoracic aneurysm formation. The most common and well characterised of these is the FBN1 gene mutation that is known to cause Marfan syndrome. Others less well-known mutations include TGF-β1 and TGF-β2 receptor mutations that cause Loeys-Dietz syndrome, Col3A1 mutations causing Ehlers-Danlos Type 4 syndrome and Smad3 and-4, ACTA2 and MYHII mutations that cause familial thoracic aortic aneurysm and dissection. Despite the variation in the proteins affected by these genetic mutations, there is a unifying pathological end point of medial degeneration within the wall of the aorta characterised by vascular smooth muscle cell loss, fragmentation and loss of elastic fibers, and accumulation of proteoglycans and glycosaminoglycans within vascular smooth muscle cell-depleted areas of the aortic media. Our understanding of these mutations and their post-translational effects has led to a greater understanding of the pathophysiology that underlies thoracic aortic aneurysm formation. Despite this, there are still many unanswered questions regarding the molecular mechanisms. Further elucidation of the signalling pathways will help us identify targets that may be suitable modifiers to enhance treatment of this often fatal condition.
Collapse
|