1
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
2
|
Li J, Wang Q, Blennow A, Herburger K, Zhu C, Nurzikhan S, Wei J, Zhong Y, Guo D. The location of octenyl succinate anhydride groups in high-amylose maize starch granules and its effect on stability of pickering emulsion stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
He C, Li H, Huan O, Wei H, Xiong H, Ni H, Zheng M. Physicochemical properties and structure characterization of microcrystalline cellulose from pomelo fruitlets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chuanbo He
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian Liaoning China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen Fujian China
| | - Hao Li
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
| | - Ouyang Huan
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
| | - Huiting Wei
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian Liaoning China
| | - Hui Ni
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian Liaoning China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen Fujian China
- Research Center of Food Biotechnology of Xiamen City Xiamen Fujian China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering Jimei University Xiamen Fujian China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian Liaoning China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen Fujian China
- Research Center of Food Biotechnology of Xiamen City Xiamen Fujian China
| |
Collapse
|