1
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
2
|
Dworaczek K, Kurzylewska M, Laban M, Drzewiecka D, Pękala-Safińska A, Turska-Szewczuk A. Structural Studies of the Lipopolysaccharide of Aeromonas veronii bv. sobria Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms. Int J Mol Sci 2021; 22:ijms22084272. [PMID: 33924078 PMCID: PMC8074265 DOI: 10.3390/ijms22084272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes.
Collapse
Affiliation(s)
- Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Magdalena Laban
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16 St., 90-237 Łódź, Poland;
| | - Agnieszka Pękala-Safińska
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantów 57 St., 24-100 Puławy, Poland;
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.D.); (M.K.); (M.L.)
- Correspondence: ; Tel.: +48-81-537-50-18; Fax: +48-81-537-59-59
| |
Collapse
|
3
|
St Michael F, Fleming P, Cox AD, Vinogradov E. Structural analysis of the core oligosaccharides from Fusobacterium nucleatum lipopolysaccharides. Carbohydr Res 2020; 499:108198. [PMID: 33280822 DOI: 10.1016/j.carres.2020.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Fusobacterium nucleatum is a gram-negative bacterium, part of the normal human microflora. It is associated with various health complications, including periodontitis and colorectal cancer. Its surface is covered with lipopolysaccharide, which interacts with the immune system and can be involved in various processes in health and disease conditions. Here we present the results of structural analysis of core oligosaccharides from the lipopolysaccharides of several strains of F. nucleatum. Pure compounds were isolated using mild acid hydrolysis or alkaline deacylation of the lipopolysaccharides and analyzed by NMR spectroscopy, mass-spectrometry and chemical methods. All cores analyzed had a common octasaccharide region, including five heptose residues and a non-phosphorylated 3-deoxy-d-manno-oct-2-ulosonic acid residue. The common region is substituted with different additional components specific for each strain. By structure type the F. nucleatum core is similar to that produced by Aeromonas.
Collapse
Affiliation(s)
- Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Perry Fleming
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Evgeny Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
4
|
Structure of the capsule and lipopolysaccharide O-antigen from the channel catfish pathogen, Aeromonas hydrophila. Carbohydr Res 2019; 486:107858. [PMID: 31683071 DOI: 10.1016/j.carres.2019.107858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
A hypervirulent A. hydrophila (vAh) pathotype has been identified as the etiologic agent responsible for disease outbreaks in farmed carp species and channel catfish (Ictalurus punctatus) in China and the Southeastern United States, respectively. The possible route of infection has previously been unknown; however, virulence is believed to be multifactorial, involving the production/secretion of several virulence factors, including a high molecular weight group 4 capsular polysaccharide. Here we present chemical structural evidence of a novel capsule- and LPS-associated O-antigen found present in vAh isolated during these disease outbreaks. In this study, the chemical structure of the vAh O-antigen was determined by chemical analysis, Smith degradation, mass spectrometry, and 2D proton and carbon nuclear magnetic resonance (NMR) spectroscopy and found to be unique among described bacterial O-antigens. The O-antigen consists of hexasaccharide repeating units featuring a 4)-α-l-Fucp-(1-3)-β-d-GlcpNAc-(1-4)-α-l-Fucp-(1-4)-β-d-Glcp-(1- backbone, substituted with single residue side chains of α-d-Glcp and α-d-Quip3NAc linked to O-3 of the two fucose residues. The polysaccharide is partially O-acetylated on O-6 of the 4-substituted β-Glcp residue.
Collapse
|
5
|
Structural and Serological Studies of the O6-Related Antigen of Aeromonas veronii bv. sobria Strain K557 Isolated from Cyprinus carpio on a Polish Fish Farm, which Contains L-perosamine (4-amino-4,6-dideoxy-L-mannose), a Unique Sugar Characteristic for Aeromonas Serogroup O6. Mar Drugs 2019; 17:md17070399. [PMID: 31284525 PMCID: PMC6669630 DOI: 10.3390/md17070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Amongst Aeromonas spp. strains that are pathogenic to fish in Polish aquacultures, serogroup O6 was one of the five most commonly identified immunotypes especially among carp isolates. Here, we report immunochemical studies of the lipopolysaccharide (LPS) including the O-specific polysaccharide (O-antigen) of A. veronii bv. sobria strain K557, serogroup O6, isolated from a common carp during an outbreak of motile aeromonad septicemia (MAS) on a Polish fish farm. The O-polysaccharide was obtained by mild acid degradation of the LPS and studied by chemical analyses, mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-antigen was composed of two O-polysaccharides, both containing a unique sugar 4-amino-4,6-dideoxy-l-mannose (N-acetyl-l-perosamine, l-Rhap4NAc). The following structures of the O-polysaccharides (O-PS 1 and O-PS 2) were established: O-PS 1: →2)-α-l-Rhap4NAc-(1→; O-PS 2: →2)-α-l-Rhap4NAc-(1→3)-α-l-Rhap4NAc-(1→3)-α-l-Rhap4NAc-(1→. Western blotting and an enzyme-linked immunosorbent assay (ELISA) showed that the cross-reactivity between the LPS of A. veronii bv. sobria K557 and the A. hydrophila JCM 3968 O6 antiserum, and vice versa, is caused by the occurrence of common α-l-Rhap4NAc-(1→2)-α-l-Rhap4NAc and α-l-Rhap4NAc-(1→3)-α-l-Rhap4NAc disaccharides, whereas an additional →4)-α-d-GalpNAc-associated epitope defines the specificity of the O6 reference antiserum. Investigations of the serological and structural similarities and differences in the O-antigens provide knowledge of the immunospecificity of Aeromonas bacteria and are relevant in epidemiological studies and for the elucidation of the routes of transmission and relationships with pathogenicity.
Collapse
|
6
|
A Unique Sugar l-Perosamine (4-Amino-4,6-dideoxy-l-mannose) Is a Compound Building Two O-Chain Polysaccharides in the Lipopolysaccharide of Aeromonas hydrophila Strain JCM 3968, Serogroup O6. Mar Drugs 2019; 17:md17050254. [PMID: 31035397 PMCID: PMC6562859 DOI: 10.3390/md17050254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major glycolipid and virulence factor of Gram-negative bacteria, including Aeromonas spp. The O-specific polysaccharide (O-PS, O-chain, O-antigen), i.e., the surface-exposed part of LPS, which is a hetero- or homopolysaccharide, determines the serospecificity of bacterial strains. Here, chemical analyses, mass spectrometry, and 1H and 13C NMR spectroscopy techniques were employed to study the O-PS of Aeromonas hydrophila strain JCM 3968, serogroup O6. MALDI-TOF mass spectrometry revealed that the LPS of A. hydrophila JCM 3968 has a hexaacylated lipid A with conserved architecture of the backbone and a core oligosaccharide composed of Hep6Hex1HexN1HexNAc1Kdo1P1. To liberate the O-antigen, LPS was subjected to mild acid hydrolysis followed by gel-permeation-chromatography and revealed two O-polysaccharides that were found to contain a unique sugar 4-amino-4,6-dideoxy-l-mannose (N-acetyl-l-perosamine, l-Rhap4NAc), which may further determine the specificity of the serogroup. The first O-polysaccharide (O-PS1) was built up of trisaccharide repeating units composed of one α-d-GalpNAc and two α-l-Rhap4NAc residues, whereas the other one, O-PS2, is an α1→2 linked homopolymer of l-Rhap4NAc. The following structures of the O-polysaccharides were established:
→3)-α-l-Rhap4NAc-(1→4)-α-d-GalpNAc-(1→3)-α-l-Rhap4NAc-(1→ →2)-α-l-Rhap4NAc-(1→
The present paper is the first work that reveals the occurrence of perosamine in the l-configuration as a component of bacterial O-chain polysaccharides.
Collapse
|
7
|
Merino S, Gonzalez V, Tomás JM. The Polymerization of Aeromonas hydrophila AH-3 O-Antigen LPS: Concerted Action of WecP and Wzy. PLoS One 2015; 10:e0131905. [PMID: 26161781 PMCID: PMC4498686 DOI: 10.1371/journal.pone.0131905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/08/2015] [Indexed: 02/04/2023] Open
Abstract
The repeat units of heteropolymeric O antigen are synthesized at the cytosolic side of the inner bacterial membrane via the Wzx/Wzy-dependent assembly pathway. After being translocated across the membrane by Wzx, each repeat unit is polymerized by Wzy to form a glycan chain. In this study, we demonstrate the need of the corresponding enzyme transferring the initial HexNAc to undecaprenol phosphate (lipid carrier), together with the corresponding O-antigen polymerase (Wzy), to produce the Aeromonas hydrophila O:34-antigen. We suggest, the concerted action of WecA or P enzyme (UDP-HexNAc: polyprenol-P HexNAc-1-P transferase) and Wzy is involved in the mechanism responsible for the A. hydrophila O-antigen polymerization.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Victor Gonzalez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071, Barcelona, Spain
- * E-mail:
| |
Collapse
|
8
|
Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains. Mar Drugs 2015; 13:3791-808. [PMID: 26082990 PMCID: PMC4483657 DOI: 10.3390/md13063791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens.
Collapse
|
9
|
Molecular and chemical analysis of the lipopolysaccharide from Aeromonas hydrophila strain AH-1 (Serotype O11). Mar Drugs 2015; 13:2233-49. [PMID: 25874921 PMCID: PMC4413209 DOI: 10.3390/md13042233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023] Open
Abstract
A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall. A. hydrophila strain AH-1 is one of them. We isolated the LPS from this strain and determined the structure of the O-polysaccharide, which was similar to that previously described for another strain of serotype O11. The genetics of the O11-antigen showed the genes (wbO11 cluster) in two sections separated by genes involved in biosynthesis and assembly of the S-layer. The O11-antigen LPS is an example of an ABC-2-transporter-dependent pathway for O-antigen heteropolysaccharide (disaccharide) assembly. The genes involved in the biosynthesis of the LPS core (waaO11 cluster) were also identified in three different chromosome regions being nearly identical to the ones described for A. hydrophila AH-3 (serotype O34). The genetic data and preliminary chemical analysis indicated that the LPS core for strain AH-1 is identical to the one for strain AH-3.
Collapse
|
10
|
Structural studies of the lipopolysaccharide from the fish pathogen Aeromonas veronii strain Bs19, serotype O16. Mar Drugs 2014; 12:1298-316. [PMID: 24608968 PMCID: PMC3967211 DOI: 10.3390/md12031298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/27/2014] [Accepted: 02/08/2014] [Indexed: 01/17/2023] Open
Abstract
Chemical analyses, mass spectrometry, and NMR spectroscopy were applied to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas veronii strain Bs19, serotype O16. ESI-MS revealed that the most abundant LPS glycoforms have tetra-acylated or hexa-acylated lipid A species, consisting of a bisphosphorylated GlcN disaccharide with an AraN residue as a non-stoichiometric substituent, and a core oligosaccharide composed of Hep5Hex3HexN1Kdo1P1. Sugar and methylation analysis together with 1D and 2D 1H and 13C NMR spectroscopy were the main methods used, and revealed that the O-specific polysaccharide (OPS) of A. veronii Bs19 was built up of tetrasaccharide repeating units with the structure: →4)-α-d-Quip3NAc-(1→3)-α-l-Rhap-(1→4)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→. This composition was confirmed by mass spectrometry. The charge-deconvoluted ESI FT-ICR MS recorded for the LPS preparations identified mass peaks of SR- and R-form LPS species, that differed by Δm = 698.27 u, a value corresponding to the calculated molecular mass of one OPS repeating unit (6dHexNAc6dHexHexHexNAc-H2O). Moreover, unspecific fragmentation spectra confirmed the sequence of the sugar residues in the OPS and allowed to assume that the elucidated structure also represented the biological repeating unit.
Collapse
|
11
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
12
|
Lodowska J, Wolny D, Węglarz L. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) as a characteristic component of bacterial endotoxin — a review of its biosynthesis, function, and placement in the lipopolysaccharide core. Can J Microbiol 2013; 59:645-55. [DOI: 10.1139/cjm-2013-0490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a characteristic component of bacterial lipopolysaccharide (LPS, endotoxin). It connects the carbohydrate part of LPS with C6 of glucosamine or 2,3-diaminoglucose of lipid A by acid-labile α-ketosidic linkage. The number of Kdo units present in LPS, the way they are connected, and the occurrence of other substituents (P, PEtn, PPEtn, Gal, or β-l-Ara4N) account for structural diversity of the inner core region of endotoxin. In a majority of cases, Kdo is crucial to the viability and growth of bacterial cells. In this paper, the biosynthesis of Kdo and the mechanism of its incorporation into the LPS structure, as well as the location of this unique component in the endotoxin core structures, have been described.
Collapse
Affiliation(s)
- Jolanta Lodowska
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| | - Daniel Wolny
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 St., 41-200 Sosnowiec, Poland
| | - Ludmiła Węglarz
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
13
|
Turska-Szewczuk A, Lindner B, Komaniecka I, Kozinska A, Pekala A, Choma A, Holst O. Structural and immunochemical studies of the lipopolysaccharide from the fish pathogen, Aeromonas bestiarum strain K296, serotype O18. Mar Drugs 2013; 11:1235-55. [PMID: 23595053 PMCID: PMC3705401 DOI: 10.3390/md11041235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/08/2013] [Accepted: 03/18/2013] [Indexed: 11/16/2022] Open
Abstract
Chemical analyses and mass spectrometry were used to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas bestiarum strain K296, serotype O18. ESI-MS revealed that the most abundant A. bestiarum LPS glycoforms have a hexa-acylated or tetra-acylated lipid A with conserved architecture of the backbone, consisting of a 1,4′-bisphosphorylated β-(1→6)-linked d-GlcN disaccharide with an AraN residue as a non-stoichiometric substituent and a core oligosaccharide composed of Kdo1Hep6Hex1HexN1P1. 1D and 2D NMR spectroscopy revealed that the O-specific polysaccharide (OPS) of A. bestiarum K296 consists of a branched tetrasaccharide repeating unit containing two 6-deoxy-l-talose (6dTalp), one Manp and one GalpNAc residues; thus, it is similar to that of the OPS of A. hydrophila AH-3 (serotype O34) in both the sugar composition and the glycosylation pattern. Moreover, 3-substituted 6dTalp was 2-O-acetylated and additional O-acetyl groups were identified at O-2 and O-4 (or O-3) positions of the terminal 6dTalp. Western blots with polyclonal rabbit sera showed that serotypes O18 and O34 share some epitopes in the LPS. The very weak reaction of the anti-O34 serum with the O-deacylated LPS of A. bestiarum K296 might have been due to the different O-acetylation pattern of the terminal 6dTalp. The latter suggestion was further confirmed by NMR.
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland; E-Mails: (I.K.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-81-537-50-18; Fax: +48-81-537-59-59
| | - Buko Lindner
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, D-23845 Borstel, Germany; E-Mail:
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland; E-Mails: (I.K.); (A.C.)
| | - Alicja Kozinska
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, Pulawy 24-100, Poland; E-Mails: (A.K.); (A.P.)
| | - Agnieszka Pekala
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, Pulawy 24-100, Poland; E-Mails: (A.K.); (A.P.)
| | - Adam Choma
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland; E-Mails: (I.K.); (A.C.)
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Parkallee 4a/c, D-23845 Borstel, Germany; E-Mail:
| |
Collapse
|
14
|
Experimental identification of Actinobacillus pleuropneumoniae strains L20 and JL03 heptosyltransferases, evidence for a new heptosyltransferase signature sequence. PLoS One 2013; 8:e55546. [PMID: 23383222 PMCID: PMC3559599 DOI: 10.1371/journal.pone.0055546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Collapse
|
15
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
16
|
Merino S, Bouamama L, Knirel YA, Senchenkova SN, Regué M, Tomás JM. Aeromonas surface glucan attached through the O-antigen ligase represents a new way to obtain UDP-glucose. PLoS One 2012; 7:e35707. [PMID: 22563467 PMCID: PMC3341381 DOI: 10.1371/journal.pone.0035707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| | - Lamiaa Bouamama
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sofya N. Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Miguel Regué
- Departamento de Microbiología y Parasitología Sanitarias, Facultad de Farmacia, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal, Barcelona, Spain
| |
Collapse
|
17
|
Nazarenko EL, Crawford RJ, Ivanova EP. The structural diversity of carbohydrate antigens of selected gram-negative marine bacteria. Mar Drugs 2011; 9:1914-1954. [PMID: 22073003 PMCID: PMC3210612 DOI: 10.3390/md9101914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.
Collapse
Affiliation(s)
- Evgeny L. Nazarenko
- Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; E-Mail:
| | - Russell J. Crawford
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia; E-Mail:
| | - Elena P. Ivanova
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia; E-Mail:
| |
Collapse
|
18
|
Turska-Szewczuk A, Kozinska A, Russa R, Holst O. The structure of the O-specific polysaccharide from the lipopolysaccharide of Aeromonas bestiarum strain 207. Carbohydr Res 2010; 345:680-4. [PMID: 20080230 DOI: 10.1016/j.carres.2009.12.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/16/2009] [Accepted: 12/29/2009] [Indexed: 11/19/2022]
Abstract
The O-specific polysaccharide obtained by mild-acid degradation of Aeromonas bestiarum 207 lipopolysaccharide was studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy. The sequence of the sugar residues was determined by ROESY and HMBC experiments. It is concluded that the O-polysaccharide is composed of branched pentasaccharide repeating units of the following structure: [structure: see the text]
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
19
|
Jimenez N, Vilches S, Lacasta A, Regué M, Merino S, Tomás JM. A bifunctional enzyme in a single gene catalyzes the incorporation of GlcN into the Aeromonas core lipopolysaccharide. J Biol Chem 2009; 284:32995-3005. [PMID: 19805547 DOI: 10.1074/jbc.m109.038828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide alpha-d-GlcN-(1-->7)-l-alpha-d-Hep-(1-->2)-l-alpha-d-Hep-(1-->3)-l-alpha-d-Hep-(1-->5)-alpha-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Genetics and proteomics of Aeromonas salmonicida lipopolysaccharide core biosynthesis. J Bacteriol 2009; 191:2228-36. [PMID: 19151135 DOI: 10.1128/jb.01395-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison between the lipopolysaccharide (LPS) core structures of Aeromonas salmonicida subsp. salmonicida A450 and Aeromonas hydrophila AH-3 shows great similarity in the inner LPS core and part of the outer LPS core but some differences in the distal part of the outer LPS core (residues ld-Hep, d-Gal, and d-GalNAc). The three genomic regions encoding LPS core biosynthetic genes in A. salmonicida A450, of which regions 2 and 3 have genes identical to those of A. hydrophila AH-3, were fully sequenced. A. salmonicida A450 region 1 showed seven genes: three identical to those of A. hydrophila AH-3, three similar but not identical to those of A. hydrophila AH-3, and one without any homology to any well-characterized gene. A. salmonicida A450 mutants with alterations in the genes that were not identical to those of A. hydrophila AH-3 were constructed, and their LPS core structures were fully elucidated. At the same time, all the A. salmonicida A450 genes identical to those of A. hydrophila AH-3 were used to complement the previously obtained A. hydrophila AH-3 mutants for each of these genes. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. salmonicida A450. Furthermore, hybridization studies with internal probes for the A. salmonicida-specific genes using different A. salmonicida strains (strains of different subspecies or atypical strains) showed a unique or prevalent LPS core type, which is the one fully characterized for A. salmonicida A450.
Collapse
|
21
|
Jimenez N, Canals R, Lacasta A, Kondakova AN, Lindner B, Knirel YA, Merino S, Regué M, Tomás JM. Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters. J Bacteriol 2008; 190:3176-84. [PMID: 18310345 PMCID: PMC2347379 DOI: 10.1128/jb.01874-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/17/2008] [Indexed: 01/21/2023] Open
Abstract
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The Aeromonas hydrophila wb*O34 gene cluster: genetics and temperature regulation. J Bacteriol 2008; 190:4198-209. [PMID: 18408022 DOI: 10.1128/jb.00153-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila wb*(O34) gene cluster of strain AH-3 (serotype O34) was cloned and sequenced. This cluster contains genes necessary for the production of O34-antigen lipopolysaccharide (LPS) in A. hydrophila. We determined, using either mutation or sequence homology, roles for the majority of genes in the cluster by using the chemical O34-antigen LPS structure obtained for strain AH-3. The O34-antigen LPS export system has been shown to be a Wzy-dependent pathway typical of heteropolysaccharide pathways. Furthermore, the production of A. hydrophila O34-antigen LPS in Escherichia coli K-12 strains is dependent on incorporation of the Gne enzyme (UDP-N-acetylgalactosamine 4-epimerase) necessary for the formation of UDP-galactosamine in these strains. By using rapid amplification of cDNA ends we were able to identify a transcription start site upstream of the terminal wzz gene, which showed differential transcription depending on the growth temperature of the strain. The Wzz protein is able to regulate the O34-antigen LPS chain length. The differential expression of this protein at different temperatures, which was substantially greater at 20 degrees C than at 37 degrees C, explains the previously observed differential production of O34-antigen LPS and its correlation with the virulence of A. hydrophila serotype O34 strains.
Collapse
|
23
|
Vilches S, Canals R, Wilhelms M, Saló MT, Knirel YA, Vinogradov E, Merino S, Tomás JM. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence. MICROBIOLOGY-SGM 2007; 153:2393-2404. [PMID: 17660404 DOI: 10.1099/mic.0.2007/006437-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A mutation in galU that causes the lack of O34-antigen lipopolysaccharide (LPS) in Aeromonas hydrophila strain AH-3 was identified. It was proved that A. hydrophila GalU is a UDP-glucose pyrophosphorylase responsible for synthesis of UDP-glucose from glucose 1-phosphate and UTP. The galU mutant from this strain showed two types of LPS structures, represented by two bands on LPS gels. The first one (slow-migrating band in gels) corresponds to a rough strain having the complete core, with two significant differences: it lacks the terminal galactose residue from the LPS-core and 4-amino-4-deoxyarabinose residues from phosphate groups in lipid A. The second one (fast-migrating band in gels) corresponds to a deeply truncated structure with the LPS-core restricted to one 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and three l-glycero-d-manno-heptose residues. galU mutants in several motile mesophilic Aeromonas strains from serotypes O1, O2, O11, O18, O21 and O44 were also devoid of the O-antigen LPS. The galU mutation reduced to less than 1 % the survival of these Aeromonas strains in serum, decreased the ability of these strains to adhere and reduced by 1.5 or 2 log units the virulence of Aeromonas serotype O34 strains in a septicaemia model in either fish or mice. All the changes observed in the galU mutants were rescued by the introduction of the corresponding single wild-type gene.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Rocío Canals
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Maria Teresa Saló
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeny Vinogradov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
24
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. Role of Gne and GalE in the virulence of Aeromonas hydrophila serotype O34. J Bacteriol 2006; 189:540-50. [PMID: 17098903 PMCID: PMC1797372 DOI: 10.1128/jb.01260-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mesophilic Aeromonas hydrophila AH-3 (serotype O34) strain shows two different UDP-hexose epimerases in its genome: GalE (EC 3.1.5.2) and Gne (EC 3.1.5.7). Similar homologues were detected in the different mesophilic Aeromonas strains tested. GalE shows only UDP-galactose 4-epimerase activity, while Gne is able to perform a dual activity (mainly UDP-N-acetyl galactosamine 4-epimerase and also UDP-galactose 4-epimerase). We studied the activities in vitro of both epimerases and also in vivo through the lipopolysaccharide (LPS) structure of A. hydrophila gne mutants, A. hydrophila galE mutants, A. hydrophila galE-gne double mutants, and independently complemented mutants with both genes. Furthermore, the enzymatic activity in vivo, which renders different LPS structures on the mentioned A. hydrophila mutant strains or the complemented mutants, allowed us to confirm a clear relationship between the virulence of these strains and the presence/absence of the O34 antigen LPS.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. The UDP N-acetylgalactosamine 4-epimerase gene is essential for mesophilic Aeromonas hydrophila serotype O34 virulence. Infect Immun 2006; 74:537-48. [PMID: 16369010 PMCID: PMC1346635 DOI: 10.1128/iai.74.1.537-548.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O(-) phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Wang Z, Li J, Vinogradov E, Altman E. Structural studies of the core region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide. Carbohydr Res 2005; 341:109-17. [PMID: 16297894 DOI: 10.1016/j.carres.2005.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/24/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
The core oligosaccharide structure of the in vivo derived rough phenotype of Aeromonas salmonicida subsp. salmonicida was investigated by a combination of compositional, methylation, CE-MS and one- and two-dimensional NMR analyses and established as the following: [carbohydrate: see text] where R=alpha-D-Galp-(1-->4)-beta-D-GalpNAc-(1--> or alpha-D-Galp-(1--> (approx. ratio 4:3). Comparative CE-MS analysis of A. salmonicida subsp. salmonicida core oligosaccharides from strains A449, 80204-1 and an in vivo rough isolate confirmed that the structure of the core oligosaccharide was conserved among different isolates of A. salmonicida.
Collapse
Affiliation(s)
- Zhan Wang
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | |
Collapse
|
27
|
Martin P, Lequart V, Cecchelli R, Boullanger P, Lafont D, Banoub J. Novel Synthesis of Disaccharides Containing the 2-Amino-2-deoxy-β-D-glucopyranosyl Unit and L-Glycero-D-Manno- and 7-Deoxy-L-Glycero-D-Galacto-heptopyranoses. CHEM LETT 2004. [DOI: 10.1246/cl.2004.696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|