1
|
Strobl S, Zucchetta D, Vašíček T, Monti A, Ruda A, Widmalm G, Heine H, Zamyatina A. Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4-specific LPS Mimetics with Picomolar Potency. Angew Chem Int Ed Engl 2024; 63:e202408421. [PMID: 38870340 DOI: 10.1002/anie.202408421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing β,β-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1')βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Daniele Zucchetta
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Tomáš Vašíček
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Monti
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, Borstel, 23845, Germany
| | - Alla Zamyatina
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
2
|
Lutsyk V, Wolski P, Plazinski W. The Conformation of Glycosidic Linkages According to Various Force Fields: Monte Carlo Modeling of Polysaccharides Based on Extrapolation of Short-Chain Properties. J Chem Theory Comput 2024; 20:6350-6368. [PMID: 38985993 PMCID: PMC11270825 DOI: 10.1021/acs.jctc.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The conformational features of the glycosidic linkage are the most important variable to consider when studying di-, oligo-, and polysaccharide molecules using molecular dynamics (MD) simulations. The accuracy of the theoretical model describing this degree of freedom influences the quality of the results obtained from MD calculations based on this model. This article focuses on the following two issues related to the conformation of the glycosidic linkage. First, we describe the results of a comparative analysis of the predictions of three carbohydrate-dedicated classical force fields for MD simulations, namely, CHARMM, GLYCAM, and GROMOS, in the context of different parameters of structural and energetic nature related to the conformation of selected types of glycosidic linkages, α(1 → 4), β(1 → 3), and β(1 → 4), connecting glucopyranose units. This analysis revealed several differences, mainly concerning the energy levels of the secondary and tertiary conformers and the linkage flexibility within the dominant exo-syn conformation for α(1 → 4) and β(1 → 3) linkages. Some aspects of the comparative analysis also included the newly developed, carbohydrate-dedicated Martini 3 coarse-grained force field. Second, to overcome the time-scale problem associated with sampling slow degrees of freedom in polysaccharide chains during MD simulations, we developed a coarse-grained (CG) model based on the data from MD simulations and designed for Monte Carlo modeling. This model (CG MC) is based on information from simulations of short saccharide chains, effectively sampled in atomistic MD simulations, and is capable of extrapolating local conformational properties to the case of polysaccharides of arbitrary length. The CG MC model has the potential to estimate the conformations of very long polysaccharide chains, taking into account the influence of secondary and tertiary conformations of glycosidic linkages. With respect to the comparative analysis of force fields, the application of CG MC modeling showed that relatively small differences in the predictions of individual force fields with respect to a single glycosidic linkage accumulate when considering their effect on the structure of longer chains, leading to drastically different predictions with respect to parameters describing the polymer conformation, such as the persistence length.
Collapse
Affiliation(s)
- Valery Lutsyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Pawel Wolski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Wojciech Plazinski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- Department
of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Chavda D, Dutta D, Patel KN, Rathod AK, Kulig W, Manna M. Revealing the key structural features promoting the helical conformation in algal polysaccharide carrageenan in solution. Carbohydr Polym 2024; 331:121901. [PMID: 38388044 DOI: 10.1016/j.carbpol.2024.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Carrageenans are industrially important polysaccharides with tunable viscoelastic and gelation properties. The function of polysaccharide depends on its conformation and chemical composition. However, the solution conformations of carrageenans are highly debated, and the structure-function relationship remains elusive. Here, we have studied the intrinsic conformational behavior of a series of carrageenan hexamers in solution, using extensive all-atom classical MD and enhanced sampling. Our findings comprehensively delineate that carrageenans containing the 3,6-anhydrous bridge (κ-C, ι-C, θ-C, and non-sulfated β-C) adopt compact helical structures as their predominant conformation in solution, whereas carrageenans without the bridge (μ-C, ν-C, and λ-C) remain as extended loosely packed helices; opposing the 'coil-to-helix' paradigm. Glycosidic linkages access a few allowed orientations. We hypothesize that the 3,6-anhydrous bridge, irrespective of carrageenan's sulfation pattern, is essential for stabilizing the helical conformation at the single-chain level. It provides necessary flexibility to the glycosidic linkage to sample conformations close to the experimentally derived helical structure and also prevents the sugar ring flipping. Sulfate groups mainly modify the chain stiffness due to steric and stereo-electronic effects and participate in hydrogen bonding. Such atomistic insights will be helpful for understanding the differential gelation mechanisms of carrageenans and fine-tuning polysaccharide backbone for various industrial applications.
Collapse
Affiliation(s)
- Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debangkana Dutta
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun K Rathod
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Garay PG, Machado MR, Verli H, Pantano S. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation. J Chem Theory Comput 2024; 20:963-976. [PMID: 38175797 DOI: 10.1021/acs.jctc.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Glycans constitute one of the most complex families of biological molecules. Despite their crucial role in a plethora of biological processes, they remain largely uncharacterized because of their high complexity. Their intrinsic flexibility and the vast variability associated with the many combination possibilities have hampered their experimental determination. Although theoretical methods have proven to be a valid alternative to the study of glycans, the large size associated with polysaccharides, proteoglycans, and glycolipids poses significant challenges to a fully atomistic description of biologically relevant glycoconjugates. On the other hand, the exquisite dependence on hydrogen bonds to determine glycans' structure makes the development of simplified or coarse-grained (CG) representations extremely challenging. This is particularly the case when glycan representations are expected to be compatible with CG force fields that include several molecular types. We introduce a CG representation able to simulate a wide variety of polysaccharides and common glycosylation motifs in proteins, which is fully compatible with the CG SIRAH force field. Examples of application to N-glycosylated proteins, including antibody recognition and calcium-mediated glycan-protein interactions, highlight the versatility of the enlarged set of CG molecules provided by SIRAH.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, Porto Alegre 91509-900, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
5
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Gracia Carmona O, Oostenbrink C. Flexible Gaussian Accelerated Molecular Dynamics to Enhance Biological Sampling. J Chem Theory Comput 2023; 19:6521-6531. [PMID: 37649349 PMCID: PMC10536968 DOI: 10.1021/acs.jctc.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 09/01/2023]
Abstract
Molecular dynamics simulations often struggle to obtain sufficient sampling to study complex molecular events due to high energy barriers separating the minima of interest. Multiple enhanced sampling techniques have been developed and improved over the years to tackle this issue. Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that works by adding a biasing potential, lifting the energy landscape up, and decreasing the height of its barriers. GaMD allows one to increase the sampling of events of interest without the need of a priori knowledge of the system or the relevant coordinates. All required acceleration parameters can be obtained from a previous search run. Upon its development, several improvements for the methodology have been proposed, among them selective GaMD in which the boosting potential is selectively applied to the region of interest. There are currently four selective GaMD methods that have shown promising results. However, all of these methods are constrained on the number, location, and scenarios in which this selective boosting potential can be applied to ligands, peptides, or protein-protein interactions. In this work, we showcase a GROMOS implementation of the GaMD methodology with a fully flexible selective GaMD approach that allows the user to define, in a straightforward way, multiple boosting potentials for as many regions as desired. We show and analyze the advantages of this flexible selective approach on two previously used test systems, the alanine dipeptide and the chignolin peptide, and extend these examples to study its applicability and potential to study conformational changes of glycans and glycosylated proteins.
Collapse
Affiliation(s)
- Oriol Gracia Carmona
- Institute
for Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences, Vienna. Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute
for Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences, Vienna. Muthgasse 18, 1190 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences, Vienna. Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
7
|
Heine H, Zamyatina A. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals (Basel) 2022; 16:23. [PMID: 36678520 PMCID: PMC9864529 DOI: 10.3390/ph16010023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
The Toll-like receptor 4 (TLR4) signaling pathway plays a central role in the prompt defense against infectious challenge and provides immediate response to Gram-negative bacterial infection. The TLR4/MD-2 complex can sense and respond to various pathogen-associated molecular patterns (PAMPs) with bacterial lipopolysaccharide (LPS) being the most potent and the most frequently occurring activator of the TLR4-mediated inflammation. TLR4 is believed to be both a friend and foe since improperly regulated TLR4 signaling can result in the overactivation of immune responses leading to sepsis, acute lung injury, or pathologic chronic inflammation involved in cancer and autoimmune disease. TLR4 is also considered a legitimate target for vaccine adjuvant development since its activation can boost the adaptive immune responses. The dual action of the TLR4 complex justifies the efforts in the development of both TLR4 antagonists as antisepsis drug candidates or remedies for chronic inflammatory diseases and TLR4 agonists as vaccine adjuvants or immunotherapeutics. In this review, we provide a brief overview of the biochemical evidences for possible pharmacologic applications of TLR4 ligands as therapeutics and report our systematic studies on the design, synthesis, and immunobiological evaluation of carbohydrate-based TLR4 antagonists with nanomolar affinity for MD-2 as well as disaccharide-based TLR4 agonists with picomolar affinity for the TLR4/MD-2 complex.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, 23845 Borstel, Germany
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
8
|
Roy R, Poddar S, Kar P. Comparison of the conformational dynamics of an N-glycan in implicit and explicit solvents. Carbohydr Res 2022; 522:108700. [DOI: 10.1016/j.carres.2022.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
|
9
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
10
|
Strobl S, Hofbauer K, Heine H, Zamyatina A. Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry 2022; 28:e202200547. [PMID: 35439332 PMCID: PMC9325513 DOI: 10.1002/chem.202200547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/11/2022]
Abstract
TLR4 is a key pattern recognition receptor that can sense pathogen- and danger- associated molecular patterns to activate the downstream signaling pathways which results in the upregulation of transcription factors and expression of interferons and cytokines to mediate protective pro-inflammatory responses involved in immune defense. Bacterial lipid A is the primary TLR4 ligand with very complex, species-specific, and barely predictable structure-activity relationships. Given that therapeutic targeting of TLR4 is an emerging tool for management of a variety of human diseases, the development of novel TLR4 activating biomolecules other than lipid A is of vast importance. We report on design, chemical synthesis and immunobiology of novel glycan-based lipid A-mimicking molecules that can activate human and murine TLR4-mediated signaling with picomolar affinity. Exploiting crystal structure - based design we have created novel disaccharide lipid A mimetics (DLAMs) where the inherently flexible β(1→6)-linked diglucosamine backbone of lipid A is exchanged with a conformationally restrained non-reducing βGlcN(1↔1')βGlcN scaffold. Excellent stereoselectivity in a challenging β,β-1,1' glycosylation was achieved by tuning the reactivities of donor and acceptor molecules using protective group manipulation strategy. Divergent streamlined synthesis of β,β-1,1'-linked diglucosamine-derived glycolipids entailing multiple long-chain (R)-3- acyloxyacyl residues and up two three phosphate groups was developed. Specific 3D-molecular shape and conformational rigidity of unnatural β,β-1,1'-linked diglucosamine combined with carefully optimized phosphorylation and acylation pattern ensured efficient induction of the TLR4-mediated signaling in a species-independent manner.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Karin Hofbauer
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| | - Holger Heine
- Research Group Innate ImmunityResearch Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL)Parkallee 22Borstel23845Germany
| | - Alla Zamyatina
- Department of ChemistryUniversity of Natural Resources and Life SciencesMuthgasse 18Vienna1190Austria
| |
Collapse
|
11
|
Fadda E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr Opin Chem Biol 2022; 69:102175. [PMID: 35728307 DOI: 10.1016/j.cbpa.2022.102175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Complex carbohydrates (glycans) are the most abundant and versatile biopolymers in nature. The broad diversity of biochemical functions that carbohydrates cover is a direct consequence of the variety of 3D architectures they can adopt, displaying branched or linear arrangements, widely ranging in sizes, and with the highest diversity of building blocks of any other natural biopolymer. Despite this unparalleled complexity, a common denominator can be found in the glycans' inherent flexibility, which hinders experimental characterization, but that can be addressed by high-performance computing (HPC)-based molecular simulations. In this short review, I present and discuss the state-of-the-art of molecular simulations of complex carbohydrates and glycoconjugates, highlighting methodological strengths and weaknesses, important insights through emblematic case studies, and suggesting perspectives for future developments.
Collapse
Affiliation(s)
- Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Ireland.
| |
Collapse
|
12
|
Atomistic and Coarse-Grained Simulations of Bulk Amorphous Amylose Above and Below the Glass Transition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations. J Biomol Struct Dyn 2022; 41:3305-3320. [PMID: 35262462 DOI: 10.1080/07391102.2022.2047109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the current study, we have investigated the conformational dynamics of a triantennary (N-glycan1) and tetraantennary (N-glycan2) hybrid N-glycans found on the surface of the HIV glycoprotein using 20 μs long all-atom molecular dynamics (MD) simulations. The main objective of the present study is to elucidate the influence of adding a complex branch on the overall glycan structural dynamics. Our investigation suggests that the average RMSD value increases when a complex branch is added to N-glycan1. However, the RMSD distribution is relatively wider in the case of N-glycan1 compared to N-glycan2, which indicates that multiple complex branches restrict the conformational variability of glycans. A similar observation is obtained from the principal component analysis of both glycans. All the puckering states (4C1 to 1C4) of each monosaccharide except mannose are sampled in our simulations, although the 4C1 chair form is energetically more favorable than 1C4. In N-glycan1, the 1-6 linkage in the mannose branch [Man(9)-α(1-6)-Man(5)] stays in the gauche-gauche cluster, whereas it moves towards trans-gauche in N-glycan2. For both glycans, mannose branches are more flexible than the complex branches, and adding a complex branch does not influence the dynamics of the mannose branches. We have noticed that the end-to-end distance of the complex branch shortens by ∼ 10 Å in the presence of another complex branch. This suggests that in the presence of an additional complex branch, the other complex branch adopts a close folded structure. All these conformational changes involve the selective formation of inter-residue and water-mediated hydrogen-bond networks.
Collapse
|
14
|
Capraz T, Kienzl NF, Laurent E, Perthold JW, Föderl-Höbenreich E, Grünwald-Gruber C, Maresch D, Monteil V, Niederhöfer J, Wirnsberger G, Mirazimi A, Zatloukal K, Mach L, Penninger JM, Oostenbrink C, Stadlmann J. Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor. eLife 2021; 10:e73641. [PMID: 34927585 PMCID: PMC8730730 DOI: 10.7554/elife.73641] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Tümay Capraz
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Nikolaus F Kienzl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Elisabeth Laurent
- Institute of Molecular Biotechnology, Department of Biotechnology and Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Jan W Perthold
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | | | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Vanessa Monteil
- Karolinska Institute, Department of Laboratory MedicineStockholmSweden
| | | | | | - Ali Mirazimi
- Karolinska Institute, Department of Laboratory MedicineStockholmSweden
- National Veterinary InstituteUppsalaSweden
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of GrazGrazAustria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Josef M Penninger
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. BohrViennaAustria
- Department of Medical Genetics, Life Sciences Institute, University of British ColumbiaVancouverCanada
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life SciencesViennaAustria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. BohrViennaAustria
| |
Collapse
|
15
|
French AD. Combining Computational Chemistry and Crystallography for a Better Understanding of the Structure of Cellulose. Adv Carbohydr Chem Biochem 2021; 80:15-93. [PMID: 34872656 DOI: 10.1016/bs.accb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially, the molecular shape is inferred from the crystal structures of many small molecules that have β-(1→4) linkages. Then, conformational analyses with potential energy calculations of cellobiose are covered, followed by the use of Atoms-In-Molecules theory to learn about interactions in experimental and theoretical structures. The last section covers models of cellulose nanoparticles. Controversies addressed include the stability of twofold screw-axis conformations, the influence of different computational methods, the predictability of crystalline conformations by studies of isolated molecules, and the twisting of model cellulose crystals.
Collapse
Affiliation(s)
- Alfred D French
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
16
|
Ruda A, Widmalm G, Wohlert J. O-Methylation in Carbohydrates: An NMR and MD Simulation Study with Application to Methylcellulose. J Phys Chem B 2021; 125:11967-11979. [PMID: 34704449 PMCID: PMC8573740 DOI: 10.1021/acs.jpcb.1c07293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Methylated carbohydrates
are important from both biological and
technical perspectives. Specifically, methylcellulose is an interesting
cellulose derivative that has applications in foods, materials, cosmetics,
and many other fields. While the molecular dynamics simulation technique
has the potential for both advancing the fundamental understanding
of this polymer and aiding in the development of specific applications,
a general drawback is the lack of experimentally validated interaction
potentials for the methylated moieties. In the present study, simulations
using the GROMOS 56 carbohydrate force field are compared to NMR spin–spin
coupling constants related to the conformation of the exocyclic torsion
angle ω in d-glucopyranose and derivatives containing
a 6-O-methyl substituent and a 13C-isotopologue thereof.
A 3JCC Karplus-type relationship
is proposed for the C5–C6–O6–CMe torsion
angle. Moreover, solvation free energies are compared to experimental
data for small model compounds. Alkylation in the form of 6-O-methylation
affects exocyclic torsion only marginally. Computed solvation free
energies between nonmethylated and methylated molecules were internally
consistent, which validates the application of these interaction potentials
for more specialized purposes.
Collapse
Affiliation(s)
- Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
17
|
Katyal N, Sharma S, Deep S. Delving into controversial dichotomy of direct and indirect mechanisms of Trehalose: In search of unanimous consensus. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Heine H, Adanitsch F, Peternelj TT, Haegman M, Kasper C, Ittig S, Beyaert R, Jerala R, Zamyatina A. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Front Immunol 2021; 12:631797. [PMID: 33815382 PMCID: PMC8012497 DOI: 10.3389/fimmu.2021.631797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer. The TLR4/MD-2 complex can recognize the terminal motif of Gram-negative bacterial lipopolysaccharide (LPS)—a glycophospholipid lipid A. Although immense progress in understanding the molecular basis of LPS-induced TLR4-mediated signaling has been achieved, gradual, and predictable TLR4 activation by structurally defined ligands has not yet been attained. We report on controllable modulation of cellular pro-inflammatory responses by application of novel synthetic glycolipids—disaccharide-based lipid A mimetics (DLAMs) having picomolar affinity for TLR4/MD-2. Using crystal structure inspired design we have developed endotoxin mimetics where the inherently flexible β(1 → 6)-linked diglucosamine backbone of lipid A is replaced by a conformationally restricted α,α-(1↔1)-linked disaccharide scaffold. The tertiary structure of the disaccharide skeleton of DLAMs mirrors the 3-dimensional shape of TLR4/MD-2 bound E. coli lipid A. Due to exceptional conformational rigidity of the sugar scaffold, the specific 3D organization of DLAM must be preserved upon interaction with proteins. These structural factors along with specific acylation and phosphorylation pattern can ensure picomolar affinity for TLR4 and permit efficient dimerization of TLR4/MD-2/DLAM complexes. Since the binding pose of lipid A in the binding pocket of MD-2 (±180°) is crucial for the expression of biological activity, the chemical structure of DLAMs was designed to permit a predefined binding orientation in the binding groove of MD-2, which ensured tailored and species-independent (human and mice) TLR4 activation. Manipulating phosphorylation and acylation pattern at the sugar moiety facing the secondary dimerization interface allowed for adjustable modulation of the TLR4-mediated signaling. Tailored modulation of cellular pro-inflammatory responses by distinct modifications of the molecular structure of DLAMs was attained in primary human and mouse immune cells, lung epithelial cells and TLR4 transfected HEK293 cells.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tina Tinkara Peternelj
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Simon Ittig
- Biozentrum University of Basel, Basel, Switzerland
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Sanders JM, Misra M, Mustard TJL, Giesen DJ, Zhang T, Shelley J, Halls MD. Characterizing moisture uptake and plasticization effects of water on amorphous amylose starch models using molecular dynamics methods. Carbohydr Polym 2021; 252:117161. [PMID: 33183612 DOI: 10.1016/j.carbpol.2020.117161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
Dynamics and thermophysical properties of amorphous starch were explored using molecular dynamics (MD) simulations. Using the OPLS3e force field, simulations of short amylose chains in water were performed to determine force field accuracy. Using well-tempered metadynamics, a free energy map of the two glycosidic angles of an amylose molecule was constructed and compared with other modern force fields. Good agreement of torsional sampling for both solvated and amorphous amylose starch models was observed. Using combined grand canonical Monte Carlo (GCMC)/MD simulations, a moisture sorption isotherm curve is predicted along with temperature dependence. Concentration-dependent activation energies for water transport agree quantitatively with previous experiments. Finally, the plasticization effect of moisture content on amorphous starch was investigated. Predicted glass transition temperature (Tg) depression as a function of moisture content is in line with experimental trends. Further, our calculations provide a value for the dry Tg for amorphous starch, a value which no experimental value is available.
Collapse
Affiliation(s)
| | | | | | | | - Teng Zhang
- Schrödinger Inc., New York, NY, 10036, USA
| | | | | |
Collapse
|
20
|
Comparison of Methods for Bulk Automated Simulation of Glycosidic Bond Conformations. Int J Mol Sci 2020; 21:ijms21207626. [PMID: 33076365 PMCID: PMC7589101 DOI: 10.3390/ijms21207626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Six empirical force fields were tested for applicability to calculations for automated carbohydrate database filling. They were probed on eleven disaccharide molecules containing representative structural features from widespread classes of carbohydrates. The accuracy of each method was queried by predictions of nuclear Overhauser effects (NOEs) from conformational ensembles obtained from 50 to 100 ns molecular dynamics (MD) trajectories and their comparison to the published experimental data. Using various ranking schemes, it was concluded that explicit solvent MM3 MD yielded non-inferior NOE accuracy with newer GLYCAM-06, and ultimately PBE0-D3/def2-TZVP (Triple-Zeta Valence Polarized) Density Functional Theory (DFT) simulations. For seven of eleven molecules, at least one empirical force field with explicit solvent outperformed DFT in NOE prediction. The aggregate of characteristics (accuracy, speed, and compatibility) made MM3 dynamics with explicit solvent at 300 K the most favorable method for bulk generation of disaccharide conformation maps for massive database filling.
Collapse
|
21
|
Abstract
The conformation of a molecule strongly affects its function, as demonstrated for peptides and nucleic acids. This correlation is much less established for carbohydrates, the most abundant organic materials in nature. Recent advances in synthetic and analytical techniques have enabled the study of carbohydrates at the molecular level. Recurrent structural features were identified as responsible for particular biological activities or material properties. In this Minireview, recent achievements in the structural characterization of carbohydrates, enabled by systematic studies of chemically defined oligosaccharides, are discussed. These findings can guide the development of more potent glycomimetics. Synthetic carbohydrate materials by design can be envisioned.
Collapse
Affiliation(s)
- Yang Yu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
22
|
Kumar V, Sachan R, Rahman M, Sharma K, Al-Abbasi FA, Anwar F. Prunus amygdalus extract exert antidiabetic effect via inhibition of DPP-IV: in-silico and in-vivo approaches. J Biomol Struct Dyn 2020; 39:4160-4174. [PMID: 32602806 DOI: 10.1080/07391102.2020.1775124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prunus amygdalus (PA) is a popular invasive seed utilized in the management of diabetes in Jammu and Kashmir, India. The objective of the current study was to scrutinize the antidiabetic effect of Prunus amygdalus (PA) against Streptozotocin (STZ) induced diabetic rats and explore the possible mechanism of action at cellular and sub-cellular levels. Box Benkan Design (BBD) was performed to determine the effect of PA powder to methanol, extraction time and extraction temperature on DPPH and ABTS free radical scavenging activity of decoction. In-silico study was performed on GLUT1 (5EQG) and dipeptidyl peptidase IV (DPPIV) (2G63) protein. Type II diabetes mellitus was initiated by single intra-peritoneal injection of STZ. The Blood Glucose Level (BGL) and body weight were estimated at regular interval of time. The different biochemical parameters such as hepatic, antioxidant, and lipid parameters were estimated. At end of the study, pancreas was used for histopathological observation. The variation in DPPH antiradical scavenging activity 40.0-90.0% and ABTS antiradical scavenging activity 34-82%, were estimated respectively. STZ induced DM rats showed increased BGL at end of the experimental study. PA treatment significantly (p < 0.001) down-regulated the BGL level. PA significantly (p < 0.001) altered the biochemical, hepatic and antioxidant parameters in a dose-dependent manner. Histopathological examination demonstrated the constructive mass of β-cells in pancreas. Overall, the current study indicates that the PA treatment down-regulated the hyperglycemic, oxidative stress and hyperlipidaemia in diabetic rats, due to inhibition of enzymes or amelioration of oxidative stress. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Richa Sachan
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon, Korea
| | - Mahfoozur Rahman
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Kalicharan Sharma
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, India
| | - Fahad A Al-Abbasi
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Alonso-Gil S. Mimicking the transition state of reactions of glycoside hydrolases: Updating the conformational space of the oxocarbenium cation. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1766481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Santiago Alonso-Gil
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 8, Czech Republic
| |
Collapse
|
24
|
Huang L, Li C, Li B, Liu M, Lian M, Yang S. Studies on qualitative and quantitative detection of trehalose purity by terahertz spectroscopy. Food Sci Nutr 2020; 8:1828-1836. [PMID: 32328248 PMCID: PMC7174203 DOI: 10.1002/fsn3.1458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Terahertz spectroscopy was used to qualitatively and quantitatively analyze four samples (three brands) of trehalose produced in China and other countries. The results show that the main characteristic peak was greatly affected by concentration, and the optimal detection concentration of trehalose was determined to be 25%-55% by transmission scanning. There were six significant characteristic absorption peaks in the trehalose spectrum, meaning that terahertz spectroscopy can be used for qualitative analysis, analogous to infrared spectroscopy. Moreover, the terahertz spectrum can effectively distinguish the three isomers of trehalose, whereas infrared spectroscopy cannot. Thus, it was found that the current commercially available trehalose is the α,α-isomer. Quantitative analysis of the three brands of trehalose using terahertz spectroscopy matched the purity trends found by high-performance liquid chromatography analysis, with the order of purity from highest to lowest being TREHA, Pioneer, and Huiyang. The actual quantitative values did differ between the two detection methods, but the variation in the values from the same sample obtained by the two detection methods was less than 5%, confirming that terahertz spectroscopy is very suitable for the rapid and relative quantitative detection of trehalose.
Collapse
Affiliation(s)
- Luelue Huang
- School of Applied Chemistry and BiotechnologyShenzhen PolytechnicShenzhenGuangdongChina
| | - Chen Li
- Shenzhen Institute of Terahertz Technology and InnovationShenzhenGuangdongChina
| | - Bin Li
- School of Applied Chemistry and BiotechnologyShenzhen PolytechnicShenzhenGuangdongChina
| | - Miaoling Liu
- School of Applied Chemistry and BiotechnologyShenzhen PolytechnicShenzhenGuangdongChina
| | - Miaomiao Lian
- College of Food and BioengineeringHenan University of Science and TechnologyLuoyangChina
| | - Shaozhuang Yang
- Shenzhen Institute of Terahertz Technology and InnovationShenzhenGuangdongChina
| |
Collapse
|
25
|
Roy R, Ghosh B, Kar P. Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS OMEGA 2020; 5:3932-3942. [PMID: 32149220 PMCID: PMC7057322 DOI: 10.1021/acsomega.9b03398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Cholera is caused by Vibrio cholerae and is an example of a blood-group-dependent disease. Recent studies suggest that the receptor-binding B subunit of the cholera toxin (CT) binds histo-blood group antigens at a secondary binding site. Herein, we studied the conformational dynamics of Lewis Y (LeY) oligosaccharides, H-tetrasaccharides and A-pentasaccharides, in aqueous solution by conducting accelerated molecular dynamics (aMD) simulations. The flexible nature of both oligosaccharides was displayed in aMD simulations. Furthermore, aMD simulations revealed that for both oligosaccharides in the free form, 4C1 and 1C4 puckers were sampled for all but GalNAc monosaccharides, while either the 4C1 (GlcNAc, Gal, GalNAc) or 1C4 (Fuc2, Fuc3) pucker was sampled in the CT-bound forms. In aMD, the complete transition from the 4C1 to 1C4 pucker was sampled for GlcNAc and Gal in both oligosaccharides. Further, we have observed a transition from the open to closed conformer in the case of A-pentasaccharide, while H-tetrasaccharide remains in the open conformation throughout the simulation. Both oligosaccharides adopted an open conformation in the CT binding site. Moreover, we have investigated the molecular basis of recognition of LeY oligosaccharides by the B subunit of the cholera toxin of classical and El Tor biotypes using the molecular mechanics generalized Born surface area (MM/GBSA) scheme. The O blood group determinant, H-tetrasaccharide, exhibits a stronger affinity to both biotypes compared to the A blood group determinant, A-pentasaccharide, which agrees with the experimental data. The difference in binding free energy between O and A blood group determinants mainly arises due to the increased entropic cost and desolvation energy in the case of A-pentasaccharide compared to that of H-tetrasaccharide. Our study also reveals that the terminal Fuc3 contributes most to the binding free energy compared to other carbohydrate residues as it forms multiple hydrogen bonds with CT. Overall, our study might help in designing glycomimetic drugs targeting the cholera toxin.
Collapse
Affiliation(s)
- Rajarshi Roy
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Biplab Ghosh
- High
Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Parimal Kar
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- E-mail: . Phone: +91 731 2438700 (ext. 550)
| |
Collapse
|
26
|
de Meirelles JL, Nepomuceno FC, Peña-García J, Schmidt RR, Pérez-Sánchez H, Verli H. Current Status of Carbohydrates Information in the Protein Data Bank. J Chem Inf Model 2020; 60:684-699. [PMID: 31961683 DOI: 10.1021/acs.jcim.9b00874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrates are well known for their physicochemical, biological, functional, and therapeutic characteristics. Unfortunately, their chemical nature imposes severe challenges for the structural elucidation of these phenomena, impairing not only the depth of our understanding of carbohydrates but also the development of new biotechnological and therapeutic applications based on these molecules. In the recent past, the amount of structural information, obtained mainly from X-ray crystallography, has increased progressively, as well as its quality. In this context, the current work presents a global analysis of the carbohydrate information available in the Protein Data Bank (PDB). From high quality structures, it is clear that most of the data are highly concentrated on a few sets of residue types, on their monosaccharidic forms, and connected by a small diversity of glycosidic linkages. The geometries of these linkages can be mostly associated with the types of linkages instead of residues, while the level of puckering distortion was characterized, quantified, and located in a pseudorotational equilibrium landscape, not only to local minima but also to transitional states. These qualitative and quantitative analyses offer a global picture of the carbohydrate structural content in the PDB, potentially supporting the building of new models for carbohydrate-related biological phenomena at the atomistic level, including new developments on force field parameters.
Collapse
Affiliation(s)
- João L de Meirelles
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| | - Felipe C Nepomuceno
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| | - Jorge Peña-García
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Ricardo Rodríguez Schmidt
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department , Universidad Católica de Murcia (UCAM) , Murcia , Spain 30107
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul (UFRGS) , Av. Bento Goncalves, 9500 , Porto Alegre , Brazil 91509-900
| |
Collapse
|
27
|
Chan B. Aqueous-Phase Conformations of Lactose, Maltose, and Sucrose and the Assessment of Low-Cost DFT Methods with the DSCONF Set of Conformers for the Three Disaccharides. J Phys Chem A 2020; 124:582-590. [PMID: 31927999 DOI: 10.1021/acs.jpca.9b10932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, we have examined a range of quantum chemistry methods for the calculation of conformers for lactose, maltose, and sucrose. We find that the DSD-PBE-P86/aug'-cc-pVTZ//B3-LYP-D3BJ/6-311+G(2d,p) protocol yields good relative energies in comparison with reference CCSD(T)/CBS//B3-LYP-D3BJ/maug-cc-pVTZ values. We have surveyed a total of ∼550 conformers for the three disaccharides with the chosen DSD-PBE-P86 method in conjunction with continuum aqueous solvation. In each case, the lowest free energy conformer is characterized by hydrogen bond(s) between the two rings. Another finding is that the major contributors to the overall variations in aqueous free energies are the electronic energies and the solvation energies. To facilitate investigations of larger systems, we have compiled the DSCONF set of conformers for the three disaccharides, and we have assessed lower cost methods with this set. We find MS1-D3/6-31+G(2d,p) to be cost-effective and accurate for both geometry optimization and the calculation of relative energies for disaccharides. In addition, we note that MS1-D3 has previously been found to yield good relative energies for the WATER27 set of water clusters. We thus deem this method to be appropriate for the study of saccharide conformations in both gas phase and aqueous solution.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering , Nagasaki University , Bunkyo 1-14 , Nagasaki 852-8521 , Japan
| |
Collapse
|
28
|
Tyrikos-Ergas T, Fittolani G, Seeberger PH, Delbianco M. Structural Studies Using Unnatural Oligosaccharides: Toward Sugar Foldamers. Biomacromolecules 2019; 21:18-29. [DOI: 10.1021/acs.biomac.9b01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
29
|
Hahn DF, Milić JV, Hünenberger PH. Vase
‐
Kite
Equilibrium of Resorcin[4]arene Cavitands Investigated Using Molecular Dynamics Simulations with Ball‐and‐Stick Local Elevation Umbrella Sampling. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David F. Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Jovana V. Milić
- Laboratory of Photonics and InterfacesÉcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPI, Station 6 CH-1015 Lausanne Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| |
Collapse
|
30
|
Mucha E, Stuckmann A, Marianski M, Struwe WB, Meijer G, Pagel K. In-depth structural analysis of glycans in the gas phase. Chem Sci 2019; 10:1272-1284. [PMID: 30809341 PMCID: PMC6357860 DOI: 10.1039/c8sc05426f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Although there have been substantial improvements in glycan analysis over the past decade, the lack of both high-resolution and high-throughput methods hampers progress in glycomics. This perspective article highlights the current developments of liquid chromatography, mass spectrometry, ion-mobility spectrometry and cryogenic IR spectroscopy for glycan analysis and gives a critical insight to their individual strengths and limitations. Moreover, we discuss a novel concept in which ion mobility-mass spectrometry and cryogenic IR spectroscopy is combined in a single instrument such that datasets consisting of m/z, collision cross sections and IR fingerprints can be obtained. This multidimensional data will then be compared to a comprehensive reference library of intact glycans and their fragments to accurately identify unknown glycans on a high-throughput scale with minimal sample requirements. Due to the complementarity of the obtained information, this novel approach is highly diagnostic and also suitable for the identification of larger glycans; however, the workflow and instrumentation is straightforward enough to be implemented into a user-friendly setup.
Collapse
Affiliation(s)
- Eike Mucha
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Alexandra Stuckmann
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Mateusz Marianski
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Weston B Struwe
- Oxford Glycobiology Institute , Department of Biochemistry , University of Oxford , OX1 3QU Oxford , UK
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Department of Molecular Physics , Faradayweg 4-6 , 14195 Berlin , Germany .
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| |
Collapse
|
31
|
Farr JE, Sigurdson GT, Giusti MM. Stereochemistry and glycosidic linkages of C3-glycosylations affected the reactivity of cyanidin derivatives. Food Chem 2018; 278:443-451. [PMID: 30583395 DOI: 10.1016/j.foodchem.2018.11.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The impact of glycosylation on anthocyanin stability has largely been associated with sugar type, site, and size, with glycosyl stereochemistry being under-explored. Seven cyanidin-3-glycosides were isolated by HPLC, diluted in pH 1-9, mixed with bisulfite or ascorbic acid at pH 3, and stored for 8 weeks (25 °C, dark). Spectral changes, half-lives, and bleaching rates were determined. Cyanidin-3-galactoside was more reactive (susceptible to hydration and bleaching) than cyanidin-3-glucoside. The 1 → 2 disaccharides exhibited greater λvis-max (≤16 nm), resistance to hydration, and bleaching compared to 1 → 6 disaccharides.The 1 → 6 disaccharides had similar λvis-max (∼2 nm) to the monosaccharides but slightly improved resistance to hydration and bleaching. The tri-glycosylated anthocyanin had the greatest stability and its spectral and bleaching characteristics was intermediate to 1 → 2 and 1 → 6 disaccharides. The 1 → 2 disaccharides generally exhibited lower half-lives compared to monosaccharides; whereas, 1 → 6 disaccharides exhibited higher stability. These findings highlight the role of glycosyl assembly on anthocyanin reactivity and stability.
Collapse
Affiliation(s)
- Jacob E Farr
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - Gregory T Sigurdson
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - M Mónica Giusti
- The Ohio State University, Dept. of Food Science and Technology, 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| |
Collapse
|
32
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
33
|
Katyal N, Agarwal M, Sen R, Kumar V, Deep S. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. ACS Chem Neurosci 2018; 9:1477-1491. [PMID: 29601727 DOI: 10.1021/acschemneuro.8b00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggregation of α-synuclein is closely connected to the pathology of Parkinson's disease. The phenomenon involves multiple steps, commenced by partial misfolding and eventually leading to mature amyloid fibril formation. Trehalose, a widely accepted osmolyte, has been shown previously to inhibit aggregation of various globular proteins owing to its ability to prevent the initial unfolding of protein. In this study, we have examined if it behaves in a similar fashion with intrinsically disordered protein α-synuclein and possesses the potential to act as therapeutic agent against Parkinson's disease. It was observed experimentally that samples coincubated with trehalose fibrillate faster compared to the case in its absence. Molecular dynamics simulations suggested that this initial acceleration is manifestation of trehalose's tendency to perturb the conformational transitions between different conformers of monomeric protein. It stabilizes the aggregation prone "extended" conformer of α-synuclein, by binding to its exposed acidic residues of the C terminus. It also favors the β-rich oligomers once formed. Interestingly, the total fibrils formed are still promisingly less since it accelerates the competing pathway toward formation of amorphous aggregates.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Manish Agarwal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Raktim Sen
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vinay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
34
|
Esteban C, Donati I, Pantano S, Villegas M, Benegas J, Paoletti S. Dissecting the conformational determinants of chitosan and chitlac oligomers. Biopolymers 2018; 109:e23221. [PMID: 29722914 DOI: 10.1002/bip.23221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 11/06/2022]
Abstract
Chitosan and its highly hydrophilic 1-deoxy-lactit-1-yl derivative (Chitlac) are polysaccharides with increasing biomedical applications. Aimed to unravel their conformational properties we have performed a series of molecular dynamics simulations of Chitosan/Chitlac decamers, exploring different degrees of substitution (DS) of lactitol side chains. At low DS, two conformational regions with different populations are visited, while for DS ≥ 20% the oligomers remain mostly linear and only one main region of the glycosidic angles is sampled. These conformers are (locally) characterized by extended helical "propensities". Helical conformations 32 and 21, by far the most abundant, only develop in the main region. The accessible conformational space is clearly enlarged at high ionic strength, evidencing also a new region accessible to the glycosidic angles, with short and frequent interchange between regions. Simulations of neutral decamers share these features, pointing to a central role of electrostatic repulsion between charged moieties. These interactions seem to determine the conformational behavior of the chitosan backbone, with no evident influence of H-bond interactions. Finally, it is also shown that increasing temperature only slightly enlarges the available conformational space, but certainly without signs of a temperature-induced conformational transition.
Collapse
Affiliation(s)
- Carmen Esteban
- Instituto de Matematica Aplicada (IMASL), Department of Physics, National University of San Luis/CONICET, San Luis, D5700HHW, Argentina
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, via L. Giorgieri 5, Trieste, 34127, Italy
| | - Sergio Pantano
- Institut Pasteur of Montevideo - Calle Mataojo 2020, Montevideo, Cp 11400, Uruguay
| | - Myriam Villegas
- Instituto de Matematica Aplicada (IMASL), Department of Physics, National University of San Luis/CONICET, San Luis, D5700HHW, Argentina
| | - Julio Benegas
- Instituto de Matematica Aplicada (IMASL), Department of Physics, National University of San Luis/CONICET, San Luis, D5700HHW, Argentina
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 5, Trieste, 34127, Italy
| |
Collapse
|
35
|
Abe K, Sunagawa N, Terada T, Takahashi Y, Arakawa T, Igarashi K, Samejima M, Nakai H, Taguchi H, Nakajima M, Fushinobu S. Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. J Biol Chem 2018; 293:8812-8828. [PMID: 29678880 DOI: 10.1074/jbc.ra117.001536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins.
Collapse
Affiliation(s)
- Koichi Abe
- From the Department of Biotechnology.,Agricultural Bioinformatics Research Unit, and
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,the VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland, and
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hayao Taguchi
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masahiro Nakajima
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
36
|
Farr JE, Sigurdson GT, Giusti MM. Influence of cyanidin glycosylation patterns on carboxypyranoanthocyanin formation. Food Chem 2018; 259:261-269. [PMID: 29680053 DOI: 10.1016/j.foodchem.2018.03.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
Anthocyanins can condense with compounds having enolizable groups to form pyranoanthocyanins. These pigments are less susceptible to degradation and color changes associated with nucleophilic addition common to anthocyanins. This study aimed to evaluate the impact of glycosylation patterns of anthocyanins on carboxypyranoanthocyanin formation. Nine cyanidin derivatives were isolated by semi-preparative HPLC. Pyruvic acid was added to induce pyranoanthocyanin formation. Composition (HPLC-MS/MS), spectra (absorbance 380-700 nm), and color (CIEL*c*h*) of solutions were monitored during 31 days storage at 25 °C. Cyanidin-3-glycosides with 1 → 6 disaccharides produced the highest pyranoanthocyanin yield (∼31%), followed by Cyanidin-3-monoglycosides (∼20%); 1 → 2 disaccharides produced the least proportions of pyranoanthocyanins (5-7%). Cyanidin-3-arabinoside converted to pyranoanthocyanins but degraded quickly (3% yield) under these conditions. No pyranoanthocyanins were formed from Cyanidin-3-sophoroside-5-glucoside. Glycosyl bonds were more critical than the size of the substitution alone, further supported by Cyanidin-3-(glucosyl)-(1 → 6)-(xylosyl-(1 → 2)-galactoside) yield (11%). Pyranoanthocyanins were hypsochromically shifted and had higher hue angles than their respective anthocyanins.
Collapse
Affiliation(s)
- Jacob E Farr
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - Gregory T Sigurdson
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| | - M Mónica Giusti
- The Ohio State University, Dept. of Food Science and Technology. 2015 Fyffe Ct., Columbus, OH 43210-1007, United States.
| |
Collapse
|
37
|
Alibay I, Burusco KK, Bruce NJ, Bryce RA. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics. J Phys Chem B 2018; 122:2462-2474. [PMID: 29419301 DOI: 10.1021/acs.jpcb.7b09841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4C1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.
Collapse
Affiliation(s)
- Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Kepa K Burusco
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Neil J Bruce
- Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35 , Heidelberg 69118 , Germany
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
38
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
39
|
Singh SK. Sucrose and Trehalose in Therapeutic Protein Formulations. CHALLENGES IN PROTEIN PRODUCT DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-90603-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Furuki T, Sakurai M. Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:271-286. [PMID: 30288715 DOI: 10.1007/978-981-13-1244-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
41
|
Ishiguro R, Tanaka N, Abe K, Nakajima M, Maeda T, Miyanaga A, Takahashi Y, Sugimoto N, Nakai H, Taguchi H. Function and structure relationships of a β-1,2-glucooligosaccharide-degrading β-glucosidase. FEBS Lett 2017; 591:3926-3936. [PMID: 29131329 DOI: 10.1002/1873-3468.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/04/2017] [Accepted: 11/08/2017] [Indexed: 11/08/2022]
Abstract
BT_3567 protein, a putative β-glucosidase from Bacteroides thetaiotaomicron, exhibits higher activity toward Sop3-5 (Sopn , n: degree of polymerization of β-1,2-glucooligosaccharides) than toward Sop2 , unlike a known β-glucosidase from Listeria innocua which predominantly prefers Sop2 . In the complex structure determined by soaking of a D286N mutant crystal with Sop4 , a Sop3 moiety was observed at subsites -1 to +2. The glucose moiety at subsite +2 forms a hydrogen bond with Asn81, which is replaced with Gly in the L. innocua β-glucosidase. The Km values of the N81G mutant for Sop3-5 are much higher than those of the wild-type, suggesting that Asn81 contributes to the binding to substrates longer than Sop3 .
Collapse
Affiliation(s)
- Rikuto Ishiguro
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Koichi Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuma Maeda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
42
|
Solvation free energy of solvation of biomass model cellobiose molecule: A molecular dynamics analysis. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Lubecka EA, Liwo A. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O1→4-bonded polyglucose chains. J Chem Phys 2017; 147:115101. [DOI: 10.1063/1.4994130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Emilia A. Lubecka
- Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
44
|
Turupcu A, Oostenbrink C. Modeling of Oligosaccharides within Glycoproteins from Free-Energy Landscapes. J Chem Inf Model 2017; 57:2222-2236. [PMID: 28816453 PMCID: PMC5615373 DOI: 10.1021/acs.jcim.7b00351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
spite of the abundance of glycoproteins in biological processes,
relatively little three-dimensional structural data is available for
glycan structures. Here, we study the structure and flexibility of
the vast majority of mammalian oligosaccharides appearing in N- and
O-glycosylated proteins using a bottom up approach. We report the
conformational free-energy landscapes of all relevant glycosidic linkages
as obtained from local elevation simulations and subsequent umbrella
sampling. To the best of our knowledge, this represents the first
complete conformational library for the construction of N- and O-glycan
structures. Next, we systematically study the effect of neighboring
residues, by extensively simulating all relevant trisaccharides and
one tetrasaccharide. This allows for an unprecedented comparison of
disaccharide linkages in large oligosaccharides. With a small number
of exceptions, the conformational preferences in the larger structures
are very similar as in the disaccharides. This, finally, allows us
to suggest several efficient approaches to construct complete N- and
O-glycans on glycoproteins, as exemplified on two relevant examples.
Collapse
Affiliation(s)
- Aysegül Turupcu
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
45
|
Dolinina E, Vlasenkova M, Parfenyuk E. Effect of trehalose on structural state of bovine serum albumin adsorbed onto mesoporous silica and the protein release kinetics in vitro. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Tsai CC, Morrow BH, Chen W, Payne GF, Shen J. Toward Understanding the Environmental Control of Hydrogel Film Properties: How Salt Modulates the Flexibility of Chitosan Chains. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Cheng-Chieh Tsai
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Brian H. Morrow
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Wei Chen
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Gregory F. Payne
- Fischell
Department of Bioengineering and Institute for Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jana Shen
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
47
|
Galvelis R, Re S, Sugita Y. Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics. J Chem Theory Comput 2017; 13:1934-1942. [DOI: 10.1021/acs.jctc.7b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raimondas Galvelis
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
- RIKEN iTHES, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Advanced Institute for Computational Science, Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
48
|
Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans. Sci Rep 2017; 7:42671. [PMID: 28198470 PMCID: PMC5309861 DOI: 10.1038/srep42671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nayuta Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.,Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takanori Nihira
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Yuki Kodutsumi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuta Takahashi
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Naohisa Sugimoto
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hiroyuki Nakai
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| |
Collapse
|
49
|
Joshi S, Lehmler HJ, Knutson BL, Rankin SE. Imprinting of Stöber particles for chirally-resolved adsorption of target monosaccharides and disaccharides. NEW J CHEM 2017. [DOI: 10.1039/c7nj01938f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft imprinting of silica particles using sugar surfactants targets chirally resolved binding of saccharides.
Collapse
Affiliation(s)
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health
- University of Iowa
- Iowa City
- USA
| | - Barbara L. Knutson
- Department of Chemical and Materials Engineering
- University of Kentucky
- Lexington
- USA
| | - Stephen E. Rankin
- Department of Chemical and Materials Engineering
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
50
|
Lonardi A, Oborský P, Hünenberger PH. Solvent-Modulated Influence of Intramolecular Hydrogen-Bonding on the Conformational Properties of the Hydroxymethyl Group in Glucose and Galactose: A Molecular Dynamics Simulation Study. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alice Lonardi
- Laboratory of Physical Chemistry; ETH Hönggerberg; HCI; CH-8093 Zürich Switzerland
| | - Pavel Oborský
- Laboratory of Physical Chemistry; ETH Hönggerberg; HCI; CH-8093 Zürich Switzerland
| | | |
Collapse
|