1
|
Fei J, Liu S, Sha Q, Di C, Hu Z, Du W, Liu X. Isotope-coded hydrazide tags for MALDI-MS based quantitative glycomics. Talanta 2025; 292:127921. [PMID: 40073825 DOI: 10.1016/j.talanta.2025.127921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The detection of glycosylation alterations is essential for elucidating the roles of glycan functions in biological processes and identifying potential disease biomarkers. Stable isotopic chemical labeling, coupled with mass spectrometry (MS), represents a powerful approach in quantitative glycomics. In this study, we synthesized a novel isotopic hydrazide pair, 2,6-Dimethyl-4-chinolincarbohydrazid (DMQCH) and its deuterium isomer DMQCH-d4, via an efficient and cost-effective method, and applied it for the first time in MALDI-MS-based quantitative glycomics. The hydrazide tags, DMQCH/DMQCH-d4, enabled stable mass shifts through reductive-terminal reactions with glycans, allowing for differential mass tagging of two samples without additional purification after derivatization. This DMQCH/DMQCH-d4 pair exhibited high derivatization efficiency (including on-target derivatization), substantial improvements in MS signal intensity (a 15-fold increase for maltoheptaose, high reproducibility (CV < 13.6 %), and excellent linearity (R2 > 0.99) over two orders of magnitude in dynamic range for the relative quantitative analysis of maltoheptaose. Furthermore, this isotopic hydrazide pair was validated by successfully measuring changes in serum N-glycan profiles from individuals with healthy human serum control and ovarian cancer, highlighting its potential in quantitative glycomics for clinical applications.
Collapse
Affiliation(s)
- Jian Fei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Qiuyue Sha
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaoyu Hu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Ishii T, Hirai K, Higashi K, Aijima A, Yokota N, Toida T, Iwasaki Y, Ito R, Higashi N, Akiyama H. Novel simultaneous analysis of 18 types of glycosaminoglycan-derived disaccharides using 4-aminobenzoic acid ethyl ester derivatization by HPLC with fluorescence detection. Anal Bioanal Chem 2024; 416:6209-6221. [PMID: 39212700 DOI: 10.1007/s00216-024-05504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kengo Hirai
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Aijima
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nae Yokota
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Toshihiko Toida
- The Center for Preventive Medical Sciences, Chiba University, 1-8-1, Inohana, Chiba-Shi, Chiba, 260-8675, Japan
| | - Yusuke Iwasaki
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Rie Ito
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan.
| |
Collapse
|
3
|
Mischnick P, Schleicher S. Potential of ion mobility mass spectrometry in cellulose ether analysis: substitution pattern of hydroxyethyl celluloses. Anal Bioanal Chem 2024:10.1007/s00216-024-05224-w. [PMID: 38436692 DOI: 10.1007/s00216-024-05224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Ion mobility mass spectrometry (ESI-tims-ToF-MS, syringe pump infusion) has been applied to glucose and oligosaccharide ethers derived from hydroxyethyl-methyl celluloses (HEMC) and hydroxyethyl celluloses (HEC) after permethylation and partial depolymerization: by hydrolysis without or with subsequent reductive amination with m-amino benzoic acid (mABA) or by reductive cleavage. As model compounds without tandem substitution methoxyethylated methylcellulose was used. Regioisomeric glucose ethers were separated according to their ion mobility, and positions of substitution could be assigned. Glucose ethers including isomers with tandem substitution showed additional signals with a smaller collision cross-section (CCS) than core-substituted isomers. Positional isomers of cellobiose ethers were only partly resolved due to too high complexity but showed a characteristic fingerprint that might allow classifying samples. Relative intensities of signals of glucose ether isomers could only be quantified in case of ABA derivatives with its fixed charge, while sodium adducts of methoxyethyl ethers showed an influence of the MeOEt position on ion yield. Results were in very good agreement with reference analysis. [M + Na]+ adducts of α- and β-anomers of glucose derivatives were separated in IM, complicating position assignment. This could be overcome by reductive cleavage of the permethylated HE(M)C yielding 1,5-anhydroglucitol-terminated oligosaccharides, showing the best resolved fingerprints of the cellobiose ethers of a particular cellulose ether. With this first application of ion mobility MS to the analysis of complex cellulose ethers, the promising potential of this additional separation dimension in mass spectrometry is demonstrated and discussed.
Collapse
Affiliation(s)
- Petra Mischnick
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany.
| | - Sarah Schleicher
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
5
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
7
|
Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Commun Biol 2022; 5:444. [PMID: 35545700 PMCID: PMC9095699 DOI: 10.1038/s42003-022-03383-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities. A reductive amination-based fluorophore labelling of complex wood-derived glycans provides a proof-of-principle multi-modal platform for monitoring glycan uptake by bacteria.
Collapse
|
8
|
Li J, Wu T, Zhang X, Du Y, Wei B, Wang J. Clinical Application of Liver Diseases Diagnosis using Ultrahigh-sensitive Liquid Chromatography-Mass Spectrometry for Sialic Acids Detection. J Chromatogr A 2022; 1666:462837. [DOI: 10.1016/j.chroma.2022.462837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
9
|
Lang Y, Zhang Y, Wang C, Huang L, Liu X, Song N, Li G, Yu G. Comparison of Different Labeling Techniques for the LC-MS Profiling of Human Milk Oligosaccharides. Front Chem 2021; 9:691299. [PMID: 34589467 PMCID: PMC8473617 DOI: 10.3389/fchem.2021.691299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Human milk oligosaccharides (HMOs) exhibit various biological activities for infants, such as serving as prebiotics, blocking pathogens, and aiding in brain development. HMOs are a complex mixture of hetero-oligosaccharides that are generally highly branched, containing multiple structural isomers and no intrinsic chromophores, presenting a challenge to both their resolution and quantitative detection. While liquid chromatography-mass spectrometry (LC-MS) has become the primary strategy for analysis of various compounds, the very polar and chromophore-free properties of native glycans hinder their separation in LC and ionization in MS. Various labeling approaches have been developed to achieve separation of glycans with higher resolution and greater sensitivity of detection. Here, we compared five commonly used labeling techniques [by 2-aminobenzamide, 2-aminopyridine, 2-aminobenzoic acid (2-AA), 2,6-diaminopyridine, and 1-phenyl-3-methyl-5-pyrazolone] for analyzing HMOs specifically under hydrophilic-interaction chromatography-mass spectrometry (HILIC-MS) conditions. The 2-AA labeling showed the most consistent deprotonated molecular ions, the enhanced sensitivity with the least structural selectivity, and the sequencing-informative tandem MS fragmentation spectra for the widest range of HMOs; therefore, this labeling technique was selected for further optimization under the porous graphitized carbon chromatography-mass spectrometry (PGC-MS) conditions. The combination strategy of 2-AA labeling and PGC-MS techniques provided online decontamination (removal of excess 2-AA, salts, and lactose) and resolute detection of many HMOs, enabling us to characterize the profiles of complicated HMO mixtures comprehensively in a simple protocol.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yongzhen Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chen Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Limei Huang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoxiao Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ni Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Krenkova J, Dusa F, Cmelik R. Characterization of multi-cationic aminopyrene-based tag for oligosaccharide labeling by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2021; 42:1333-1339. [PMID: 33772804 DOI: 10.1002/elps.202100012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
In this work, we characterize a previously synthesized multi-cationic aminopyrene-based labeling tag for oligosaccharide analysis by capillary electrophoresis with laser-induced fluorescence detection (CE/LIF). The fluorescent tag, 4,4',4''-(8-aminopyrene-1,3,6-trisulfonyl)tris(1-methylpiperazine) (APTMP), was characterized by reaction with standard maltooligosaccharides and the labeling parameters such as fluorescent tag concentration, labeling temperature, and time as well as influence of a reducing agent and its solvent were investigated in terms of labeling efficiency. The nanomolar limit of detection of CE/LIF analysis of APTMP labeled maltopentaose was determined. However, significant amount of the oligosaccharides was reduced to alditols, which negatively affects the yield and rate of the labeling reaction. Under optimized conditions, a highly reproducible labeling by multi-cationic APTMP was obtained; however, the most commonly used labeling by multi-anionic 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS) is superior compared to APTMP labeling. Lower reactivity of APTMP compared to APTS can be explained by the loss of nucleophilicity induced by substitution of the sulfonate groups with more electron-withdrawing aminosulfonyl ones. On contrary, APTMP is still a promising tag for oligosaccharide labeling followed by CE-MS in a positive ion mode, which is considered to be more sensitive than MS detection of APTS in a negative ion mode.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filip Dusa
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Richard Cmelik
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
12
|
Mo IV, Dalheim MØ, Aachmann FL, Schatz C, Christensen BE. 2,5-Anhydro-d-Mannose End-Functionalized Chitin Oligomers Activated by Dioxyamines or Dihydrazides as Precursors of Diblock Oligosaccharides. Biomacromolecules 2020; 21:2884-2895. [PMID: 32539358 PMCID: PMC7660591 DOI: 10.1021/acs.biomac.0c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Diblock
oligosaccharides based on renewable resources allow for
a range of new but, so far, little explored biomaterials. Coupling
of blocks through their reducing ends ensures retention of many of
their intrinsic properties that otherwise are perturbed in classical
lateral modifications. Chitin is an abundant, biodegradable, bioactive,
and self-assembling polysaccharide. However, most coupling protocols
relevant for chitin blocks have shortcomings. Here we exploit the
highly reactive 2,5-anhydro-d-mannose residue at the reducing
end of chitin oligomers obtained by nitrous acid depolymerization.
Subsequent activation by dihydrazides or dioxyamines provides precursors
for chitin-based diblock oligosaccharides. These reactions are much
faster than for other carbohydrates, and only acyclic imines (hydrazones
or oximes) are formed (no cyclic N-glycosides). α-Picoline
borane and cyanoborohydride are effective reductants of imines, but
in contrast to most other carbohydrates, they are not selective for
the imines in the present case. This could be circumvented by a simple
two-step procedure. Attachment of a second block to hydrazide- or
aminooxy-functionalized chitin oligomers turned out to be even faster
than the attachment of the first block. The study provides simple
protocols for the preparation of chitin-b-chitin
and chitin-b-dextran diblock oligosaccharides without
involving protection/deprotection strategies.
Collapse
Affiliation(s)
- Ingrid Vikøren Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Marianne Øksnes Dalheim
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 33600 Pessac, France
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Saelands veg 6/8, NO-7491 Trondheim, Norway
| |
Collapse
|
13
|
Comprehensive structural analysis of a set of various branched glucans by standard methylation analysis, 1H NMR spectroscopy, ESI-mass spectrometry, and capillary electrophoresis. Carbohydr Res 2020; 489:107933. [DOI: 10.1016/j.carres.2020.107933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 11/23/2022]
|
14
|
Activation of enzymatically produced chitooligosaccharides by dioxyamines and dihydrazides. Carbohydr Polym 2020; 232:115748. [DOI: 10.1016/j.carbpol.2019.115748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022]
|
15
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Krenkova J, Liskova M, Cmelik R, Vigh G, Foret F. Multi-cationic aminopyrene-based labeling tags for oligosaccharide analysis by capillary electrophoresis-mass spectrometry. Anal Chim Acta 2020; 1095:226-232. [DOI: 10.1016/j.aca.2019.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
|
17
|
Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2018; 142:700-720. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-translational modification of proteins by the attachment of glycans is governed by a variety of highly specific enzymes and is associated with fundamental impacts on the parent protein's physical, chemical and biological properties. The inherent connection between cellular physiology and specific glycosylation patterns has been shown to offer potential for diagnostic and prognostic monitoring of altered glycosylation in the disease state. Conversely, glycoprotein based biopharmaceuticals have emerged as dominant therapeutic strategies in the treatment of intricate diseases. Glycosylation present on these biopharmaceuticals represents a major critical quality attribute with impacts on both pharmacokinetics and pharmacodynamics. The structural variety of glycans, based upon their non-template driven assembly, poses a significant analytical challenge for both qualitative and quantitative analysis. Labile monosaccharide constituents, isomeric species and often low sample availability from biological sources necessitates meticulous sample handling, ultra-high-resolution analytical separation and sensitive detection techniques, respectively. In this article a critical review of analytical quantitation approaches using liquid phase separations coupled to mass spectrometry for released glycans of biopharmaceutical and biomedical significance is presented. Considerations associated with sample derivatisation strategies, ionisation, relative quantitation through isotopic as well as isobaric labelling, metabolic/enzymatic incorporation and targeted analysis are all thoroughly discussed.
Collapse
Affiliation(s)
- Josh Smith
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland
| | - Stefan Mittermayr
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Csaba Váradi
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
18
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
19
|
Zhang Y, Wang B, Jin W, Wen Y, Nan L, Yang M, Liu R, Zhu Y, Wang C, Huang L, Song X, Wang Z. Sensitive and robust MALDI-TOF-MS glycomics analysis enabled by Girard's reagent T on-target derivatization (GTOD) of reducing glycans. Anal Chim Acta 2018; 1048:105-114. [PMID: 30598139 DOI: 10.1016/j.aca.2018.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/31/2022]
Abstract
Sensitive glycomics analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is of great importance but significantly hampered by their low ionization efficiency and labile sialic acid moieties. Chemical derivatization offers a viable way to improve both the ionization efficiency and analytical sensitivity of the glycans in MS analysis by altering their hydrophobicity or charge property. Here we employed Girard's reagent T (GT) for on-target derivatization (GTOD) of reducing glycan under mild acid condition to form stable hydrazones at room temperature, allowing rapid and sensitive identification of neutral and sialylated glycans in positive-ion mode as only permanently positive charged molecular ions without multiple ion adducts by MALDI-TOF-MS. The MS signal intensities of lactose, sialylated N-glycans derived from bovine fetuin and neutral N-glycans derived from RNaseB and ovalbumin were boosted by 7.44, 9.13, 12.96 and 13.47 folds on average (n = 3), respectively. More importantly, after GTOD strategy, unwanted desialylation of sialylated glycans during MS was suppressed. The detection limit of the assay is desirable since the nanogram of N-glycans derived from 0.16 μg ovalbumin could be detected. The assay demonstrated good stability (RSD≤2.95%, within 10 days), reliable reproducibility (RSD = 2.96%, n = 7) and a desirable linear dynamic range from 78 nmol/mL to 10 μmol/mL. The strategy has been successfully applied to MS analysis of reducing glycans from human milks, neutral and sialylated O-, N-glycans from glycoproteins, and reducing glycans derived from glycosphingolipids, presenting neater [M]+ signals which allow detection of more low-abundance glycans and assignation of Neu5Ac vs. Neu5Gc or fucose vs. hexose in glycans due to the absence of the ambiguous interpretation from multiple peaks (ion adducts [M+Na]+ and [M+K]+). Moreover, the GTOD assay prevents desialylation during MALDI-TOF-MS profiling and enables distinct linkage-specific characterization of terminal sialic acids of N-glycans derived from human serum protein when combines with an esterification.
Collapse
Affiliation(s)
- Ying Zhang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Bo Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Wanjun Jin
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Yanan Wen
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Lijing Nan
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Mingming Yang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Rendan Liu
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Yuyang Zhu
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Chengjian Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Linjuan Huang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, 229 Northern Taibai Road, Xi'an, 710069, PR China.
| |
Collapse
|
20
|
Krenkova J, Bobal P, Partyka J, Cmelik R, Foret F. Investigation of a side reaction occurring during -linked glycan labeling by cationic tags. J Chromatogr A 2018; 1570:67-74. [DOI: 10.1016/j.chroma.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
|
21
|
Partyka J, Krenkova J, Cmelik R, Foret F. Multi-charged labeling of oligosaccharides and N-linked glycans by hexahistidine-based tags for capillary electrophoresis-mass spectrometry analysis. J Chromatogr A 2018; 1560:91-96. [DOI: 10.1016/j.chroma.2018.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
|
22
|
Lorenz D, Knöpfle A, Akil Y, Saake B. Quantitative investigations of xylose and arabinose substituents in hydroxypropylated and hydroxyvinylethylated arabinoxylans. Carbohydr Polym 2017; 175:671-678. [DOI: 10.1016/j.carbpol.2017.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022]
|
23
|
Dalheim MØ, Ulset AST, Jenssen IB, Christensen BE. Degradation kinetics of peptide-coupled alginates prepared via the periodate oxidation reductive amination route. Carbohydr Polym 2017; 157:1844-1852. [DOI: 10.1016/j.carbpol.2016.11.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
|
24
|
Cao W, Zhang W, Huang J, Jiang B, Zhang L, Yang P. Glycan reducing end dual isotopic labeling (GREDIL) for mass spectrometry-based quantitative N-glycomics. Chem Commun (Camb) 2016; 51:13603-6. [PMID: 26240031 DOI: 10.1039/c5cc05365j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A general and effective enzymatic labeling method, termed glycan reducing end dual isotopic labeling (GREDIL), was developed for mass spectrometry-based quantitative N-glycomics.
Collapse
Affiliation(s)
- Weiqian Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Lorenz D, Erasmy N, Akil Y, Saake B. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS. Carbohydr Polym 2015; 140:181-7. [PMID: 26876842 DOI: 10.1016/j.carbpol.2015.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well.
Collapse
Affiliation(s)
- Dominic Lorenz
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Nicole Erasmy
- Thünen-Insitute of Wood Research, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Youssef Akil
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| | - Bodo Saake
- Department of Wood Science, University of Hamburg, Leuschnerstr. 91 b, 21031, Hamburg, Germany.
| |
Collapse
|
26
|
Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE. Efficient functionalization of alginate biomaterials. Biomaterials 2015; 80:146-156. [PMID: 26708091 DOI: 10.1016/j.biomaterials.2015.11.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere.
Collapse
Affiliation(s)
- Marianne Ø Dalheim
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Julie Vanacker
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCL), Brussels B-1200, Belgium
| | - Maryam A Najmi
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway.
| |
Collapse
|
27
|
Fang J, Qin G, Ma J, She YM. Quantification of plant cell wall monosaccharides by reversed-phase liquid chromatography with 2-aminobenzamide pre-column derivatization and a non-toxic reducing reagent 2-picoline borane. J Chromatogr A 2015; 1414:122-8. [PMID: 26342873 DOI: 10.1016/j.chroma.2015.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/08/2015] [Accepted: 08/20/2015] [Indexed: 11/27/2022]
Abstract
In this report, we described a sensitive method for quantifying plant cell wall monosaccharides using chemical derivatization, reversed-phase high performance liquid chromatography separation with ultraviolet detection (HPLC-UV). Monosaccharides were derivatized with 2-aminobenzamide (2-AB) by reductive amination to increase the hydrophobicity and detected by ultraviolet absorption for HPLC-UV analysis. A non-toxic reductant, 2-picoline borane was utilized to replace the traditionally used sodium cyanoborohydride (NaCNBH3) to avoid the formation of toxic by-products. Experimental conditions were optimized using glucose as a model system to achieve a high reaction yield of 99%. Under the optimized conditions, we demonstrated that the derivatization yields of several saccharides with 2-AB using 2-picoline borane were all slightly higher than those observed using NaCNBH3. In plants, cell wall monosaccharides consist of arabinose, fucose, galactose, galacturonic acid, glucose, glucuronic acid, mannose, rhamnose, and xylose. Using our method, we successfully quantified these monosaccharides from Arabidopsis cell wall by HPLC-UV, and we obtained a good linearity at a wide dynamic range over five orders (1pmol through 10nmol of injection amount), a detection limit of ∼0.1pmole, and a high precision and accuracy.
Collapse
Affiliation(s)
- Jingjing Fang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
28
|
von Schantz L, Schagerlöf H, Nordberg Karlsson E, Ohlin M. Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules. BMC Biotechnol 2014; 14:113. [PMID: 25540113 PMCID: PMC4302574 DOI: 10.1186/s12896-014-0113-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Derivatized celluloses, such as methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), are of pharmaceutical importance and extensively employed in tablet matrices. Each batch of derivatized cellulose is thoroughly characterized before utilized in tablet formulations as batch-to-batch differences can affect drug release. The substitution pattern of the derivatized cellulose polymers, i.e. the mode on which the substituent groups are dispersed along the cellulose backbone, can vary from batch-to-batch and is a factor that can influence drug release. RESULTS In the present study an analytical approach for the characterization of the substitution pattern of derivatized celluloses is presented, which is based on the use of carbohydrate-binding modules (CBMs) and affinity electrophoresis. CBM4-2 from Rhodothermus marinus xylanase 10A is capable of distinguishing between batches of derivatized cellulose with different substitution patterns. This is demonstrated by a higher migration retardation of the CBM in acrylamide gels containing batches of MC and HPMC with a more heterogeneous distribution pattern. CONCLUSIONS We conclude that CBMs have the potential to characterize the substitution pattern of cellulose derivatives and anticipate that with use of CBMs with a very selective recognition capacity it will be possible to more extensively characterize and standardize important carbohydrates used for instance in tablet formulation.
Collapse
|
29
|
Zhang Y, Wang C, Liu Y, Yao W, Sun Y, Zhang P, Huang L, Wang Z. Fluorescein-5-thiosemicarbazide (FTSC) labeling for fluorescent imaging of pectin-derived oligogalacturonic acid transported in living cells by confocal microscopy. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2283-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mallevre F, Roget A, Minon T, Kervella Y, Ropartz D, Ralet MC, Canut H, Livache T. Microwave heating for the rapid generation of glycosylhydrazides. Bioconjug Chem 2013; 24:1264-9. [PMID: 23731134 DOI: 10.1021/bc300667b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conditions for simple derivatization of reducing carbohydrates via adipic acid dihydrazide microwave-assisted condensation are described. We demonstrate with a diverse set of oligo- and polysaccharides how to improve a restrictive and labor intensive conventional conjugation protocol by using microwave-assisted chemistry. We show that 5 min of microwave heating in basic or acidic conditions are adequate to generate, in increased yields, intact and functional glycosylhydrazides, whereas hours to days and acidic conditions are generally required under conventional methods.
Collapse
Affiliation(s)
- F Mallevre
- CREAB, INAC CEA Grenoble, UMR SPrAM 5819 (CEA, CNRS, UJF), 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Comprehensive analysis of the substituent distribution in 3-O-ethyl/propyl cellulose derivatives. Carbohydr Polym 2013; 96:246-52. [DOI: 10.1016/j.carbpol.2013.03.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
|
32
|
Critical investigation of the substituent distribution in the polymer chains of hydroxypropyl methylcelluloses by (LC-)ESI-MS. Anal Bioanal Chem 2013; 405:9021-32. [PMID: 23774831 DOI: 10.1007/s00216-013-7065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Three hydroxypropyl methylcellulose samples (HPMC1-3, DS(Me) = 1.45, 1.29, and 1.36; MS(HP) = 0.28, 0.46, and 0.84) were analyzed with respect to their methyl and hydroxypropyl substitution pattern in the polymer chains. Ionization yield of HPMC oligomers in electrospray ionization ion trap mass spectrometry (ESI-IT-MS) is strongly influenced by the hydroxypropyl pattern. Therefore, a sample derivatization procedure, as well as suitable measurement conditions that enable relative quantification were elaborated. Analysis was performed by negative ESI-IT-MS after per(deutero)methylation, partial depolymerization, and reductive amination with m-aminobenzoic acid. Measurement parameters like solvent, trap drive, and voltages of the ion transportation unit were studied with regard to the suitability for quantitative evaluation. Using direct infusion of the samples, strong influence of trap drive and octopole settings was observed. Optimized measurement conditions were used for the determination of the HP pattern of the permethylated samples by direct infusion. The methyl pattern was determined from the perdeuteromethylated samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. For HPMC1, substituents were both found to fit the random distribution model. The other two samples showed pronounced heterogeneity which could be interpreted in more detail by extracting methyl subpatterns depending on the number of HP groups.
Collapse
|
33
|
Fiege K, Lünsdorf H, Mischnick P. Aminoalkyl functionalization of dextran for coupling of bioactive molecules and nanostructure formation. Carbohydr Polym 2013; 95:569-77. [DOI: 10.1016/j.carbpol.2013.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/15/2013] [Accepted: 03/03/2013] [Indexed: 11/15/2022]
|
34
|
Mischnick P, Unterieser I, Voiges K, Cuers J, Rinken M, Adden R. A New Method for the Analysis of the Substitution Pattern of Hydroxyethyl(methyl)-Celluloses Along the Polysaccharide Chain. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Rakete S, Glomb MA. A novel approach for the quantitation of carbohydrates in mash, wort, and beer with RP-HPLC using 1-naphthylamine for precolumn derivatization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3828-3833. [PMID: 23578308 DOI: 10.1021/jf400463r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel universal method for the determination of reducing mono-, di-, and oligosaccharides in complex matrices on RP-HPLC using 1-naphthylamine for precolumn derivatization with sodium cyanoborhydride was established to study changes in the carbohydrate profile during beer brewing. Fluorescence and mass spectrometric detection enabled very sensitive analyses of beer-relevant carbohydrates. Mass spectrometry additionally allowed the identification of the molecular weight and thereby the degree of polymerization of unknown carbohydrates. Thus, carbohydrates with up to 16 glucose units were detected. Comparison demonstrated that the novel method was superior to fluorophore-assisted carbohydrate electrophoresis (FACE). The results proved the HPLC method clearly to be more powerful in regard to sensitivity and resolution. Analogous to FACE, this method was designated fluorophore-assisted carbohydrate HPLC (FAC-HPLC).
Collapse
Affiliation(s)
- Stefan Rakete
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Straße 2, 06120 Halle/Saale, Germany
| | | |
Collapse
|
36
|
Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics 2013; 12:874-884. [PMID: 23325767 PMCID: PMC3617334 DOI: 10.1074/mcp.r112.026310] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/14/2013] [Indexed: 12/23/2022] Open
Abstract
The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | | | |
Collapse
|
37
|
Partyka J, Foret F. Cationic labeling of oligosaccharides for electrophoretic preconcentration and separation with contactless conductivity detection. J Chromatogr A 2012; 1267:116-20. [DOI: 10.1016/j.chroma.2012.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/12/2023]
|
38
|
Krenkova J, Foret F. On-line CE/ESI/MS interfacing: recent developments and applications in proteomics. Proteomics 2012; 12:2978-90. [PMID: 22888067 DOI: 10.1002/pmic.201200140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/17/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
After shining as the ultimate separation - sequencing technique used for the successful completion of the Human Genome Project, in the early 2000s CE experienced lowered popularity among separation scientists. The renewed interest in recent years relates to the separation needs, especially in proteomics, metabolomics, and glycomics, where CE complements liquid chromatography techniques. This interest is further boosted by the regulators requiring additional separation techniques for characterization of newly developed pharmaceuticals. This paper gives a short overview of recent developments in the on-line interfacing of CE separation techniques with electrospray ionization/mass spectrometric analysis. Both the instrumentation and selected CE/ESI/MS applications including analyses of peptides, proteins, and glycans are discussed with the stress on research published in the past 3 years. Techniques related to the proteomic and glycomic analyses such as sample preconcentration, on-line protein digestion, and analyte derivatization prior CE/ESI/MS analysis are also included.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the ASCR, Brno, Czech Republic.
| | | |
Collapse
|
39
|
Laskin J, Eckert PA, Roach PJ, Heath BS, Nizkorodov SA, Laskin A. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2012; 84:7179-87. [DOI: 10.1021/ac301533z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California,
Irvine, California 92697-2025,
United States
| | | |
Collapse
|
40
|
Simultaneous determination of substituent patterns in partially acid hydrolyzed O-Me/O-Me-d3-cellulose and quantification of the obtained oligomers by HPLC-ESI-MS. Carbohydr Res 2012; 348:55-63. [PMID: 22172659 DOI: 10.1016/j.carres.2011.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/14/2011] [Indexed: 11/21/2022]
|
41
|
Unterieser I, Cuers J, Voiges K, Enebro J, Mischnick P. Quantitative aspects in electrospray ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of malto-oligosaccharides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2201-2208. [PMID: 21710600 DOI: 10.1002/rcm.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry is widely applied in carbohydrate analysis, but still quantitative evaluation of data is critical due to different ionization efficiencies of the constituents in a mixture. Different size and chemical structure of the analytes cause their uneven distribution in droplets (electrospray ionization, ESI) or matrix spots (matrix-assisted laser desorption/ionization, MALDI). In addition, instrumental parameters affect final ion yields. In order to study and optimize the latter, an equimolar mixture of malto-oligosaccharides (DP1-6) was analyzed using varying target masses for ESI as well as different matrices and laser power for MALDI. The sodium adducts and derivatives for positive ion mode (hydrazones with Girard's T Reagent, GT) and negative ion mode (reductively aminated with o-aminobenzoic acid, oABA) were studied. Negatively charged oABA-labeled malto-oligosaccharides turned out to be unsuitable for quantification of the malto-oligomeric composition. Best agreement was achieved when applying target masses in the range of the highest homolog in the mixture in electrospray ionization ion trap (ESI-IT) (1-2% deviation with GT label or as Na(+) adducts). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gave best results when the laser power was adjusted significantly over the desorption/ionization threshold (1% deviation with GT label). Both parameters show significant influence on the determined oligomeric composition. Consequently, estimation and even quantitative determination of amounts of oligosaccharides in a mixture can be achieved when the analytes are labeled and the proper instrumental parameters are used.
Collapse
Affiliation(s)
- Inga Unterieser
- Technische Universität Braunschweig, Institut für Lebensmittelchemie, Schleinitzstr. 20, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
42
|
Chen X, Khairallah GN, O’Hair RA, Williams SJ. Fixed-charge labels for simplified reaction analysis: 5-hydroxy-1,2,3-triazoles as byproducts of a copper(I)-catalyzed click reaction. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives. MASS SPECTROMETRY OF POLYMERS – NEW TECHNIQUES 2011. [DOI: 10.1007/12_2011_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|