1
|
Perdicchia D. Borane-Trimethylamine Complex: A Versatile Reagent in Organic Synthesis. Molecules 2024; 29:2017. [PMID: 38731507 PMCID: PMC11085582 DOI: 10.3390/molecules29092017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Borane-trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine-borane complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic chemistry with applications in the reduction of carbonyl groups and carbon-nitrogen double bond reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover, BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions. The present review is focused on the applications of borane-trimethylamine complex as a reagent in organic synthesis and has not been covered in previous reviews regarding amine-borane complexes.
Collapse
Affiliation(s)
- Dario Perdicchia
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
3
|
Cheewawisuttichai T, Brichacek M. Development of a multifunctional neoglycoside auxiliary for applications in glycomics research. Org Biomol Chem 2021; 19:6613-6617. [PMID: 34264248 DOI: 10.1039/d1ob00941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, multifunctional, tetrazine-containing neoglycoside auxiliary has been synthesized in three steps and 28% overall yield. The oxyamine was conjugated with unprotected carbohydrates under aqueous conditions (pH = 4.7), with DMF as a cosolvent, to provide neoglycosides in yields ranging between 51% and 68%. This auxiliary displayed broad advantages in the isolation and purification of complex carbohydrate mixtures, compatibility during extension by glycosyltransferases, and direct conjugation to chemical probes. Furthermore, the auxiliary can be removed in 96% yield under acidic conditions (0.25% TFA in H2O) that leave glycosidic linkages intact. Thereby, the tetrazine-containing neoglycoside auxiliary can serve to facilitate future glycomics investigations.
Collapse
|
4
|
Goel B, Tripathi N, Mukherjee D, Jain SK. Glycorandomization: A promising diversification strategy for the drug development. Eur J Med Chem 2021; 213:113156. [PMID: 33460832 DOI: 10.1016/j.ejmech.2021.113156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Glycorandomization is a natural product derivatization strategy in which different sugar moieties are linked to the aglycone part of the naturally existing glycosides to create glycorandomized libraries. Sugars attached to the natural products are responsible for affecting their solubility, mechanism of action, target recognition, and toxicity and thus, by changing the sugar part, these properties could be modified. Glycorandomization can be done via two approaches (i) a synthetic approach known as neoglycorandomization, and (ii) chemoenzymatic approach including in-vitro and in-vivo glycorandomization. Glycorandomization can be a promising technology for the drug discovery that has proved its potential to improve pharmacokinetic (solubility) and pharmacodynamic profile (mechanism of action, toxicity, and target recognition) of the parent compounds. The substrate flexibility of glycosyltransferases and other enzymes towards sugars and/or aglycone substrates has made this technique versatile. Further, the enzymes can be altered by genetic engineering to generate glycorandomized libraries of diverse natural product scaffolds. This technique has the potential to produce new compounds that can be helpful to the mankind by treating the threatening disease states. This review covers the different strategies for glycorandomization as a tool in drug discovery and development. The fundamentals of glycorandomization, different types, and further development of differentially glycorandomized libraries of natural products and small molecule based drugs have been discussed.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Aho A, Sulkanen M, Korhonen H, Virta P. Conjugation of Oligonucleotides to Peptide Aldehydes via a pH-Responsive N-Methoxyoxazolidine Linker. Org Lett 2020; 22:6714-6718. [PMID: 32804515 DOI: 10.1021/acs.orglett.0c01815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of N-methoxyoxazolidines in the preparation of oligonucleotide-peptide conjugates was evaluated. The reaction occurred between unprotected 2'-N-(methoxy)amino-modified oligonucleotides and peptide aldehydes in reasonable yields when isolated. The reaction is reversible under slightly acidic conditions, and it is pH-responsive. The rate and the equilibrium constant may be varied with structurally different aldehydes, allowing an optimization of the ligation and cleavage rate of the resultant conjugates. Therefore, this concept can be considered a cleavable linker.
Collapse
Affiliation(s)
- Aapo Aho
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Mika Sulkanen
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Heidi Korhonen
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
Wollenberg AL, Perlin P, Deming TJ. Versatile N-Methylaminooxy-Functionalized Polypeptides for Preparation of Neoglycoconjugates. Biomacromolecules 2019; 20:1756-1764. [DOI: 10.1021/acs.biomac.9b00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Cortés I, Kaufman TS, Bracca ABJ. A convenient and eco-friendly cerium(III) chloride-catalysed synthesis of methoxime derivatives of aromatic aldehydes and ketones. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180279. [PMID: 29892459 PMCID: PMC5990813 DOI: 10.1098/rsos.180279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 05/28/2023]
Abstract
The use of CeCl3·7H2O as an efficient and eco-friendly promoter for the convenient synthesis of methoximes derived from aromatic aldehydes and ketones, is reported. The transformations entail the use of equimolar amounts of MeONH2·HCl and NaOAc in EtOH at 50°C, and no special precautions are needed with regard to the presence of oxygen. The scope and limitations of the transformation were studied and a reaction mechanism was proposed.
Collapse
|
8
|
Abstract
![]()
The
potential of N(Me)-alkoxyamine glycosylation
as a DNA-templated ligation has been studied. On a hairpin stem-template
model, a notable rate enhancement and an increased equilibrium yield
are observed compared to the corresponding reaction without a DNA
catalyst. The N-glycosidic connection is dynamic
at pH 5, whereas it becomes irreversible at pH 7. The N(Me)-alkoxyamine glycosylation may hence be an attractive pH controlled
reaction for the assembly of DNA-based dynamic products.
Collapse
Affiliation(s)
- Tommi Österlund
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Heidi Korhonen
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , 20014 Turku , Finland
| |
Collapse
|
9
|
Li GL, Xu HJ, Xu SH, Wang WW, Yu BY, Zhang J. Synthesis of tigogenin MeON-Neoglycosides and their antitumor activity. Fitoterapia 2017; 125:33-40. [PMID: 29269236 DOI: 10.1016/j.fitote.2017.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
Abstract
To discover new potent cytotoxic steroidal saponins, a series of tigogenin neoglycosides were synthesized via oxyamine neoglycosylation for the first time. The preliminary bioassays for their in vitro antitumor activities against five human cancer cell lines (A375, A-549, HCT-116, HepG2 and MCF-7) were conducted. The results revealed a sugar-dependent activity profile of their cytotoxicity, the glycoconjugation converted the non-active tigogenin to the most potential product Tg29 ((3R)-N-methoxyamino-tigogenin-β-2-deoxy-d-galactoside) with IC50 value of 2.7μM and 4.6μM against HepG2 and MCF-7 cells respectively. And the 3R-tigogenin neoglycosides exhibited enhanced antitumor activity while the 3S-tigogenin almost showed no activity. Among the five cell lines, HepG2 and MCF-7 cells showed more sensitive cytotoxic responses to the products. Therefore, the neoglycosylation could be a promising strategy for the synthesis of antitumor steroidal saponins and it also proved the essential role of carbohydrate moiety of steroidal saponins in the biological activity.
Collapse
Affiliation(s)
- Guo-Long Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hong-Jiang Xu
- Institute for Pharmacology&Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing 210023, China
| | - Shao-Hua Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wei-Wei Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Munneke S, Hill JC, Timmer MSM, Stocker BL. Synthesis and Hydrolytic Stability of N
- and O
-Methyloxyamine Linkers for the Synthesis of GlycoconjugatesSynthesis and Hydrolytic Stability of N
- and O
-Methyloxyamine Linkers for the Synthesis of Glycoconjugates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stefan Munneke
- School of Chemical and Physical Sciences; Victoria University of Wellington; P. O. Box 600 Wellington New Zealand
| | - Jaimé C. Hill
- School of Chemical and Physical Sciences; Victoria University of Wellington; P. O. Box 600 Wellington New Zealand
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences; Victoria University of Wellington; P. O. Box 600 Wellington New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences; Victoria University of Wellington; P. O. Box 600 Wellington New Zealand
| |
Collapse
|
11
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
12
|
Baudendistel OR, Wieland DE, Schmidt MS, Wittmann V. Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions. Chemistry 2016; 22:17359-17365. [DOI: 10.1002/chem.201603369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Oliver R. Baudendistel
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Daniel E. Wieland
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Magnus S. Schmidt
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| |
Collapse
|
13
|
Jiménez-Castells C, Stanton R, Yan S, Kosma P, Wilson IB. Development of a multifunctional aminoxy-based fluorescent linker for glycan immobilization and analysis. Glycobiology 2016; 26:1297-1307. [PMID: 27222531 DOI: 10.1093/glycob/cww051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Glycan arrays have become a technique of choice to screen glycan-protein interactions in a high-throughput manner with high sensitivity and low sample consumption. Here, the synthesis of a new multifunctional fluorescent linker for glycan labeling via aminoxy ligation and immobilization is described; the linker features a fluorescent naphthalene group suitable for highly sensitive high-performance liquid chromatography-based purification and an azido- or amino-modified pentanoyl moiety for the immobilization onto solid supports. Several glycoconjugates displaying small sugar epitopes via chemical or chemoenzymatic synthesis were covalently attached onto a microarray support and tested with lectins of known carbohydrate binding specificity. The glycan library was extended using glycosyltransferases (e.g. galactosyl-, sialyl- and fucosyltransferases); the resulting neoglycoconjugates, which are easily detected by mass spectrometry, mimic antennal elements of N- and O-glycans, including ABH blood group epitopes and sialylated structures. Furthermore, an example natural plant N-glycan containing core α1,3-fucose and β1,2-xylose was also successfully conjugated to the fluorescent linker, immobilized and probed with lectins as well as antihorseradish peroxidase. These experiments validate our linker as being a potentially valuable tool to study glycozyme and lectin specificities, sensitive enough to allow purification of natural glycans.
Collapse
Affiliation(s)
| | - Rhiannon Stanton
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Paul Kosma
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Iain Bh Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| |
Collapse
|
14
|
Langenhan JM, McLaughlin RP, Loskot SA, Rozal LM, Clay MS, Alaimo PJ. Using density functional theory to calculate the anomeric effect in hydroxylamine and hydrazide derivatives of tetrahydropyran. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1139122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | | | | | - Peter J. Alaimo
- Department of Chemistry, Seattle University, Seattle, WA, USA
| |
Collapse
|
15
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|
16
|
Rocha SC, Pessoa MTC, Neves LDR, Alves SLG, Silva LM, Santos HL, Oliveira SMF, Taranto AG, Comar M, Gomes IV, Santos FV, Paixão N, Quintas LEM, Noël F, Pereira AF, Tessis ACSC, Gomes NLS, Moreira OC, Rincon-Heredia R, Varotti FP, Blanco G, Villar JAFP, Contreras RG, Barbosa LA. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions. PLoS One 2014; 9:e108776. [PMID: 25290152 PMCID: PMC4188576 DOI: 10.1371/journal.pone.0108776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions.
Collapse
Affiliation(s)
- Sayonarah C. Rocha
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Marco T. C. Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luiza D. R. Neves
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Silmara L. G. Alves
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Luciana M. Silva
- Laboratório de Biologia Celular e Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Herica L. Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Soraya M. F. Oliveira
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Alex G. Taranto
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Moacyr Comar
- Laboratório de Bioinformática, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Isabella V. Gomes
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Fabio V. Santos
- Laboratório de Biologia Celular e Mutagenicidade, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Natasha Paixão
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luis E. M. Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - François Noël
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio F. Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C. S. C. Tessis
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | - Natalia L. S. Gomes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ruth Rincon-Heredia
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Fernando P. Varotti
- Laboratório de Bioquímica de Parasitos, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jose A. F. P. Villar
- Laboratório de Síntese Orgânica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| | - Rubén G. Contreras
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, MG, Brazil
| |
Collapse
|
17
|
Nandurkar NS, Zhang J, Ye Q, Ponomareva LV, She QB, Thorson JS. The identification of perillyl alcohol glycosides with improved antiproliferative activity. J Med Chem 2014; 57:7478-84. [PMID: 25121720 PMCID: PMC4161159 DOI: 10.1021/jm500870u] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A facile
route to perillyl alcohol (POH) differential glycosylation
and the corresponding synthesis of a set of 34 POH glycosides is reported.
Subsequent in vitro studies revealed a sugar dependent antiproliferative
activity and the inhibition of S6 ribosomal protein phosphorylation
as a putative mechanism of representative POH glycosides. The most
active glycoside from this cumulative study (4′-azido-d-glucoside, PG9) represents one of the most cytotoxic
POH analogues reported to date.
Collapse
Affiliation(s)
- Nitin S Nandurkar
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | |
Collapse
|
18
|
Goff RD, Thorson JS. Neoglycosylation and neoglycorandomization: Enabling tools for the discovery of novel glycosylated bioactive probes and early stage leads. MEDCHEMCOMM 2014; 5:1036-1047. [PMID: 25071927 PMCID: PMC4111257 DOI: 10.1039/c4md00117f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses upon the development, scope, and utility of the highly versatile chemoselective alkoxyamine-based 'neoglycosylation' reaction first described by Peri and Dumy. The fundamentals of neoglycosylation and the subsequent development of a 'neoglycorandomization' platform to afford differentially-glycosylated libraries of plant-based natural products, microbial-based natural products, and small molecule-based drugs for drug discovery applications are discussed.
Collapse
Affiliation(s)
- Randal D. Goff
- Western Wyoming Community College, 2500 College Dr. Rock Springs, WY 82902-0428, USA
| | - Jon. S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
19
|
Ulrich S, Boturyn D, Marra A, Renaudet O, Dumy P. Oxime Ligation: A Chemoselective Click-Type Reaction for Accessing Multifunctional Biomolecular Constructs. Chemistry 2013; 20:34-41. [DOI: 10.1002/chem.201302426] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Loskot SA, Zhang J, Langenhan JM. Nucleophilic catalysis of MeON-neoglycoside formation by aniline derivatives. J Org Chem 2013; 78:12189-93. [PMID: 24180591 DOI: 10.1021/jo401688p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neoglycosylations are increasingly being employed in the synthesis of natural products, drug candidates, glycopeptide mimics, oligosaccharide analogues, and other applications, but the efficiency of these reactions is usually limited by slow reaction times. Here, we show that aniline derivatives such as 2-amino-5-methoxybenzoic acid enhance the rate of acid-catalyzed neoglycosylation for a range of sugar substrates up to a factor of 32 relative to the uncatalyzed reaction.
Collapse
Affiliation(s)
- Steven A Loskot
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | | | | |
Collapse
|
21
|
Zhang J, Ponomareva LV, Marchillo K, Zhou M, Andes DR, Thorson JS. Synthesis and antibacterial activity of doxycycline neoglycosides. JOURNAL OF NATURAL PRODUCTS 2013; 76:1627-36. [PMID: 23987662 PMCID: PMC3814126 DOI: 10.1021/np4003096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A set of 37 doxycycline neoglycosides were prepared, mediated via a C-9 alkoxyamino-glycyl-based spacer reminiscent of that of tigecycline. Subsequent in vitro antibacterial assays against representative drug-resistant Gram negative and Gram positive strains revealed a sugar-dependent activity profile and one doxycycline neoglycoside, the 2'-amino-α-D-glucoside conjugate, to rival that of the parent pharmacophore. In contrast, the representative tetracycline-susceptible strain E. coli 25922 was found to be relatively responsive to a range of doxycycline neoglycosides. This study also extends the use of aminosugars in the context of neoglycosylation via a simple two-step strategy anticipated to be broadly applicable for neoglycorandomization.
Collapse
Affiliation(s)
- Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Karen Marchillo
- Department of Medicine and Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, 53705-2281, United States
| | - Maoquan Zhou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - David R. Andes
- Department of Medicine and Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, 53705-2281, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
22
|
Langenhan JM, Mullarky E, Rogalsky DK, Rohlfing JR, Tjaden AE, Werner HM, Rozal LM, Loskot SA. Amphimedosides A–C: Synthesis, Chemoselective Glycosylation, And Biological Evaluation. J Org Chem 2013; 78:1670-6. [DOI: 10.1021/jo302640y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joseph M. Langenhan
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Edouard Mullarky
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Derek K. Rogalsky
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - James R. Rohlfing
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Anja E. Tjaden
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Halina M. Werner
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Leonardo M. Rozal
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Steven A. Loskot
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| |
Collapse
|
23
|
|